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We introduce the concept of fidelity for dynamical maps in an open quantum system scenario. We derive
an inequality linking this quantity to the distinguishability of the inducing environmental states. Our inequality
imposes constraints on the allowed set of dynamical maps arising from the microscopic description of system
plus environment. Remarkably, the inequality involves only the states of the environment and the dynamical
map of the open system and, therefore, does not rely on the knowledge of either the microscopic interaction
Hamiltonian or the environmental Hamiltonian characteristic parameters. We demonstrate the power of our result
by applying it to two different scenarios: quantum programming and quantum probing. In the first case, we
use it to derive bounds on the dimension of the processor for approximate programming of unitaries. In the
second case we present an intriguing proof-of-principle demonstration of the ability to extract information on
the environment via a quantum probe without any a priori assumption on the form of the system-environment
coupling Hamiltonian.
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I. INTRODUCTION

Quantum systems are extremely sensitive to noise arising
from the interaction with their surroundings. This feature is
at the very heart of the transition between the quantum and
the classical description of the world and, at the same time,
imposes limitations on the efficiency of quantum devices for
quantum technologies. For this reason, a number of theoretical
and experimental approaches focus on the modelization,
characterization, and reduction of noise induced by the
environment, both by increasing the isolation of the system
and by suitable engineering of the environment.

A key quantity in the dynamical description of open quan-
tum systems is the dynamical map, a time-parametrized family
of quantum channels [1]. Formally, the exact description of the
dynamical map can be obtained starting from a microscopic
Hamiltonian model of the system, the environment, and their
interaction. In many practical circumstances, however, one
does not have accurate knowledge of the microscopic details
of either the interaction or the environmental Hamiltonian.
In addition, it is well known that different environments
and couplings can lead to the same dynamical map. It is
therefore clear that, both from an experimental and from a
theoretical perspective, it is crucial to develop approaches
able to (i) discriminate between different dynamical maps, (ii)
identify the restrictions imposed on the form of the dynamical
map from the specific choices of the environmental state,
Hamiltonian and coupling, and (iii) develop techniques to
probe the environment without ideally any a priori assumption
on its microscopic properties and on the way it is coupled to
the system.

In this paper, we address these issues by introducing a
family of channel fidelities, which generalize the familiar
(Uhlmann) fidelity of quantum states. Endowed with these
quantifiers, we prove a powerful inequality between the fideli-
ties of the two environmental states inducing the dynamics

and the corresponding dynamical maps. More precisely, the
introduced fidelity quantifies the difference between two
dynamical maps by measuring how distinguishable they render
a pair of initially identical (or more generally nonorthogonal)
states, which are initially uncorrelated from their dynamics-
inducing environments. This addresses point (i). the derived
inequality, on the other hand, allows us to answer the points (ii)
and (iii) since, contrarily to the probing approaches existing
in the literature [2–10], it does not rely on the knowledge of
either the system-environment interaction Hamiltonian or the
characteristic parameters of the environmental Hamiltonian.
We prove the usefulness of our inequality by applying it to two
different scenarios both highly relevant for the development
of quantum technologies, namely quantum programming and
quantum probing.

A programmable quantum processor, or gate array, is
a device that implements different quantum channels on
one system (the data register) depending on the state of
another quantum system (the program register). The third
element of this device is a fixed array of gates acting on
both the data and the program register. The virtue of this
arrangement is its versatility: one can realize various maps
simply by controlling the state of program register. The
alteration of the programming state to perform the desired
operation is called quantum programming. Programmable
quantum processors were first considered by Nielsen and
Chuang in the late 90’s [11]. Remarkably, these authors
showed that a deterministic universal programmable processor
cannot be realised. The reason for this impossibility is
that any two states of the program register implementing
a pair of inequivalent unitary transformations need to be
orthogonal [11–14]. Therefore the programming resources,
bounded by the dimension of the program register, are insuf-
ficient to implement all unitaries, comprising an uncountable
set.
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The no-programming theorem above holds only if the
programming is deterministic. Indeed, it was shown already in
Ref. [11] that it is possible to successfully implement any one-
qubit unitary operation with 1/4 probability, thus proving the
existence of probabilistic universal quantum processors. This
result was generalized in Refs. [15,16], where it was proven
that the probability of success is p = 1 − ε and the error ε

can be made arbitrarily small; the results were later extend for
qudits in Refs. [17,18]. Probabilistic programming, however,
tells little about programming states of general quantum
transformations, described by completely positive and trace
preserving (CPTP) maps. This is, however, important as all
realistic implementations of quantum devices are subjected to
environmental noise. In this more realistic scenario, known as
approximate quantum programming, maps are near to, but not
exactly, unitary.

Approximate quantum programming has been studied in
Refs. [12,13,15]. In particular, in Refs. [12,13], relations
between the overlap of pure programming states and the
programmed channels are presented. Our inequality, on the
other hand, sets an upper bound for the programming states
in terms of the programmed channels and is independent of
the choice of the processor. This independence is important
since, as we argued above, the microscopic description of
the environmental noise affecting the processor may not be
known. In addition, unlike in the previously proposed relations,
our inequality holds for general (mixed) programming states.
In other words, our bound is universally valid and enables
us to tackle efficiently problems such as finding size bounds
for quantum circuit designs able to implement the desired
transformations in full generality.

The second application is in the framework of quantum
probing. One particularly renowned quantum feature is sum-
marized by the statement no information without disturbance.
Namely, any measurement producing meaningful information
generally transforms the state of the measured system. An
observer is thus faced with a dilemma: how to ascertain and
assign values to properties of the measured system since they
may be, and typically are, altered due to the measurement? One
way of obtaining some information on the system of interest
without predisposing it to a direct measurement is to let it
temporarily interact with a smaller ancillary quantum system
and then perform a measurement on it: this technique is known
as quantum probing. The system of interest in this framework
acts as the environment of the quantum probe, and the induced
probe dynamics carries information on the properties of the
environment. If the coupling between the probe and the system
of interest is sufficiently weak, measurements on the probe
only lead to small perturbations on the system. In addition,
measuring the full probe dynamics ideally allows one to extract
even complete information on the system while leading to only
minimal disturbance [2–8].

Typical quantum probing strategies assume the knowledge
of the microscopic system-probe interaction as well as the
system Hamiltonian. The originality of our method is the use
of the quantum programming perspective in order to go beyond
these existing probing approaches. Namely, by comparing
the dynamics induced by an unknown environmental state
with the one of a calibration state, some properties on the
measured system can be extracted with none or minimal a

priori assumptions. Indeed, we provide examples in which
such a probing protocol can be used for parameter estimation
without knowing anything about the system-probe coupling or
the probe Hamiltonian.

The paper is structured as follows. In Sec. II, we introduce
the mathematical methods and the notation used throughout
this work and provide the main result of this paper: the inequal-
ity between the channel fidelity of two state transformations
and the fidelity of the corresponding two inducing states. In
Sec. III, we present four applications that capture the power of
this result from different perspectives. Finally, in Sec. IV, we
summarize our results and present conclusions.

II. INEQUALITY BETWEEN INDUCING STATES
AND OPEN SYSTEM DYNAMICS

We denote a complex separable Hilbert space by H and
the trace class operators on H by T (H). A quantum state is
represented as a positive operator � ∈ T (H) with Tr[�] = 1
and the set of quantum states of H is denoted by S(H).
We indicate with supp(�) the support of the state � and
say that �1 and �2 are orthogonal, i.e., �1 ⊥ �2, when the
sets supp(�1) and supp(�2) are orthogonal. The extremal
elements of S(H) are called pure and such element can be
written as � = |ϕ〉〈ϕ| for some unit vector |ϕ〉 ∈ H. The
transformations of quantum states are represented by linear
mappings E : T (H) → T (H′) that are completely positive
and trace-preserving: such transformations are called quantum
channels. In particular, a channel U is called a unitary channel
whenever it is of the form U(�) = U�U † for some unitary
operator U on H and for all � ∈ S(H).

The dynamics of a closed quantum system with initial state
� is described by a t-parametrized group of unitary operators
U (t) asU (t)(�) = U (t)�U (−t), t � 0. In reality, every physically
realizable quantum system S, with Hilbert space HS , interacts
with some environment, E, with Hilbert space HE , such that
the pair S + E can be considered a closed system, represented
by HS ⊗ HE . One commonly assumes that the system and the
environment are initially uncorrelated, that is �S+E = � ⊗ ξ .
The reduced dynamics of the system state can be calculated
from the total system dynamics U (t)(� ⊗ ξ ) as a partial trace
over HE :

E (t)(�) = trE[U (t)(� ⊗ ξ )] . (1)

In particular, we say that the dynamics E (t)(�) is induced by
the environmental state ξ .

The amount of information ascribed in the state � is
measured in terms of entropy. In our investigation, we are
focusing on a class of α-Rényi entropies Sα(�)

.= 1
1−α

ln tr[�α],
α ∈ (0,1) ∪ (1,∞). The α-Rényi entropies generate a one-
parameter family of divergences, that from a certain axiomatic
point of view for classical random variables X1 and X2 takes
the unique form

Dα(X1||X2) = 1

α − 1

n∑
i=1

ln[p1(xi)
αp2(xi)

1−α] , (2)

where the two probability measures p1 and p2 measure the
probabilities for outcome xi , i = 1, . . . ,n, occurring in X1

and X2, respectively [19]. In a quantum scenario, however,
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the uniqueness of the formulation of the divergences arising
from the same set axioms is not guaranteed, and two divergent
extensions of Eq. (2) to the quantum setting have been
proposed in the literature

S̃α(�1||�2)
.=

{
1

α−1 ln
{
tr
[
�α

1 �1−α
2

]}
, �1 �⊥ �2

∞, otherwise
(3)

and

Sα(�1||�2)

.=
{

1
α−1 ln

[
tr
[(

�
1−α
2α

2 �1 �
1−α
2α

2

)α]]
, when �1 �⊥ �2

∞, otherwise
(4)

defined for α ∈ (0,1) and a pair of quantum states �1,�2 ∈
S(HS) [20,21]. In this study, we will be focusing for the latter
definition Sα and call it the quantum α-Rényi divergence. It is,
however, worth mentioning that all the results we will present
in this paper could be also formulated in the context of S̃α and
furthermore, since the Sα and S̃α coincide for commuting states
[�1,�2] = 0 [20], most of these results are in fact equivalent
for the two definitions.

Importantly, many of the most commonly used quantum
(relative) entropies, such as the common (relative) entropy,
the minimum and the maximum (relative) entropies, can be
derived from the quantum α-Rényi divergence as special cases;
for the properties of α-Rényi divergence we refer the reader
to Refs. [22–25] and references therein. For our purposes, we
recall here the following features:

(S1) Sα(�1||�2) � 0, where the equality holds if and only
if �1 = �2,

(S2) Sα(�1 ⊗ ξ1||�2 ⊗ ξ2) = Sα(�1||�2) + Sα(ξ1||ξ2),
(S3) Sα(U(�1)||U(�2)) = Sα(�1||�2)

for all α ∈ (0,1) and �1,�2 ∈ S(HS), ξ1,ξ2 ∈ S(HE) and for all
unitary channelsU . Notice that the order of inputs is important,
since in general Sα(�1,�2) �= Sα(�2,�1). Additionally, for
all α ∈ [1/2,1), the α-Rényi divergence satisfies the data
processing inequality

(S4) Sα(E(�1)||E(�2)) � Sα(�1||�2),
for all �1,�2 ∈ S(HS) and for arbitrary quantum channels E :
T (HS) → T (H′

S).
From Eq. (1), it is clear that altering the inducing state

ξ ∈ S(HE), while keeping the coupling interaction fixed, may
lead to different channels. A question then arises: how do the
two different inducing states and the corresponding induced
channels relate to each other? The following proposition
provides insight into this question.

Proposition 1. Suppose that two (different) channels E1

and E2 : T (HS) → T (HS) are induced by states ξ1 and ξ2 ∈
S(HE), respectively, from some fixed (unitary) coupling U :
T (HS ⊗ HE) → T (HS ⊗ HE); see Eq. (1). Then for all α ∈
[1/2,1) and �1,�2 ∈ S(HS)

Sα(E1(�1)||E2(�2)) − Sα(�1||�2) � Sα(ξ1||ξ2). (5)

Proof. The claim follows from the properties (S1)–(S4),
namely,

Sα(�1||�2) + Sα(ξ1||ξ2)

= Sα(U(�1 ⊗ ξ1)‖| U(�2 ⊗ ξ2))

� Sα(trE[U(�1 ⊗ ξ1)] || trE[U(�2 ⊗ ξ2)])

= Sα(E1(�1)||E2(�2)). (6)

�
We will use a short-hand notation

Fα(�1,�2)
.= tr

[(
�

1−α
2α

2 �1 �
1−α
2α

2

)α]
, (7)

since it will often appear in the following, and call the quantity
Fα the α fidelity of states.1 In the particular case α = 1/2, F1/2

corresponds to the usual (Uhlmann) fidelity of states. Using
this notation and the monotonicity of the logarithm function,
inequality (5) implies

Fα(�1,�2)Fα(ξ1,ξ2) � Fα(E1(�1),E2(�2)), (8)

for α ∈ [1/2,1), which can be seen as a generalization of the
data processing inequality Fα(�1,�2) � Fα(E(�1),E(�2)), for
α ∈ [1/2,1). Motivated by this inequality, for α ∈ (0,1), we
define

Fα(E1,E2)
.= inf

�1,�2∈S(HS )

Fα(E1(�1),E2(�2))

Fα(�1,�2)
, (9)

and call it the α fidelity of channels E1 and E2. We justify the
terminology, since Fα shares many of the basic properties of
fidelity-measures as we shall verify next.

Proposition 2. For all α ∈ (0,1) and channels Ei :
T (HS) → T (HS), i = 1 and 2, α fidelity of channels
Fα(E1,E2) has the following properties:

(F1) Fα(E1,E2) ∈ [0,1],
(F2) Fα(E1,E2) = Fα(U ◦ E1 ◦ V,U ◦ E2 ◦ V), for all uni-

tary channels U and V .
Additionally, for α ∈ [1/2,1),
(F3) Fα(E1,E2) = 1 iff E1 = E2,
(F4) Fα(E1,E2) � Fα(E ◦ E1,E ◦ E2), for all channels E :

T (HS) → T (H′
S),

(F5) Fα(E1,E2) � Fα(E1 ◦ E,E2 ◦ E), for all channels E :
T (H′

S) → T (HS).
Proof. Clearly Fα(E1,E2) is non-negative by defini-

tion. Since Fα(�1,�2) � 1 for all �1,�2 ∈ S(HS), as ver-
ified from (S1) of α-Rényi divergence, Fα(E1,E2) �
inf�1,�2 Fα(�1,�2)−1 = 1 proving (F1). Using the properties
(S3) and (S4) of α-Rényi divergence, the monotonicity of
the logarithm function and the fact S(HS) � U(S(HS)) we
conclude (F2) and (F4). Since Fα(�1,�2) � Fα(E(�1),E(�2)),
for all channels E when α ∈ [1/2,1), we confirm Fα(E,E) =
1. Assume, on the other hand, that Fα(E1,E2) = 1, but
make a counterassumption E1 �= E2. Then, there exists
a state � ∈ S(HS) such that E1(�) �= E2(�) and there-
fore by (S1) Fα(E1(�),E2(�)) < 1. Since 1 = Fα(E1,E2) �
Fα(E1(�),E2(�)) < 1, this leads to a contradiction and we get
(F3). Lastly, we prove (F5). From the properties above, we get
the inequality

Fα((E1 ◦ E)(�1),(E2 ◦ E)(�2))

Fα(E(�1),E(�2))

� Fα((E1 ◦ E)(�1),(E2 ◦ E)(�2))

Fα(�1,�2)
, (10)

1In one of the founding papers [21], this quantity goes by the name
“sandwiched quasirelative entropy.”
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which together with E(S(H′
S)) ⊂ S(HS) implies that

Fα(E1,E2) � inf
E(�1),E(�2)

Fα(E1(E(�1)),E2(E(�2)))

Fα(E(�1),E(�2))

= inf
�1,�2

Fα((E1 ◦ E)(�1),(E2 ◦ E)(�2))

Fα(E(�1),E(�2))

� inf
�1,�2

Fα((E1 ◦ E)(�1),(E2 ◦ E)(�2))

Fα(�1,�2)

= Fα(E1 ◦ E,E2 ◦ E). (11)

�
Different fidelity measures of pairs of quantum channels

have been formulated including the process fidelity measuring
the distinguishability of the corresponding Choi states [26],
the minimax fidelity [27] with operational connection to the
single-shot discrimination of channels done with the so-called
process POVMs [28,29] and the plethora of gate fidelities
considered in Refs. [30,31]. All of these channel fidelities have
a common feature: they measure the distinguishability of pair
of quantum channels in different operational scenarios. The
α fidelity of channels we propose does not, however, admit
operational connection to the above channel discrimination
tasks due to a peculiar property the other channel fidelities do
not share. Namely, as we will see shortly, it vanishes for any
pair of different unitary channels. This unique feature makes
our fidelity particularly appealing in quantum programming.

We note that the double infima in Eq. (9) can make
Fα difficult to evaluate. It is, however, readily verified
that Fα(E1,E2) � inf� Fα(E1(�),E2(�)), where the latter quan-
tity also sets an upper bound for the inducing states
and it is much easier to handle. Furthermore, since it
has been shown in [32] that Fα is jointly concave for
α ∈ [1/2,1), that is, in particular for an arbitrary � =∑

i λi |i〉〈i| it satisfies Fα(E1(
∑

i λi |i〉〈i|),E2(
∑

i λi |i〉〈i|)) �∑
i λiFα(E1(|i〉〈i|),E2(|i〉〈i|)) for α ∈ [1/2,1), it can be con-

cluded that it is enough to consider the infimum over the
set of pure states. In the special case α = 1/2, the quantity
Fmin(E1,E2)

.= inf� F1/2(E1(�),E2(�)) is known as the minimal
gate fidelity [30,31]. We leave it as an open problem, whether
also in Fα it is sufficient to evaluate the infima over the set
pure states or not.

Above an ordering, F1/2 � Fmin, was pointed out, and
one may wish to reveal such relations between other fi-
delities also, e.g., between α fidelity and the commonly
used process fidelity defined for channels Ei : T (HS) →
T (HS), i = 1,2, via Fproc(E1,E2)

.= F1/2(E1 ⊗ I(�),E2 ⊗
I(�)), where I : T (HS) → T (HS) is the identity channel and
� = 1

dim(HS )

∑dim(HS )
n,m=1 |nn〉〈mm| is the maximally entangled

state in HS ⊗ HS with respect to an orthonormal basis
{|n〉, n = 1, . . . , dim(HS)}. Such an ordering cannot, however,
be established. Namely, it can be confirmed that for the one-
qubit channels E1 = I and E2(�) = 1/3

∑3
i=1 σi�σ

†
i , where

σi , i = 1,2,3, are the Pauli matrices, the process fidelity
vanishes, Fproc(E1,E2) = 0, or more generally Fα(E1 ⊗ I,E2 ⊗
I(�)) = 0 for all α ∈ (0,1). On the other hand, by writing
� �m = 1

2 (1 + �m · �σ ), where �m · �σ = ∑3
i=1 miσi and �m ∈ R3

has || �m|| � 1, we see that E2(� �m) = 2
3 · ( 1

21) + 1
3 · �− �m and

therefore

Fα(E1,E2) = inf
��n,� �m

Fα

(
��n, 2

3 · (
1
21

) + 1
3 · �− �m

)
Fα(��n,� �m)

� 2

3
inf
��n

Fα(��n,1/21) + 1

3
inf

��n,� �m

Fα(��n,�− �m)

Fα(��n,� �m)

= 2

3

(
1

2

)1−α

�= 0 , (12)

for α ∈ [1/2,1), where the estimation follows from the
joint concavity of the α fidelity [32]. Therefore there
exist channels E1 and E2 for which Fproc(E1,E2) <

Fα(E1,E2) for all α ∈ [1/2,1). However, in Proposition
III A, we will show that Fα(U1,U2) = 0 for any pair
of unitary channels U1 �= U2, which does not hold for
Fproc in general [26]. In conclusion, there is no order-
ing between Fα and Fproc. Furthermore, since the pro-
cess fidelity and the minimax fidelity [27] Fmm(E1,E2)

.=
inf�∈S(HS ) tr[|√E1 ⊗ I(�) 1 ⊗ �

√
E2 ⊗ I(�)|] satisfy Fmm �

Fproc, and since there exist unequal unitary channels Ui ,
i = 1 and 2, such that Fmm(U1,U2) �= 0, it may be concluded
that the channel fidelities Fmm and Fα are not related either.
As a corollary, we can prove that the α fidelity of channels is
not (sub)multiplicative for separable channels.

Proposition 3. Fα does not satisfy the multiplicativity
property

Fα(E1,E2)Fα(C1,C2) = Fα(E1 ⊗ C1,E2 ⊗ C2), (13)

for all channels Ei : T (HS) → T (HS), Ci : T (H′
S) → T (H′

S),
i = 1 and 2.

Proof. It is easily seen thatFα(E1,E2)Fα(C1,C2) � Fα(E1 ⊗
C1,E2 ⊗ C2), sinceS(HS) ⊗ S(H′

S) ⊂ S(HS ⊗ H′
S). The other

direction, however, leads to a contradiction. Namely, assume
that Fα(E1,E2)Fα(C1,C2) � Fα(E1 ⊗ C1,E2 ⊗ C2) holds for all
channels Ei : T (HS) → T (HS), Ci : T (H′

S) → T (H′
S), i =

1 and 2. Then in particular

Fα(E1,E2) � F1/2(E1 ⊗ I,E2 ⊗ I)

� Fα(E1 ⊗ I(�),E2 ⊗ I(�)) , (14)

which we have noted before does not hold in general. �
We observe that similar calculations to those above can be

used to verify that Fmin is not multiplicative either. So far,
we have only considered static quantum channels, however,
the calculations above hold as well for dynamical maps. The
emerging inequality

Fα(ξ1,ξ2) � Fα

(
E (t)

1 , E (t)
2

)
, α ∈ [1/2,1), t � 0, (15)

has the following twofold interpretation. Firstly, if the initial
environmental states ξi , i = 1 and 2, induce dynamics E (t)

i , re-
spectively, then Fα(E (t)

1 ,E (t)
2 ) cannot decrease below Fα(ξ1,ξ2)

for any t � 0. This sets limitations on what dynamics are
compatible with the inducing environmental states. On the
other hand, since inft�0 Fα(E (t)

1 ,E (t)
2 ) majorizes Fα(ξ1,ξ2), it

is possible to gain some information about the environment
by measuring the open system dynamics, i.e., by probing.
Remarkably, these two strategies work even if the environment
and the interaction were not specified. The next section is
devoted to examples that demonstrate these properties.
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FIG. 1. Quantum programming and probing. (a) In a quantum
programming scheme, one varies the state ξi of the program register
(HE) coupled to the data register (HS). By varying ξi we can induce
multiple different channels Ei on the data register. In this scenario,
the emphasis is on HS . (b) In a quantum probing scheme, on the other
hand, the system of interest is HE , which is coupled to the probe HS .
Different initial states, ξi , of the system lead to different dynamics,
Ei , of the probe. By measuring the probe dynamics Ei , we can obtain
some information of the corresponding inducing state ξi .

III. APPLICATIONS OF THE INEQUALITY

In the following, we will present three applications of
inequality (8) for quantum programming and quantum probing
purposes. Figure 1 illustrates the quantum probing and quan-
tum programming protocols. Despite their apparent similarity,
the main objectives in the two protocols are complementary; in
quantum programming, the aim is to induce different channels
for the data register in a controlled way, whereas in quantum
probing the goal is to extract information of the system of
interest which induced the dynamics.

A. Quantum programming

The altering of the inducing state ξ ∈ S(HE) in Eq. (1) is an
action known as quantum programming and accordingly, the
pair 〈HE,U〉 formed by the program spaceHE and the (unitary)
coupling U between HS and HE is called a programmable
processor.

From the inequality

Fα(ξ1,ξ2) � Fα(E1,E2), α ∈ [1/2,1), (16)

we get a limit for the fidelity of the inducing states in terms
of the induced channels. We recall once again that a sharp
equality between the inducing states and the induced channels
has been introduced in Ref. [33]. This equality depends on the
programmable processor. In inequality (16), on the contrary,
no such dependence is present.

In the case α = 1/2, inequality (16) has a particularly nice
interpretation, viz. F1/2(ξ1,ξ2) measures the distinguishability
of the states ξi , i = 1 and 2. Also, F1/2 has a similar inter-
pretation: F1/2(E1,E2) = inf�1,�2

F1/2(E1(�1),E2(�2))
F1/2(�1,�2) quantifies the

mutual distinguishability of the channels E1,E2 by measuring
how distinguishable these channels can render a pair of initially
nonorthogonal states �1 and �2. The inequality then naturally
stems from the fact that the distinguishabilities should not
increase under physical processes, such as programming. We
connect inequality (16) to earlier known programming results
[11–14] by proving that unitary channels are, in this sense, the
most distinguishable.

Proposition 4. Let U1 and U2 be two unitary channels. If
U1 �= U2 then Fα(U1,U2) = 0 for all α ∈ (0,1). In particular,
the inducing states of different unitary channels must be
orthogonal regardless of the choice of the processor 〈HE,U〉.

Proof. We first prove the proposition for α = 1/2. Us-
ing the properties of fidelity of pure states, we have
F1/2(U1(|ϕ1〉〈ϕ1|),U2(|ϕ2〉〈ϕ2|)) = |〈ϕ1|U †

1U2ϕ2〉|. It suffices
to show that for any operator U �= c · 1HS

, |c| = 1, there
exists nonorthogonal unit vectors |ϕ1〉,|ϕ2〉 ∈ HS such that
〈ϕ1|Uϕ2〉 = 0. Make a counterassumption that 〈ϕ1|Uϕ2〉 �=
0 whenever 〈ϕ1|ϕ2〉 �= 0. One can express |ϕ2〉 = α|ϕ1〉 +
β|η〉, where 〈ϕ1|η〉 = 0 and |α|2 + |β|2 = 1. Fix |ϕ1〉 such
that |〈ϕ1|Uϕ1〉| �= 1. We can then choose a unit vec-
tor |η〉 = (U †ϕ1 − 〈ϕ1|U †ϕ1〉ϕ1)/

√
1 − |〈ϕ1|Uϕ1〉|2 orthogo-

nal to ϕ1. With the above choices, we have 0 �= 〈ϕ1|Uϕ2〉 =
α〈ϕ1|Uϕ1〉 + β

√
1 − |〈ϕ1|Uϕ1〉|2 for all α and β. Since α =√

1 − |〈ϕ1|Uϕ1〉|2 and β = −〈ϕ1|Uϕ1〉 contradict this while
satisfying |α|2 + |β|2 = 1, the counterassumption is falsified.
Going the other way around, for any unit vector |ϕ1〉 such that
|〈ϕ1|Uϕ1〉| �= 1, we find that the unit vector

|ϕ2〉 =
√

1 − |〈ϕ1|Uϕ1〉|2 |ϕ1〉

− 〈ϕ1|Uϕ1〉√
1 − |〈ϕ1|Uϕ1〉|2

(U †|ϕ1〉 − 〈ϕ1|U †ϕ1〉|ϕ1〉),
(17)

which satisfies 〈ϕ1|Uϕ2〉 = 0 and 〈ϕ1|ϕ2〉 �= 0. Fixing U =
U

†
1U2 proves that F1/2(U1,U2) = 0. For general α ∈ (0,1) the

claim follows from the above considerations when noticing
that Fα(�1,�2) = 0 if and only if �1 ⊥ �2; see Eq. (4). �

It should be stressed that for any pair of quantum channels
Ei , i = 1 and 2 acting on a same Hilbert space, one can
find a processor 〈HE,U〉 from which the two channels can
be induced. To see this, let us recall that any channel
E : T (HS) → T (HS) admits a Stinespring dilation of the
form E(�) = trHS

[G� ⊗ |η〉〈η| G†], where G is a unitary
on HS ⊗ HS and |η〉 ∈ HS is some fixed unit vector. We
can therefore assume without loss of generality that Ei(�) =
trHS

[Gi � ⊗ |η〉〈η| G†
i ] for unitaries Gi , i = 1 and 2. Consider

any pair of orthogonal unit vectors |φ1〉 and |φ2〉, 〈φ1|φ2〉 = 0
in a two-dimensional Hilbert space C2. Then, it is easily
verified that U = G1 ⊗ |η〉〈η| ⊗ |φ1〉〈φ1| + G2 ⊗ |η〉〈η| ⊗
|φ2〉〈φ2| + 1HS

⊗ (1HS
− |η〉〈η|) ⊗ 1C2 defines a unitary op-

erator on HS ⊗ (HS ⊗ C2). It follows that, by defining HE =
HS ⊗ C2 and U(�) = U�U †, the vectors |η ⊗ φi〉 program
the two channels Ei , i = 1 and 2, via processor 〈HE,U〉. As
a result, any pair of quantum channels, even identical ones,
can be programmed with orthogonal programming states. On
the other hand, we showed above that for identical quantum
channels the channel α fidelity reaches its maximum value
1. Importantly, this example alludes that is impossible to
generally talk about the tightness of inequality (16).

In connection to the above, there are two complementary
questions related to the tightness of inequality (16) that we
would like to address. Firstly, one may wonder if for any pair
of programming states ξi ∈ S(HE) there exists a processor
〈HE,U〉 realizing channels Ei , i = 1 and 2, respectively, that
would satisfy Fα(ξ1,ξ2) = Fα(E1,E2). The answer is affirma-
tive, namely any quantum state ξ ∈ S(HE) can be considered

052102-5



TUKIAINEN, LYYRA, SARBICKI, AND MANISCALCO PHYSICAL REVIEW A 95, 052102 (2017)

as the preparation channel Eξ : T (HE) → C{ξ}, Eξ (�) = ξ,

for all � ∈ S(HE). Moreover, any such channel may be
programmed with state ξ ∈ S(HE) by using the processor
〈HE,USWAP〉, where USWAP(T1 ⊗ T2) = T2 ⊗ T1, for all Ti ∈
T (HE), that is, Eξ (�) = trHE

[USWAP(� ⊗ ξ )], for all � ∈
S(HE). It is evident that in this case Fα(Eξ1 ,Eξ2 ) = Fα(ξ1,ξ2),
for all α ∈ (0,1). It is natural to ask if the contrary also holds,
that is, if for any channels Ei one can find some processor
and programming states ξi , i = 1 and 2, respectively, such that
Fα(ξ1,ξ2) = Fα(E1,E2)? It turns out that the answer in this case
is negative. To confirm this, we recall that the programming
states ξi ∈ S(HE), i = 1,2, resulting into a unitary and any
other different extremal channel are necessarily orthogonal to
each other, that is, in particular, F1/2(ξ1,ξ2) = 0; see Ref. [14,
Prop. 8]. It is, however, possible to find a unitary channelU and
an extremal channel E �= U with F1/2(U ,E) �= 0. Indeed, let
us choose U as the one-qubit identity channel and for any
� �m ∈ S(C2) define E(� �m) = 1

2 (1 + m2 σ2). The extremality
of E can be verified by using the results of Ref. [34], and
furthermore using inequalities found in Ref. [35] one can show
that

F1/2(U ,E)

� inf
||�n|| � 1,

|| �m|| � 1

tr[��n E(� �m)]

tr[��n � �m] +
√(

1 − tr
[
�2

�n
])(

1 − tr
[
�2

�m
])

= 1/2 .

(18)

We conclude that inequality (16) fails to be tight in general.
Nevertheless, the channel α fidelity Fα is a genuinely

important figure of merit in quantum programming, as we will
see in the following. According to the previous proposition,
programming N different unitary channels requires
dim(HE) � N . The processor’s dimension may, however, be
lowered if some error is accepted. Let us denote d = dim(HS).
Suppose we wish to program the approximate unitary
channels EUi

(�) = (1 − ε)Uj (�) + ε 1
d
1HS

with programming
vectors |φi〉, respectively, where Ui , i = 1, . . . ,N are
unequal unitaries and ε ∈ [0,1] describes a fixed error
rate. From Ref. [35], we find that F1/2(EUj

(�1),EUk
(�2)) �

tr[EUj
(�1) EUk

(�2)] +
√

(1 − tr[EUj
(�1)2])(1 − tr[EUk

(�2)2]).
Choosing �i = |ϕi〉〈ϕi |, i = 1 and 2 simplifies this inequality

yielding
F1/2(EUj

(�1),EUk
(�2))

F1/2(�1,�2) � (1−ε)2|〈Uj ϕ1|Ukϕ2〉|2
|〈ϕ1|ϕ2〉| + (2−ε)ε

|〈ϕ1|ϕ2〉| . In

particular, choosing ϕ2 as in Eq. (17) for U = U
†
j Uk implies

F1/2(φj ,φk) � inf
|ϕ1〉

(2 − ε)ε√
1 − |〈Ujϕ1|Ukϕ1〉|2

= (2 − ε)ε√
1 − inf� F1/2(Uj (�),Uk(�))

.= gjk(ε),

(19)

when j �= k. We may use this bound to solve for the
largest set of linearly independent programming vectors
using the following result: if |φj 〉, j = 1, . . . ,K , are unit
vectors and F1/2(φj ,φk) � 1

K−1 whenever j �= k, then the
vectors |φj 〉, j = 1, . . . ,K , are linearly independent [12].
Let us denote with Kε the largest integer such that Kε <

FIG. 2. Dimension of programmable processor in approximate
programming. We consider the dimension of a processor capable
of implementing the four noisy unitary channels Ei : � �→ (1 −
ε)σi�σ

†
i + ε 1

21, i = 0, . . . ,3, in terms of the noise parameter ε ∈
[0,1]. It may be confirmed that the process fidelity satisfies Fproc(σi ·
σ
†
i ,Ei) � 1 − ε for all i = 0, . . . ,3. Accordingly, an analysis done in

Ref. [13] implies that any processor implementing Ei , i = 0, . . . ,3,

is at least four-dimensional for 0 � ε < [3(13 + 2
√

42)]
−1

, at least

three-dimensional for [3(13 + 2
√

42)]
−1 � ε < [2(9 + 4

√
5)]

−1
and

at least two-dimensional for [2(9 + 4
√

5)]
−1 � ε < 1 excluding the

dimensions within the red area. However, our approach results
to tighter limits, which we have denoted in blue: the processor
is necessarily at least four-dimensional for 0 � ε < 1

3 (3 − √
6), at

least three-dimensional for 1
3 (3 − √

6) � ε < 1
2 (2 − √

2) and at least

two-dimensional for 1
2 (2 − √

2) � ε < 1.

maxj �=k∈{1,...N} (1/gjk(ε) + 1). The previous result then im-
plies that any set of vectors whose size is less than or
equal to Kε is linearly independent. Therefore, if N � Kε,
then all of the programming vectors are linearly independent
and dim(HE) � N . On the other hand, if N > Kε, then
dim(HE) � Kε [13].

As an example, let us consider approximate programming
of qubit unitaries σi , i = 0, . . . ,3, where σ0 = 1C2 . For all
pairs the quantity inf� F1/2(σj�σj ,σk�σk) vanishes. Therefore,
according to Eq. (19), the processor in approximate program-
ming of the above unitaries is at least four-dimensional for 0 �
ε < 1

3 (3 − √
6), at least three-dimensional for 1

3 (3 − √
6) �

ε < 1
2 (2 − √

2) and at least two-dimensional for 1
2 (2 − √

2) �
ε < 1. In Fig. 2, these bounds have been compared to those
previously solved in Ref. [13]. It is noteworthy that our
approach gives tighter limits for the amount of noise necessary
to be present in order to approximately implement the four
unitary channels σi , i = 0, . . . ,3.
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B. Ruling out incompatible environmental properties

Let us consider a general thermal environment HE and
two initial states of the environment in different temper-
atures T1 and T2. The environmental states therefore at-
tain the Gibbs form ξ (βi)

.= exp[−βiHE]/Z(βi,HE), i =
1 and 2, where βi = (kBTi)−1, where HE is a Hamiltonian

of the environment and Z(βi,HE)
.= tr[exp[−βiHE]] are the

corresponding partition functions for i = 1 and 2.
Our goal is to exclude some properties of environment

inscribed in the spectrum of the Hamiltonian HE that are
incompatible with inequality (15). Since for thermal states
[ξ (β1),ξ (β2)] = 0, we easily solve

Sα(ξ (β1)||ξ (β2)) = 1

α − 1
(ln[Z(αβ1 + (1 − α)β2,HE)] − α ln[Z(β1,HE)] − (1 − α) ln[Z(β2,HE)]). (20)

In particular, for all α ∈ [ 1
2 ,1), inequality (15) implies the following inequality:

ln[Z(αβ1 + (1 − α)β2,HE)] − α ln[Z(β1,HE)] − (1 − α) ln[Z(β2,HE)] � inf
t�0

ln
[
Fα

(
E (t)

1 ,E (t)
2

)]
. (21)

In fact, due to the commutativity of the thermal states, we can expand this for α ∈ (0,1) such that

ln[Z(αβ1 + (1 − α)β2,HE)] − α ln[Z(β1,HE)] − (1 − α) ln[Z(β2,HE)] � inf
t�0

{
ln

[
Fα

(
E (t)

2 ,E (t)
1

)]
, for α ∈ (

0, 1
2

)
ln

[
Fα

(
E (t)

1 ,E (t)
2

)]
, for α ∈ (

1
2 ,1

) . (22)

Let us consider the implications of the above inequalities.
Assume that it is possible to prepare the environment in two
different known temperatures and perform the full-process
tomography of the two induced dynamics. This enables us
to determine the values of Fα in the right-hand side of
inequality (22). On the other hand, any hypothesis about
the Hamiltonian of the environment determines the left-hand
side of the inequality. If the inequality is not satisfied, the
hypothesized Hamiltonian of the system can be ruled out as
incompatible with the induced pair of dynamics. We highlight
that in order to do so neither the system-environment coupling
nor the Hamiltonian of the system needs to be specified.

As a demonstration of the power of this method, let us
consider a specific example of a qubit system coupled to
an environment consisting of a single harmonic oscillator:
such a situation could occur, for instance, when a two-level
atom is passing through an optical cavity including only
a single quantized mode. Assume that the mechanism of
interaction is unknown as well as the oscillator frequency
which we nevertheless wish to determine. Mathematically,
we only know that the Hamiltonian of the environment is
of the form HE = ω(b†b + 1

21). Choosing different values for
ω one plots the dashed coloured curves in Fig. 3 given by the
left-hand side of inequality (22). For a concrete example of
the (exactly solvable) reduced dynamics giving the right-hand
side of inequality (22) and the solid black curve in Fig. 3, we
consider the interaction model of the form

H = HS + HE + HI

= ω0

2
σ3 + ω

(
b†b + 1

2
1

)
+ σ3 ⊗ (gb† + g∗b) (23)

analyzed in Ref. [1]. One can see that the inequality forbids
frequency values greater than 3.1 times the real frequency ω.
For details, we refer the reader to Appendix B.

C. Quantum thermometry

Let us consider the situation of the previous example
from a different perspective. Suppose now that a thermal

environment described by a single harmonic oscillator with
Hamiltonian HE = ω(b†b + 1

21) is initially prepared at cali-
bration temperature T0 = 0, that is ξ (β0 = ∞) = |0〉〈0|. Let
us assume we are tasked with probing another temperature
T of the environment. The α-Rényi divergence between the
states ξ (β0) and ξ (β = 1/(kBT )) now reads Sα(ξ (β0)||ξ (β)) =
1−α
α−1 (− βh̄ω

2 − ln[Z(β,HE)]) and therefore after some simple
algebra we solve from inequality (5) a lower bound for the

FIG. 3. Excluding the frequency values of a harmonic oscillator.
(In this example, we have fixed h̄ = 1 = kB .) We prepare the
environment in two temperatures and measure the induced dynamics,
which gives us right-hand side of inequality (22) (black line).
The three dashed colored lines correspond to the left-hand side of
inequality (22) with different choices for ωk , k = 1, 2, and 3, in
units of the actual frequency ω. Knowing the two temperatures of
the environment (T1/ω = 0.25) and (T2/ω = 0.75), we notice that
some frequencies (ω1/ω = 3) are compatible with inequality (22)
while others (ω2/ω = 3.1 and ω3/ω = 3.25) violate it. In fact, we
see that inequality (22) is violated for all frequencies larger than
ω2/ω = 3.1, and thus ω2/ω = 3.1 is the crossover between the
compatible and incompatible frequencies. As a probe we use a qubit
and the induced dynamics result from an exactly solvable model
described in Ref. [1]. The optimal initial state(s) of the qubit are
� = |+〉〈+| with |+〉 = 1√

2
(|0〉 + |1〉) being the eigenstate of Pauli

operator σ1; for details, see the Appendix B.
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temperature

kBT

h̄ω
� −1 ×

⎧⎨⎩
[

ln
[
1 − inft�0 Fα

(
E (t)

T ,E (t)
0

) 1
α
]]−1

, α ∈ (
0, 1

2

)
[

ln
[
1 − inft�0 Fα

(
E (t)

0 ,E (t)
T

) 1
1−α

]]−1
, α ∈ (

1
2 ,1

) (24)

for all T � 0. It can be confirmed that with temperatures lower than a limiting temperature (kBT )/(h̄ω) � 1.03, the term
− ln[Z(β,HE)] = βh̄ω

2 + ln[1 − e−βh̄ω] is non-negative, from which, by using inequality (5), we may also obtain an upper bound
for the temperature:

kBT

h̄ω
� −1/2 ×

⎧⎨⎩
[

ln
[

inft�0 Fα

(
E (t)

T ,E (t)
0

) 1
α
]]−1

, α ∈ (
0, 1

2

)[
ln

[
inft�0 Fα

(
E (t)

0 ,E (t)
T

) 1
1−α

]]−1
, α ∈ (

1
2 ,1

) (25)

Since there is no dependency on the parameter α on the
left-hand side of the above inequalities, we optimize over
this parameter. The quantities on the right-hand side of the
inequalities above can be solved (numerically) after measuring
the dynamics; these observations allow us to estimate the
unknown temperature T .

Inequalities (24) and (25) may, unfortunately, be difficult
to evaluate in general due to double optimization with
respect to states and therefore a more accessible form is
desirable. To achieve this, we use the fact that Fα(E1,E2) �
inf� Fα(E1(�),E2(�)), for all α ∈ (0,1). Since Sα(·||·) is
monotonically increasing in α [20], that is, Sα(�1||�2) �
Sα′ (�1||�2) whenever α � α′, and since the logarithm function
is monotonically increasing, we conclude that Fα(�1,�2)

1
1−α

monotonically decreases in α. On the other hand, since
for all positive semidefinite linear operators A,B and num-
bers q � 0,r � 1 the Araki-Lieb-Thirring inequality [36,37]
states that tr[(B1/2AB1/2)rq] � tr[(Br/2ArBr/2)q] holds and
since Fα(�1,�2) may be recast in the form2 Fα(�1,�2) =
tr[(�1/2

1 �
(1−α)/α
2 �

1/2
1 )α], we have

Fα(�1,�2) = tr
[(

�
1/2
1 �

(1−α)/α
2 �

1/2
1

) α
1−α

(1−α)]
� tr

[(
�

α/2(1−α)
1 �2�

α/2(1−α)
1

)1−α]
= F1−α(�2,�1), (26)

and therefore Fα(�1,�2)1/(1−α) � F1−α(�2,�1)1/(1−α) when-
ever α � 1/2 (⇔ r = α

1−α
� 1). To summarize,

kBT

h̄ω
� − ln

[
1 − inf

�,t�0
lim
α↗1

Fα

(
E (t)

0 (�),E (t)
T (�)

) 1
1−α

]−1

= − ln
[
1 − e

− sup�,t�0 S1

(
E (t)

0 (�)||E (t)
T (�)

)]−1
, (27)

for T � 0, where limα↗1 Sα(�1||�2) = S1(�1||�2)
.=

tr[�1( ln �1 − ln �2)] is the Kullback-Leibler divergence [20].
Similarly, for the upper bound of temperature one derives

kBT

h̄ω
� −1/2 ln

[
inf

�,t�0
lim
α↗1

Fα

(
E (t)

0 (�),E (t)
T (�)

) 1
1−α

]−1

=
(

2 sup
�,t�0

S1
(
E (t)

0 (�)||E (t)
T (�)

))−1

, (28)

when 0 � (kBT )/(h̄ω) � 1.03.

2This follows from the fact that the operators XX† and X†X have the
same nonzero eigenvalues, and therefore tr[(XX†)α] = tr[(X†X)α].

In Fig. 4, we have plotted (kBT )/(h̄ω) and the optimal
bounds given by the right-hand sides of inequalities (27)
and (28) for the resonant Jaynes-Cummings model, which
describes a two-level atom interacting with a single quantized
mode of radiation in an optical cavity [1,38]; for details
we refer the reader to Appendix C. In the figure, we have
chosen the initial state of the qubit probe as � = |+〉〈+|, since
numerics suggest that it leads to the optimal bounds.

FIG. 4. Estimation of temperature. We assume that the environ-
ment is prepared in two different temperatures [(kBT0)/(h̄ω) = 0
and (kBT )/(h̄ω)] and measure the induced dynamics. The green
line represents the actual temperature (kBT )/(h̄ω). From inequality
(27), we solve a lower bound of (kBT )/(h̄ω), plotted above as the
blue dashed curve. The red dotted curve corresponds to the upper
bound of the temperature valid whenever (kBT )/(h̄ω) � 1.03 given
by inequality (28). The system that we use for probing the temperature
is a qubit and the dynamics are due to Jaynes-Cummings model in
the resonant case (see Ref. [38]). The initial state of the qubit that we
have used for in the plot is � = |+〉〈+|, since numerics suggest that
it leads to the optimal bounds.
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A standard procedure in (quantum) thermometry is to bring
the thermometer into contact with a bath, let it thermalize, and
then read out the temperature. In the quantum scenario, we say
that a qubit probe has thermalized with the bath if any initial
state � of the probe evolves in the long time limit t → ∞ into
the equilibrium Gibbs state � → �eq

.= (1 − p(T )) |0〉〈0| +
p(T ) |1〉〈1|, where p(T ) = [1 + exp(h̄ω/kBT )]−1. Quantum
thermometry protocols [39–42] and optimality of initial probe
states [43] have been studied for both fully and partially
thermalizing probes. To our best knowledge, all preexisting
protocols are based on knowing the exact form of the coupling.
Also the optimal initial probe states have been solved in
the partially thermalized probes only for fixed system-probe
couplings.

In the case of fully thermalized probes, calculating the
α fidelity becomes particularly easy: limt→∞ Fα(E (t)

0 ,E (t)
T ) =

(1 − p(T ))1−α . Accordingly, our protocol sets the limits

− [ln[p(T )]]−1 � kBT

h̄ω
� −1/2[ln[1 − p(T )]]−1, (29)

with the upper bound valid whenever 0 � (kBT )/(h̄ω) � 1.03.

It is noteworthy that due to the special form of the state �eq

the temperature T could be solved analytically from the state
occupations, which shows that our protocol is not the optimal
one for thermometry under the assumption of thermalization.
However, there is no a priori need to require thermalization of
the probe with the bath in our protocol. This is an important
advantage, since thermalization itself in a fully quantum
scenario may not be a well-defined concept due to the ever
present quantum fluctuations and the long time scales needed
compared to the survival time of the quantum properties of the
bath.

We wish to emphasize that knowing the specific system
environment coupling is not required in the above two
parameter estimation protocols B and C: to the best of
our knowledge, such probing approaches independent of
the description of the coupling have never been proposed
before. While the precisions of the frequency estimation
and thermometer are clearly not optimal, these examples
serve as proofs-of-principle demonstrations of the ability to
extract information on certain physical quantities by means
of our approach, making only minimal assumptions on the
microscopic details of the system to be probed. From a
broader point of view, the two protocols B and C could be
applied to estimate, not only the frequency and temperature,
but also other physical quantities of a system of interest. The
task to probe some of such quantities could be unattainable
“conventionally,” since the description of the coupling model
between the system and the probe is not either accurately
known or is borderline totally missing. An ultimate example
of such case is the quantum gravity, since no commonly agreed
model of gravitational interaction in quantum regime exists.

D. Bounds for the Loschmidt echo

In our last application, we change the perspective altogether
and consider a different implication of inequality (8). We show
how from the α fidelity of the initial environmental states we
can infer certain properties of the induced dynamics, such
as information back-flow (non-Markovianity). Importantly,

back-flow of information can be used to protect and restore
vital quantum properties of the system subjected to detrimental
noise [44–46].

As an example, we concentrate on one-qubit dephasing
channels arising from system environment interaction. Al-
though the method of this section holds generally for such
channels, we demonstrate the power of the protocol by focus-
ing on a specific situation with known solutions only for certain
initial states of environment: a qubit transversely coupled to
its environment, which is an Ising spin chain in a transverse
field. The total evolution of such a composite system is gov-
erned by the Hamiltonian H(λ,δ) = −J �j (σ (j )

3 ⊗ σ
(j+1)
3 +

λ σ
(j )
1 + δ |e〉〈e| ⊗ σ

(j )
1 ). Here the parameters J , λ, and δ

characterize the strength of the nearest-neighbor interactions
in the Ising chain, its coupling to a transverse field and
the coupling between system and environment, respectively
[47,48]. It is known that the initial environmental state |φ〉
induces dynamics corresponding to a pure dephasing chan-
nel E (t)

φ (�) = pφ(t)� + [1 − pφ(t)]σ3�σ3 with the probability
pφ(t) given by

pφ(t) = 1
2 (1 + √

Lφ(λ,t)), (30)

where Lφ(λ,t) = |〈φ|eiH(λ,0)t e−iH(λ+δ,0)t φ〉|2 is the Loschmidt
echo corresponding to the state |φ〉. Despite the apparent
simplicity, finding an analytical expression of Lφ(λ,t) is a
difficult task for a general initial state |φ〉. In fact, to our best
knowledge, the only known analytical solution exists for the
ground state |φ0〉 of the Hamiltonian H(λ,0) for which one
obtains

Lφ0 (λ,t) = �k>0[1 − sin2(2αk) sin2(εkt)], (31)

where αk are the Bogoliubov angles and εk the single
quasiparticle excitation energies of the system with the qubit
in the excited state |e〉 [47,48].

Using inequality (8) allows us to give an estimate for the
Loschmidt echo Lφ(λ,t) that is valid for any state |φ〉. Indeed,
fixing an initial state � = |+〉〈+| of the qubit, |+〉 = 1√

2
(|0〉 +

|1〉) being the eigenstate of σ1, we can solve

E (t)
φ (�) = 1

2

(
1

√
Lφ(λ,t)√

Lφ(λ,t) 1

)
. (32)

It can be concluded that

F1/2(φ0,φ) � F1/2
(
E (t)

φ0
(�),E (t)

φ (�)
)

= 1

2

√
(1 − √

Lφ0 (λ,t))(1 − √
Lφ(λ,t))

+ 1

2

√
(1 + √

Lφ0 (λ,t))(1 + √
Lφ(λ,t)), (33)

from which an estimate for Lφ(λ,t) in terms of F1/2(φ0,φ)
may be solved. In Fig. 5, we have presented the results for
three different values of the strength of the transverse field λ

fixing the parameters δ = 0.1, J = 1 and the number of spins
N = 4000. In particular, we see that for those λ resulting to
revivals in Loschmidt echo in the ground state |φ0〉, after a
certain limiting value of Flim � F1/2(φ0,φ) such revivals are
guaranteed for the state |φ〉 also. The revivals of Loschmidt
echo are linked to revivals of coherences via Eq. (32) and
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

FIG. 5. Bounding the Loschmidt echo. (a) The dynamics of the Loschmidt echo induced by the environmental ground state φ0. The
parameter values of the Hamiltonian H(λ) are set as J = 1, δ = 0.1, and N = 4000. The blue dashed line corresponds to the choice λ = 0.01,
the green solid line corresponds to the critical value λ = 0.9 and the red dotted line corresponds to the value λ = 1.8. (b)–(g) The dynamics
of the upper and lower bound of the unknown Loschmidt echo are represented by the curves in lighter and darker hue of the corresponding
color choices of the parameter λ, respectively. The black solid line indicates the level of the first local minimum of the upper bound. In (b)
and (f), the lower bounds cross the black line after the local minimum of the upper bound, which implies revivals in the Loschmidt echo and
thus information back-flow. (b) λ = 0.01 and F1/2(φ0,φ) = 0.98. (c) λ = 0.01 and F1/2(φ0,φ) = 0.966675. (d) λ = 0.9 and F1/2(φ0,φ) = 0.98.
(e) λ = 0.9 and F1/2(φ0,φ) = 0.95. (f) λ = 1.8 and F1/2(φ0,φ) = 0.999. (g) λ = 1.8 and F1/2(φ0,φ) = 0.99761.

hence indicate back-flow of information from environment to
system.

It should be pointed out, that the upper and lower bounds of
the Loschmidt echo Lφ could be made tighter by considering
general α fidelities in the above inequality (33). However, since
solving Lφ from inequality (33) in such a general situation can
only be done numerically, we have left this examination as a
topic for future investigation.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have introduced a family of α fidelities
of quantum channels. We also have derived an inequality

between the α fidelity of the initial states of the environment
and the α fidelity of the corresponding induced dynamics:
Fα(ξ1,ξ2) � Fα(E (t)

1 ,E (t)
2 ), α ∈ [1/2,1). From a more practical

viewpoint, the inequality was then considered in the context
of four different applications: (A) quantum programming,
(B) discrimination of environmental properties, (C) quantum
thermometry, and in (D) deriving bounds for the Loschmidt
echo of a general (pure) initial state of the spin-chain.

In a nutshell, the general procedure of estimating an
unknown ξ2 requires (1) the possibility to prepare the en-
vironment in a known “calibration” state ξ1 and (2) the
possibility to compare the probe dynamic E (t)

1 and E (t)
2 induced

by these states. To apply our framework to quantum probing
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experimentally, as proposed in examples B–D, the experi-
menter needs first to perform quantum process tomography
and then numerical optimization for all times, which may
be extremely difficult. However, the starting point underlying
behind our results is inequality (8), which shows that nontrivial
bounds for Fα(ξ1,ξ2) may be found for plethora of choices
of initial probe states �1 and �2; the notion of α fidelity of
dynamics was developed as the best achievable resolution of
this inequality. In particular, choosing �i = �, i = 1 and 2,
simplifies inequality (8) to

Fα(ξ1,ξ2) � Fα

(
E (t)

1 (�),E (t)
2 (�)

)
� 1 , (34)

for all � ∈ S(HS) and α ∈ [1/2,1) and any given time t ∈
[0,∞). Although the resulting upper bound Fα(E1(�),E2(�))
may not be the optimal one, any choice of the initial state of
� ∈ S(HS) allows one to extract some information of system
of interest via the protocols described above. In addition, the
full process tomography is now reduced from the full channel
tomography to mere state tomography of the evolved states of
the probe E1(�) and E2(�).

In our theoretical framework, the introduced fidelities are
based on the definition of the α-Rényi divergence, given in
Eq. (4), mainly because of its connection to the Uhlmann
fidelity for α = 1/2. However, as we mentioned before, there
exists another quantum divergence often encountered in the
literature, namely S̃α defined in Eq.(3). It is known that
also S̃α satisfies both the properties (S1)-(S3) and the data
processing inequality (S4) for all α ∈ (0,1) [20]. Hence, also
for F̃α(�1,�2)

.= tr[�α
1 �1−α

2 ], we have F̃α(�1,�2)F̃α(ξ1,ξ2) �
F̃α(E (t)

1 (�1),E (t)
2 (�2)), α ∈ (0,1). Furthermore, for commuting

states [�1,�2] = 0 the quantities Sα and S̃α coincide [20].
Although it is known that F̃α � Fα , since Sα � S̃α [21,23],
an interesting question to investigate in the future is which
of the two definitions F̃α or Fα leads to a tighter inequality
between the inducing states and induced dynamics–or whether
such optimality even holds in general. It is noteworthy, that the
results shown in Figs. 3–5 are independent of the choice of F̃α

or Fα due to the facts that the time-evolved final states of
the probe are commuting in all the three cases as well as the
environment states in applications B, C, and since F̃α and Fα

coincide when comparing pure states in D.
Due to the generality of our formalism, our results can

be used in different fields of physics: from quantum infor-
mation theory to solid state physics, from particle physics to
cosmology, from quantum gravity to atomic and molecular
physics, and from quantum optics to quantum thermodynam-
ics. Therefore our approach has the potential to pave the way
to new fundamental theoretical and experimental discoveries
in numerous physical scenarios.
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APPENDIX A: EVALUATING α FIDELITY
OF QUBIT CHANNELS

In this section, we present the method that has been used to
evaluate the α fidelity of one-qubit channels. First, we simplify
the analytic expression to make the numeric optimization more
feasible. The density matrices of two arbitrary one-qubit states
�k , k = 1 and 2, can be written in the Bloch form as

�k = 1

2
(1 + xkσ1 + ykσ2 + zkσ3)

= 1

2

(
1 + zk xk − iyk

xk + iyk 1 − zk

)
, (A1)

where xk, yk , and zk are real numbers satisfying x2
k + y2

k +
z2
k � 1 and σ1, σ2, and σ3 are the Pauli operators. The density

matrices can be diagonalized as

�k = 1

2rk(rk + zk)

(
rk + zk −(xk − iyk)

xk + iyk rk + zk

)

×
(

1+rk

2 0

0 1−rk

2

)(
rk + zk −(xk − iyk)

xk + iyk rk + zk

)†

, (A2)

where rk =
√

x2
k + y2

k + z2
k . Now by using Eq. (A2), we can

simplify the form of �
1−α
α

k as

�
1−α
α

k = 1

2rk

(
rkA

+
k + zkA

−
k (xk − iyk)A−

k

(xk + iyk)A− rkA
+
k − zkA

−
k

)
, (A3)

where A±
k = ( 1+rk

2 )
1−α
α ± ( 1−rk

2 )
1−α
α . By using Eq. (A3) and the

properties of trace and determinant, we can calculate the trace

and determinant of the matrix product �
1−α
2α

2 �1�
1−α
2α

2 as

T := tr
[
�

1−α
2α

2 �1�
1−α
2α

2

] = 1

2
A+

2 + 1

2
A−

2

r1r2

r2
, (A4)

D := det
(
�

1−α
2α

2 �1�
1−α
2α

2

) =
(

1 − r2
2

4

) 1−α
α

(
1 − r2

1

4

)
. (A5)

From Eqs. (A4) and (A5), we can write the eigenvalues λ+
and λ− of �

1−α
2α

2 �1�
1−α
2α

2 as

λ± = 1
2 (T ±

√
T 2 − 4D). (A6)

Using these eigenvalues, we can diagonalize �
1−α
2α

2 �1�
1−α
2α

2 as

�
1−α
2α

2 �1�
1−α
2α

2 = URU † , (A7)

where R = diag(λ+,λ−) and U is the diagonalizing unitary
matrix found in the same way as in Eq. (A2). Finally, this
allows us to express the α fidelity of two arbitrary one-qubit
states, �1 and �2, as

Fα(�1,�2) = tr[(URU †)α] = λα
+ + λα

− . (A8)
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Now we see that, in order to calculate the channel α fidelity
of one-qubit channels E1 and E2, it is enough to minimize the
quotient

Fα(E1(�1),E2(�2))

Fα(�1,�2)
= λ̃α

+ + λ̃α
−

λα+ + λα−
. (A9)

Here, λ̃± are eigenvalues of E2(�2)
1−α
2α E1(�1)E2(�2)

1−α
2α cal-

culated in a similar way from the Bloch coordinates of
E1(�1) and E2(�2), and λ± are the above-solved eigenvalues

of �
1−α
2α

2 �1�
1−α
2α

2 , where �1 and �2 are the initial states of the
qubits. The quantity to be minimized in Eq. (A9) is a function
of six variables x1, y1, z1, x2, y2, and z2 under the constraints
x2

1 + y2
1 + z2

1 � 1 and x2
2 + y2

2 + z2
2 � 1.

1. Example: the case of pure dephasing channels

In this example the reduced dynamics is a family of
dephasing channels with the same invariance basis for all
values of time t and the inverse temperature β = 1/kBT . Let
�1(t) and �2(t) be the decoherence rates at time t (the same
for both channels) corresponding to β1 and β2, respectively.
The two dephasing channels Ei are defined via

� = 1

2

(
1 + z x − iy

x + iy 1 − z

)
�→ E (t)

i (�) = 1

2

(
1 + z �i(t)(x − iy)

�i(t)∗(x + iy) 1 − z

)
. (A10)

We have performed the numerical minimization of Eq. (A9)
by tools of constrained minimisation. More precisely, we have
used the method SLSQP (sequential least square program-
ming) implemented in SCIPY.OPTIMIZE library.

The numerical calculation shows, that the minimum is
attained when �1 = �2 is any pure state maximally unbiased
with respect to the invariant basis, for example, |+〉〈+| =
1
2 (1 + σ1). This observation lets us write the explicit formula
for α fidelity of the dynamics:

Fα

(
E (t)

1 ,E (t)
2

) =
(

1 + �2(t)

2

)1−α(
1 + �1(t)

2

)α

+
(

1 − �2(t)

2

)1−α(
1 − �1(t)

2

)α

. (A11)

APPENDIX B

In application B (ruling out incompatible environmental
properties), we consider a system coupled to a thermal
environment with Hamiltonian HE in two different inverse
temperatures βi = 1/Ti , i = 1 and 2; we have used natural
units h̄ = 1 = kB throughout this section. We showed that the
partition functions Z(βi,HE) of the two environmental states
and the corresponding induced dynamics E (t)

i satisfy inequality
(22). It was reasoned that some of the properties of the
environment inscribed in HE may be ruled out by measuring
the dynamics induced by two different temperatures and
by testing which partition functions are (in)compatible with
inequality (22). In a particular case of environment consisting
of harmonic oscillators, that is, HE = ∑

k ωk(b†kbk + 1
21),

where b
†
k and bk are the creation and annihilation operators

of the environmental mode k, respectively, the logarithms of
the partition functions attain a simple form:

ln[Z(βi,HE)] =
∑

k

[
−βiωk

2
− ln(1 − e−βiωk )

]
, (B1)

where i = 1 and 2, which then only depends on the oscillators
frequencies ωk and the known inverse temperatures βi .

Inequality (22) holds regardless of the choice of the actual
coupling between the system and the environment. As an
example of our method, in Fig. 3, we have, however, deployed a
particular exactly solvable system-environment model leading
to the dephasing channel of the system described in Ref. [1].
In this model, the system is a qubit coupled to environment
consisting of harmonic oscillators and the total Hamiltonian,
consisting of the Hamiltonians of the system HS , the environ-
ment HE , and the interaction Hamiltonian HI , governing the
composite evolution can be written as

H = HS + HE + HI

= ω0

2
σ3 +

∑
k

ωk

(
b
†
kbk + 1

2
1

)
+

∑
k

σ3 ⊗ (gkb
†
k + g∗

k bk),

(B2)

gk describes the strength at which the system couples to
different modes. Fixing the initial composite system state as
�S+E = � ⊗ ξ (βi), we get an analytical solution for the qubit
system dynamics

� =
(

�00 �01

�10 �11

)
�→ E (t)

i (�) =
(

�00 �i(t) �01

�i(t) �10 �11

)
,

(B3)

where �i(t) = exp[− ∑
k

4|gk |2
ω2

k

coth ( ωk

2Ti
)[1 − cos(ωkt)]]; we

refer the reader to [1] for further details of this model.
For simplicity, we will only consider environment con-

sisting of a single oscillator; this is also the case in Fig. 3.
By fixing two temperatures of the environmental initial state,
T1, T2, and a single oscillator frequency ω, which we want
to probe, we obtain two dephasing channels E (t)

1 and E (t)
2 of

the form Eq. (B3) and according to (A11) their α fidelity is
equal to

Fα

(
E (t)

1 ,E (t)
2

)
=

(
1 + Cg(t)coth( 1

2 ωβ2)

2

)1−α(
1 + Cg(t)coth( 1

2 ωβ1)

2

)α

+
(

1 − Cg(t)coth( 1
2 ωβ2)

2

)1−α(
1 − Cg(t)coth( 1

2 ωβ1)

2

)α

,

(B4)

for Cg(t) = exp [− 4|g|2
ω2 (1 − cos ωt)]. Importantly, the func-

tion Cg(t) is the only term involving both the coupling
strength g and time t . It is easily verified that for any
|g|/ω � 1/

√
8 the function Cg(t) can be kept constant in value

by choosing t appropriately. Therefore we can conclude that
any coupling (in units of ω) stronger than 1/

√
8 can only

make the number inft Fα(E (t)
1 ,E (t)

2 ) smaller and consequently
our protocol to work better. For demonstration, we have chosen
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|g|/ω = 1, T1/ω = 0.25, and T2/ω = 0.75. We can therefore
plot inft ln [Fα(E (t)

1 ,E (t)
2 )] as a function of α, which is the

right-hand side of inequality (22). Also, by using the same
temperatures T1 and T2 and varying the frequency value in
Eq. (B1), we can plot the left-hand side of inequality (22) as
a function of α and compare it with the plot of the right-hand
side. Whenever we see violation of inequality (22), we know
that these frequency values cannot have led to the induced
dynamics. In accordance, plots with frequencies satisfying and
violating inequality (22) are presented in Fig. 3.

APPENDIX C

In application C (quantum thermometry), we continue on
considering a system coupled to a thermal environment. This
time we assume to know the oscillator frequencies of the
Hamiltonian HE = ∑

k ωk(b†kbk + 1
21) and again we check the

induced dynamics for two different temperatures: T0 = 0 and
T that is unknown. Since ξ (∞) = ⊗

k |0〉〈0|, the α-Rényi
divergence between the initial states of the environment in
the inverse temperatures β0 = ∞ and β = 1/kBT can be
calculated that

Sα(ξ (β0),ξ (β))

= 1

α − 1
ln[tr[(ξ (β)

1−α
2α ξ (β0) ξ (β)

1−α
2α )α]]

= 1 − α

α − 1
ln[e− 1

2

∑
k βh̄ωk /Z(β,HE)]

= 1 − α

α − 1
ln

[∏
k

(
1 − e−βh̄ωk

)]
, (C1)

with β = 1/kBT and the last equality follows from inserting
Z(β,HE) from Eq. (B1). Similarly, we confirm that

Sα(ξ (β),ξ (β0)) = α

α − 1
ln

[∏
k

(
1 − e−βωk

)]
. (C2)

Consequently, from inequality (5), one confirms that∏
k

(1 − e−h̄ωk/kBT )

� inf
t�0

⎧⎨⎩Fα

(
E (t)

T ,E (t)
0

) 1
α , for α ∈ (

0, 1
2

)
Fα

(
E (t)

0 ,E (t)
T

) 1
1−α , for α ∈ [

1
2 ,1

) , (C3)

where E (t)
0 and E (t)

T are the dynamics induced by β0 and βT ,
respectively. From this inequality the temperature T can be
numerically estimated. For simplicity, we again consider the
case of only a single harmonic oscillator mode. In this case,
the above relation can be solved in terms of the temperature T

analytically: the solution is presented in inequality (24).
Notice, that the above inequality (C3) holds model-

independently even without a priori knowledge of the coupling
between the system and the environment. As a concrete
example, in Fig. 4, we have demonstrated the power of our
method by considering the Jaynes-Cummings model of a
qubit coupled to a thermal environment consisting of a single
harmonic oscillator. In such a model, the total Hamiltonian of
the system-environment composite reads

H = HS + HE + HI

= ω0σ+σ− + ω

(
b†b + 1

2
1

)
+ g(σ+ ⊗ b + σ− ⊗ b†),

(C4)

where σ+ = |1〉〈0| and σ− = |0〉〈1| are the raising and lower-
ing operators of the qubit system, respectively, and g describes
the coupling strength. Assume that an initial separable state
of the composite system � ⊗ ξ (β) evolves according to this
Hamiltonian. Then, in the resonant case of matching system
and environment frequencies � = ω − ω0 = 0, the reduced
dynamics take a relatively simple form

� =
(

�00 �01

�10 �11

)
�→ E (t)

T (�) =
(

aT (t) �00 + [1 − bT (t)] �11 cT (t)∗ �01

cT (t) �10 [1 − aT (t)] �00 + bT (t) �11

)
, (C5)

where the coefficients

aT (t) = tr[C†(n̂,t)C(n̂,t) ξ (β)] ,

bT (t) = tr[C†(n̂ + 1,t)C(n̂ + 1,t) ξ (β)] ,

cT (t) = tr[C(n̂ + 1,t)C(n̂,t) ξ (β)] (C6)

depend on the operator C(n̂,t) = cos (|g|t √
n̂),

n̂ = b†b [38]. Inserting the thermal state ξ (β)
in the above formulas we get, e.g., aT (t) =∑N

n=0 e−βh̄ω(n+1/2) cos2 (|g|t√n)/
∑∞

n=0 e−βh̄ω(n+1/2).
Although in principle N → ∞, in lack of a closed form
solution, we have truncated the series to N = 10 (similarly for
bT (t) and cT (t)). The error due to this estimation is negligible

because for large N the dominating exponent factor makes
the summand minuscule.

Our numerics suggest that, even though the induced
dynamics are not purely dephasing, the choice �1 = �2 =
|+〉〈+| minimizes the channel α fidelity inft�0 Fα(E (t)

0 ,E (t)
T )

also in this case. Therefore the temperature can, in fact, be
directly estimated in terms of the Kullback-Leibler divergence
S1(E0(�)||ET (�)), � = |+〉〈+|, as shown in inequalities (27)
and (28) and which we have plotted in Fig. 4. The remaining
optimization with respect to time t has been done numerically
by using the build in algorithms of MATHEMATICA. Finally, we
note that, because of the relation of the coupling strength g

and t in the terms C(n̂,t) defining the dynamics and the time
optimization involved in our protocol, the upper and lower
bounds presented in Fig. 4 are independent of the strength of
the coupling as long as it is nonvanishing.
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