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We provide a description of spontaneous emission in a dispersive and dissipative linear inhomogeneous medium
based on the generalized Huttner-Barnett model [Phys. Rev. A 46, 4306 (1992)]. Our discussion considers on an
equal footing both the photonic and material fluctuations which are necessary to preserve unitarity of the quantum
evolution. Within this approach we justify the results obtained in the past using the Langevin noise method that
neglects the removal of photonic fluctuations. We finally discuss the concept of local density of states in a lossy
and dispersive inhomogeneous environment that provides a basis for theoretical studies of fluorescent emitters
near plasmonic and polaritonic antennas.
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I. INTRODUCTION

In the recent years the theoretical problem of describing the
coupling of single fluorescent quantum emitters with a metallic
nanoparticle supporting surface plasmon (SP) modes has
become very urgent due to many applications envisioned with
photonic and quantum information processing technologies
at the nanoscale. In particular the concept of local density
of states (LDOS) [1,2] is central since it provides a figure
of merit for quantifying the coupling of quantum emitters
to plasmonic systems and it plays a central role in recent
studies using near-field optical microscopes [1,3–7]. In these
studies the derivation of LDOS formulas is mainly classical
and is associated with radiation reaction or self-interaction
of the oscillating transition dipole. In a lossless environment
the classical and quantum treatments, i.e., based on the
Fermi “golden rule” or the Wigner-Weisskopf theory [8,9],
lead to similar quantitative results [2]. In standard quantum
electrodynamics (QED) vacuum fluctuation of the zero-point
electromagnetic field is central in order to explain spontaneous
emission but it is well known since the 1970s that radiation
reaction and vacuum fluctuation are two faces of the same
problem (for a thorough discussion about this issue see [10]).
The theory has thus a clean Hamiltonian foundation for atoms
in vacuum or more generally when we can neglect dissipation
[e.g., if the the dielectric environment is described by a
nondispersive, but otherwise nonhomogeneous, permittivity
function ε(x) [11–14] or if a perfect metal is involved as a
boundary condition]. However, one of the main issues with
plasmonic systems is that they are intrinsically dissipative.
Therefore a self-consistent QED description of plasmons, i.e.,
respecting rigorously the unitarity of time evolution, involves
necessarily the inclusion of additional degrees of freedom
associated with fluctuating currents and dipoles in the metal.
This complicated problem has been generally studied using the
Langevin noise method advocated originally by Gruner and
Welsch [15–17] and it has been intensively used meanwhile
in QED in macroscopic media [18–27], e.g., for calculating
the coupling of quantum fluorescent emitters to fluctuating
fields near plasmonic antennas [28–36]. The justification and
consistency of the approach (which intuitively generalizes
earlier fundamental results obtained by Rytov and Lifschitz in
the context of Casimir force calculations [10,37–47]) has been
however the subject of some controversies in the past and a

rigorous mathematical derivation based on a QED Hamiltonian
formalism valid for the most general inhomogeneous media
has been sought for years. The main issue is that the
Langevin noise approach was originally motivated by the
Huttner-Barnett Hamiltonian formalism [48–54] which for a
homogeneous dissipative and dispersive dielectric material,
respecting Kramers-Krönig causality constraints, generalizes
the historical Hopfield-Fano model for polaritons in bulk
media [55–57]. The Huttner-Barnett formalism leads directly
to the results postulated by Gruner and Welsch in their
seminal work and in particular it was used in the calculation
of the emission rate of fluorescent dipoles imbedded in
a lossy dielectric matrix [48–54]. However, the rigorous
equivalence between the two formalisms in the more general
inhomogeneous situation was still lacking for years.

Very recently, based on important calculation by Suttorp
and co-workers, several works [58–64] proposed a mathe-
matical justification of the Langevin noise method based on
the direct generalization of the Huttner-Barnett model for
inhomogeneous media. However, we showed in two publica-
tions, [65] and [66], that these earlier derivations overlooked
the role of boundary conditions concerning the value taken by
dielectric susceptibilities at spatial infinity. We showed that to
preserve the fundamental unitarity of the quantum evolution
one must necessarily add a contribution associated with
vacuum photonic fluctuation to the fluctuating source current
terms calculated by Gruner and Welsch [15–17]. Actually, it
implies that, rigorously speaking, the formalism introduced by
Gruner and Welsch [15–17] relies on the assumption that the
surrounding dielectric environment is necessarily lossy, even
at spatial infinity. Contrary to a widespread belief this situation
is not generally applicable to nanoparticle antennas which are
by definition spatially localized and very often surrounded by
vacuum in the calculations.

The main objective of the present work is to leverage on
the analysis started by us in [65,66] in order to describe the
coupling of quantum emitters to fluctuating currents and fields.
In the present paper we will consider specifically the regime
of spontaneous emission and the coupling of transition dipoles
to coherent laser sources (i.e., the derivation of the optical
Bloch equations). We will demonstrate that the most general
formalism derived in [66] actually allows us to generalize
the results obtained for spontaneous emission that were only
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rigorously derived for a dipole in vacuum. We will show
that for this specific problem the dynamical equations and
emission rates actually agree with results obtained using the
semiclassical or Gruner and Welsch methods but without
the limiting assumptions made in this phenomenological
approach. Therefore many standard results for LDOS and
other observables, which are obtained using the Langevin noise
method, are here more rigorously justified by introducing on
an equal footing the photonic and material degrees of freedom.
We think that the strategy discussed in the present work opens
unexplored strategies for understanding QED in presence of
macroscopic and causal dielectric media involving polaritons.

The layout of this paper is a follows: In Sec. II we provide a
general description of Huttner-Barnett formalism [49,65,66]
using the dual Lagrangian method given in [65,66]. We
include in the model the interaction between a fluorescent
molecule and the photonic and dielectric environment. In
Sec. III we analyze the spatiotemporal evolution of the
electric field operator and separate the contributions associated
with free photons from fluctuating currents (associated with
the dielectric medium and the molecule). In Sec. IV we
study within the Wigner-Weisskopf method the spontaneous
emission of a two-level atom in a general lossy and dissipative
inhomogeneous environment. We conclude with a discussion
in Sec. V about LDOS and photonic wave functions associated
with spontaneously emitted photons and we derive the dynam-
ics associated with the optical Bloch equations for the case of
a dipole excited by an external pump field.

II. DYNAMICAL EQUATIONS OF A TRANSITION DIPOLE
IN A FLUCTUATING PHOTONIC AND DIELECTRIC

ENVIRONMENT

We start with the dual-Lagrangian density for the coupled
system

L = B2 − D2

2
+ F · ∇ × P − P2

2
+ LM + L�a

, (2.1)

where by definition B(x,t) = 1
c
∂tF(x,t), and D(x,t) = ∇ ×

F(x,t) and where we use the Coulomb gauge constraint
∇ · F(x,t) = 0 for the electric potential. The electric potential
F(x,t) is the dual of the usual magnetic potential A(x,t)
and we showed that it is a specifically adapted choice for
quantization of electromagnetic problems involving dipole
densities P(x,t) [65,66]. In this description the material part
associated with the inhomogeneous dielectric medium reads

LM =
∫ +∞

0
dω

(∂tXω)2 − ω2X2
ω

2
(2.2)

and corresponds to the Huttner-Barnett model [49,65,66].
In this model the field Xω(x,t) completely characterizes the
fully causal dielectric environment satisfying Kramers-Krönig
relations [49,65,66].

The contribution [67]

L�a
= ih̄�∗

a ∂t�a − V �∗
a�a − h̄2

2M
∇�∗

a · ∇�a (2.3)

is associated with the Schrödinger matter fields �a(x,t) and
�∗

a (x,t) which describe the atomic dipole of mass M in the
external potential V (x). In the second quantization formalism

we expand the atomic wave-function operator as �a(x,t) =∑
m bm(t)ψm(x) where ψm(x) (labeled by m) are energy eigen-

states of the time-independent Schrodinger equation Emψm =
(− h̄2∇2

2m
+ V )ψm defined for the energy Em and forming a com-

plete orthogonal set such that
∫

d3xψ∗
m(x)ψn(x) = δn,m. The

usual second quantization procedure leads to the (fermionic)
anticommutators

{bn(t),b†m(t)} = δn,m, (2.4)

and {bn(t),b†m(t)} = 0 = {bn(t)†,b†m(t)}. This is clearly consis-
tent with the usual canonical quantization procedure since the
Lagrangian function L�a

= ∫
d3xL�a

(x,t) = ih̄
∑

m b
†
mḃm −∑

m Emb
†
n,b

†
m implies the canonical momenta:

�bm
= ∂L�a

∂ḃm

= ih̄bn(t)†, �
b
†
m

= ∂L�a

∂ḃ
†
m

= 0, (2.5)

which together with the canonical anticommutation rules
{bm,�bn

} = ih̄δn,m, etc., imply Eq. (2.4).
Moreover, in this model the dipole density P(x,t) in-

cludes contributions from the surrounding dielectric medium
Pdiel.(x,t) and of the Schrodinger field P� (x,t). For the
dielectric part we use in agreement with Huttner and Barnett
(see [49,65,66]):

Pdiel.(x,t) =
∫ +∞

0
dω

√
2σω(x)

π
Xω(x,t). (2.6)

For the Schrödinger field we here model the dipole density
fluid using the formula

P�(x,t) � e

∫
d3ξ�∗

a (ξ ,t)ξ�a(ξ ,t)�(x − x0)

=
∑
m,n

b†m(t)bn(t)μm,n�(x − x0), (2.7)

where μm,n = e
∫

d3ξψ∗
m(ξ )ξψn(ξ ) = μ∗

n,m denote some tran-
sition dipoles and e < 0 is the electron charge. The model
relies on the Openheimer approximation which separates
the dynamical evolution into a center-of-mass motion x(t)
(supposed here irrelevant since the atom is not moving) and
a relative motion ξ (t) corresponding approximately to the
electron motion with respect to the nuclei. Here we introduced
�(x − x0) which is a narrow peaked distribution centered
on the coordinate x0 associated with the center of mass of
the atomic system and normalized as

∫
d3x�(x − x0) = 1.

�(x − x0) reduces to the Dirac distribution δ3(x − x0) in
the pointlike dipole limit. Still, in order to avoid singular
divergences we will here keep �(x − x0) finite.

Inserting the total dipole density P = P� + Pdiel. into
the Lagrangian Eq. (2.1) leads to the Euler-Lagrange equa-
tions [65,66] corresponding to Maxwell’s equations in the
medium with full polarization P,

∇ × B(x,t) = 1

c
∂tD(x,t), ∇ · D(x,t) = 0,

(2.8)

∇ × E(x,t) = −1

c
∂tB(x,t), ∇ · B(x,t) = 0,

where E = D − P� − Pdiel..
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Similarly, we deduce using the Euler-Lagrange method a
dynamical equation for the dielectric field Xω(x,t):

∂2
t Xω(x,t) + ω2Xω(x,t) =

√
2σω(x)

π
E(x,t) (2.9)

here with E = D − P� − Pdiel..
For the Schrödinger fields we must be more careful. Indeed

by using the Euler-Lagrange classical method we should
deduce the evolution equations

ḃm(t) = −i
Em

h̄
bm(t) + iĒ(t)

h̄
·
∑

n

μ∗
n,mbn(t) (2.10)

with Ē(t) = ∫
d3E(x,t)x�(x − x0) � E(x0,t) the averaged

field applied on the atomic dipole. A similar equation is
obtained for the complex conjugate (Hermitian) field b

†
m(t).

From this equation we deduce d[
∑

m b
†
m(t)bm(t)]
dt

= 0 which means

that the observable N (t) = ∑
m b

†
m(t)bm(t) is a constant of

motion. However, at that stage Eq. (2.10) is not fully quantum
since in the present formalism Ē(t) and bn(t) do not commute
and the order of operators must be specified. To derive the
equation of motion for the matter field we should therefore
introduce the Hamiltonian of the system. Using the previous
Lagrangian we derive the full Hamiltonian H (t) which reads

H (t) =
∫

d3x :
B(x,t)2 + E(x,t)2

2
: +HM (t) + H�a

(t),

(2.11)

where HM (t) = ∫
d3x

∫ +∞
0 dωh̄ωf†ω(x,t)fω(x,t) and H�a

(t) =∑
m Emb

†
m(t)bm(t). H (t) is clearly an integral of motion as it

can be for instance proven by using the Poynting theorem
discussed in [65] and which reads −∂t ( B2+E2

2 ) = ∇ · (cE ×
B) + J · E where J = ∂tP. Integrating the dissipated power∫

d3xJ · E leads, after some simple calculations which will
not be repeated here, to d

dt
H (t) = − ∮

�∞
d� · cE × B → 0.

This shows that the energy E = H (t) is naturally conserved in
the limit of an infinite integration volume and supposing that
the field decays fast enough at infinity (a hypothesis which
makes sense only with some additional physical assumptions).
Moreover, to build a quantized version of this field theory
we insert in Eq. (2.11) the usual normal order product
convention : [. . .] : [65,66] which removes some infinite
spurious quantities in the energy (here the normal order
means that we let bosonic and fermionic operators commute
or respectively anticommute; additionally the fermionic and
bosonic operators mutually commute). Using the Heisenberg
evolution law ih̄ d

dt
O(t) = [O(t),H (t)] for any quantum op-

erator O(t) we thus easily deduce once again Eqs. (2.8)
and (2.9). Furthermore, a rigorous application of commutation
and anticommutation rules shows that Eq. (2.10) is actually
correct if the electric-field operator is indeed positioned before
the annihilation operator bn [taking into account this constraint
it is also easy to prove the constancy of N (t)].

We will now in the following consider only the case of the
idealized two-level atom. For this we introduce the ground state
m = 1 and the excited state m = 2 such as E2 − E1 = h̄ω21 >

0. We have N (t) = b
†
1(t)b1(t) + b

†
2(t)b2(t) = N (t0) and we can

therefore write the Schrödinger part of the Hamiltonian H�a
(t)

as

H�a
(t) = E1b

†
1(t)b1(t) + E2b

†
2(t)b2(t)

= E1 + E2

2
N (t) + h̄ω21

2
σz(t) (2.12)

with by definition σz(t) = b
†
2(t)b2(t) − b

†
1(t)b1(t). We get for

the evolution equation of σz(t)

σ̇z(t) = −2i[Ē(t) + P̄� (t)] · μ1,2

h̄
σ (t)

+ 2i[Ē(t) + P̄�(t)] · μ∗
1,2

h̄
σ †(t) (2.13)

with by definition σ (t) = b
†
1(t)b2(t) and σ †(t) = b

†
2(t)b1(t).

We emphasize that in this equation it is the field Ē(t) +
P̄� (t) = D̄(t) − P̄diel.(t) which plays a central role, here with
P̄� (t) = [μ1,2σ (t) + μ∗

1,2σ
†(t)]�(0) since

P�(x,t) = [μ1,2σ (t) + μ∗
1,2σ

†(t)]�(x − x0). (2.14)

Importantly the field operator Ē(t) + P̄�(t) commutes with
atomic operators such as σ (t) and σz(t) and this makes the
calculation easier.

We similarly introduce the evolution equation for σ (t) as

σ̇ (t) = −iω21σ (t) − i[Ē(t) + P̄�(t)] · μ∗
1,2

h̄
σz(t), (2.15)

which again involves the field Ē(t) + P̄� (t).

III. DESCRIPTION OF THE FULL ELECTRIC-FIELD
OPERATOR IN PRESENCE OF A POLARIZABLE MEDIUM

AND A FLUORESCENT DIPOLE

At that stage and before to solve the previous dynamical
problem we should give a reminder concerning the formal
structure of the fully quantized electric-field operator dis-
cussed in [65,66].

We showed in [66] that the total electric field evaluated at
time t and at point x is given by

E(x,t) = E(v)(x,t) +
∫ t−t0

0
dτ

∫
d3x′�v(τ,x,x′)

· P(x′,t − τ ), (3.1)

which can be interpreted as a separation between a free-space
photon field E(v)(x,t) = D(v)(x,t), i.e., a solution of Maxwell
equations in vacuum, and a retarded source field E(s)

total(x,t)
induced by the total dipole density P(x′,t − τ ):

E(s)
total(x,t) =

∫ t−t0

0
dτ

∫
d3x′�v(τ,x,x′) · P(x′,t − τ ). (3.2)

In these equations t0 is an initial time which can be sent to the
remote past t0 → −∞ if needed. The quantization of the free
field expanded into plane-wave modes (labeled by the wave
vector kα and the transverse polarization ε̂α,j , with j = 1,2)
leads to the following operator expressions [66]:

E(v)(x,t) =
∑
α,j

−
√

h̄ωα

2
c

(v)
α,j (t)k̂α × ε̂α,j�α(x) + H.c.

(3.3)
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with �α(x) = eikα ·x/
√

V (V is the infinite box volume of
the Born von Karman modal expansion method) and where
the modal expansion coefficients c

(v)
α,j (t) = c

(v)
α,j (0)e−iωαt (with

ωα = c|kα|) satisfy the usual commutation relations for bosons
(i.e., [c(v)

α,j (t),c(v)†
α′,j ′ (t)] = δα,α′δj,j ′ etc.). Furthermore, as shown

in [65,66] we have c
(v)
α,j (0) = cα,j (t0)e−iωαt0 where t0 is the

initial time mentioned before and where cα,j (t0) is an operator
associated with the total field acting at time t0. In the rest of
this work we will write Eq. (3.3) in the more compact form

E(v)(x,t) =
∑
α,j

E(v)
α,j (x)c(v)

α,j (0)e−iωαt + H.c., (3.4)

which involves the transverse electric mode profiles E(v)
α,j (x).

We emphasize that the set of functions E(v)
α,j (x) constitutes an

orthogonal mode basis satisfying the condition
∫

d3xE(v)
α,j (x) ·

E(v)∗
α′,j ′ (x) = h̄ωα

2 δα,α′δj,j ′ .
Moreover, the tensor �v(τ,x,x′) seen in Eq. (3.1) is a re-

tarded dyadic Green propagator which was written − ∂2
τ Uv (τ,x,x′)

c2

in [66]. Here it is explicitly obtained as an inverse Fourier
integral [66]:

�v(τ,x,x′) =
∫ +∞

−∞

dω

2π
e−iωτ ω2

c2
Gv(x,x′,ω), (3.5)

which vanishes for τ < 0 and involves the knowledge of the
usual Green dyadic function [2,66,68] Gv(x,x′,ω) in vacuum,
i.e., solution of the equation

∇ × ∇ × Gv(x,x′,ω) − ω2

c2
Gv(x,x′,ω) = Iδ(x − x′). (3.6)

Using the definition for the Fourier transform Ẽ(x,ω) =∫ +∞
−∞

dt
2π

E(x,t)e+iωt [and an equivalent formula for the dipole
density P̃(x,ω)] it is actually easier to write Eq. (3.1) as

Ẽ(x,ω) = Ẽ(v)(x,ω) +
∫

d3x′ ω
2

c2
Gv(x,x′,ω) · P̃(x′,ω),

(3.7)

where Ẽ(v)(x,ω) = ∑
α,j [E(v)

α,j (x)c(v)
α,j (0)δ(ω − ωα) + E(v)∗

α,j

(x)c(v)†
α,j (0)δ(ω + ωα)] and

Ẽ(s)
total(x,ω) =

∫
d3x′ ω

2

c2
Gv(x,x′,ω) · P̃(x′,ω). (3.8)

Moreover, in the present problem involving a polar-
ized medium with complex permittivity ε̃(x,ω) = ε̃′(x,ω) +
ĩε′′(x,ω) we have

P̃(x,ω) = P̃� (x,ω) + P̃(0)(x,ω) + [̃ε(x,ω) − 1]Ẽ(x,ω), (3.9)

where P̃(0)(x,ω) is the fluctuating dipole density introduced by
Gruner and Welsch [15–17] and given by [66]

P̃(0)(x,ω) =
√

h̄ε̃′′(x,ω)

π
f(0)
ω (x,0)�(ω)

+
√

h̄ε̃′′(x, − ω)

π
f(0)†
−ω (x,0)�(−ω) (3.10)

with f(0)
ω (x,0) a fluctuating dipolar term associated with

the dielectric medium [we have f(0)
ω (x,t) = f(0)

ω (x,0)e−iωt

and f(0)
ω (x,0) = f(0)

ω (x,t0)eiωt0 ]. We have also in the time
domain [65,66]

P(0)(x,t) =
∫ +∞

0
dω

√
2σω(x)

π
X(0)

ω (x,t)

=
∫ +∞

0
dω

√
h̄σω(x)

πω

[
f(0)
ω (x,t) + f†(0)

ω (x,t)
]
.

(3.11)

Here, it is especially convenient to introduce the total Green
dyadic function [2,66,68] G(x,x′,ω) in the polarizable medium
solution of the equation

∇ × ∇ × G(x,x′,ω) − ω2

c2
ε̃(x,ω)G(x,x′,ω)

= Iδ(x − x′). (3.12)

We thus rewrite Eq. (3.7) as

Ẽ(x,ω) = Ẽ(0)(x,ω) + Ẽ(s)
eff.(x,ω)

= Ẽ(0)(x,ω) +
∫

d3x′ ω
2

c2
G(x,x′,ω) · P̃eff.(x′,ω),

(3.13)

where the effective dipole density P̃eff.(x,ω) is given by

P̃eff.(x,ω) = P̃� (x,ω) + P̃(0)(x,ω). (3.14)

Here the new electric field operator Ẽ(0)(x,ω) is a solution of
Maxwell’s equations in the dielectric medium in absence of
P̃eff.(x′,ω) and we have the integral relation [66]

Ẽ(0)(x,ω) = Ẽ(v)(x,ω) +
∫

d3u
ω2

c2
Gv(x,u,ω) · [̃ε(u,ω) − 1]Ẽ(0)(u,ω)

= Ẽ(v)(x,ω) +
∫

d3u
ω2

c2
G(x,u,ω) · [̃ε(u,ω) − 1]Ẽ(v)(u,ω), (3.15)

where in the last equality we used the important Lippman-Schwinger integral relations

G(x,x′,ω) = Gv(x,x′,ω) +
∫

d3u
ω2

c2
Gv(x,u,ω) · [̃ε(u,ω) − 1]G(u,x′,ω)

= Gv(x,x′,ω) +
∫

d3u
ω2

c2
G(x,u,ω) · [̃ε(u,ω) − 1]Gv(u,x′,ω). (3.16)
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Therefore, we see that the electric field Ẽ(0)(x,ω) is completely determined by the knowledge of the vacuum electric field Ẽ(v)(x,ω)
through a linear equation. Clearly Ẽ(0)(x,ω) can be also rewritten as

Ẽ(0)(x,ω) =
∑
α,j

[
E(0)

α,j (x)c(v)
α,j (0)δ(ω − ωα) + E(0)∗

α,j (x)c(v)†
α,j (0)δ(ω + ωα)

]
(3.17)

where the functions E(0)
α,j (x) are the classical electric fields which are solutions of the scattering problem of a plane wave E(v)

α,j (x)
with pulsation ωα by the polarizable medium. Therefore, we have

E(0)
α,j (x) = E(v)

α,j (x) +
∫

d3u
ω2

α

c2
Gv(x,u,ωα) · [̃ε(u,ωα) − 1]E(0)

α,j (u,ω)

= E(v)
α,j (x) +

∫
d3u

ω2
α

c2
G(x,u,ωα) · [̃ε(u,ωα) − 1]E(v)

α,j (u). (3.18)

We point out that contrarily to E(v)
α,j (x) the fields E(0)

α,j (x) do not
constitute in general an orthogonal mode basis but this does
not prevent us to use it for expanding the field Ẽ(0)(x,ω) as in
Eq. (3.17).

Going back to Eq. (3.13) the second contribution to the
electric field comes from the scattered field (s) associated with
the effective dipole density P̃eff.(x′,ω):

Ẽ(s)
eff.(x,ω) =

∫
d3x′ ω

2

c2
G(x,x′,ω) · P̃eff.(x′,ω). (3.19)

Comparing Ẽ(s)
eff.(x,ω) with Ẽ(s)

total(x,ω) in Eq. (3.8) we see that
the new Ẽ(s)

eff.(x,ω) is induced by the distribution P̃eff.(x′,ω)
and is driven by the effective Green function G(x,x′,ω)
while Ẽ(s)

total(x,ω) is induced by the full dipole distribution
P̃(x′,ω) and is characterized by the Green function in vacuum
Gv(x,x′,ω). Clearly the new effective medium separation
Ẽ(x,ω) = Ẽ(0)(x,ω) + Ẽ(s)

eff.(x,ω) is rigorously equivalent to the
initial expression Ẽ(x,ω) = Ẽ(v)(x,ω) + Ẽ(s)

total(x,ω) and it is

FIG. 1. Sketch of the typical contributions to the electric field in
the presence of a dielectric medium if there is no additional source
P� (x,t). The electric field E(0)(x,t) is associated with incident photon
modes scattered by the dielectric medium (in the case of a vacuum
input field this corresponds to the quantum fluctuations). E(s)

eff.(x,t)
denotes the electric induced by the dipole distribution P(0)(x,t), i.e.,
to the material field X(0)

ω (x,t).

only for convenience that we should here consider Eq. (3.13)
instead of Eq. (3.7) for describing photon emission. In a certain
sense we can interpret Eq. (3.7) as a microscopic picture
of QED while Eq. (3.13) is more adapted to macroscopic
electrodynamics involving permittivity functions. In [66] we
already introduced this separation used in Eq. (3.13) but
we limited the analysis to the case where P̃�(x,ω) = 0 in
Eq. (3.14), i.e., P̃eff.(x,ω) = P̃(0)(x,ω).

In this specific regime (illustrated in Fig. 1) where
P̃� (x,ω) = 0 the source field is thus defined as

Ẽ(s)
eff.,f (x,ω) =

∫
d3x′ ω

2

c2
G(x,x′,ω) · P̃(0)(x′,ω), (3.20)

where the label “f ” means that the field is induced by the
fluctuating dipole defined in Eq. (3.10) which is reminiscent of
the Langevin noise introduced by Gruner and Welsch [15–17].
In the present work we consider the role of an additional dipole
term P̃�(x,ω) associated with the two-level atom as described
in the previous section II. This will be analyzed more in detail
in Sec. IV.

Before leaving this subsection it is important to give the
field expression in the time domain which reads [66]

E(x,t) = E(0)(x,t) +
∫ t−t0

0
dτ

∫
d3x′�(τ,x,x′)

· Peff.(x′,t − τ ), (3.21)

where like for the vacuum case the causal propagator �(τ,x,x′)
is given by the inverse Fourier transform

�(τ,x,x′) =
∫ +∞

−∞

dω

2π
e−iωτ ω2

c2
G(x,x′,ω), (3.22)

which vanishes for τ < 0 [66].

IV. SIPE APPROACH AND THE WIGNER-WEISSKOPF
APPROXIMATION

In order to solve the system of dynamical equations we
will first use the Wigner-Weisskopf approximation [8] as
analyzed by Sipe [9]. For this purpose we first consider the
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total Hamiltonian H (t) written as

H (t) =
∫

d3x :
B(x,t)2 + D(x,t)2

2
: + HM (t) + H�a

(t)

−
∫

d3xD(x,t) · P(x,t). (4.1)

H (t) can be formally separated into a noninteracting part
H (0) = ∫

d3x : B(x,t)2+D(x,t)2

2 : +HM (t) + H�a
(t) and a cou-

pling term H (I )(t) = − ∫
d3xD(x,t) · P(x,t). We now expand

the quantum states |�(t)〉 into the mode basis associated with
the noninteracting part H (0)(t). We will consider the problem
of spontaneous emission of light by a two-level system and
following Sipe [9] we postulate that the quantum state at time
t0 = 0 reads

|I (0)〉 = |01,12,0m,0P ; t0〉, (4.2)

where 01 means that no electron is in the lower energy state E1

and 12 implies that there is an electron in the upper energy state
E2 (in the following the notation |01,12,0m,0P ; t0〉 and other
similar ones mean that the vector is actually an eigenstate of
a complete set of operator at time t0 = 0). Since N (t) = N (0)
we see that for t � 0 the system is in an eigenstate of N (t)
corresponding to the eigenvalue N = +1. Similarly 0m and
0P mean that there is no polarization and photon excitation in
the system at the initial time. At time t > t0 the atomic system
evolves to its ground state and we approximately have

|I (t)〉 � S(t)e−i(E1/h̄)t |01,12,0m,0P ; t0〉

+
∫

d3x
∫ +∞

0
dωbω(x,t)fω(x,0)†|11,02,0m,0P ; t0〉

+
∑
α,j

bα,j (t)cα,j (0)†|11,02,0m,0P ; t0〉 + · · · (4.3)

with S(0) = 1 and bα,j (0) = 0, bω(x,0) = 0. We also define
a second possible state which we call the ground state of the
complete system and that we write neglecting dressing and
following Sipe [9] as

|G(t)〉 � e−i(E1/h̄)t |11,02,0m,0P ; t0〉
= e−i(E1/h̄)t |G(0)〉, (4.4)

which characterizes a system with fundamental energy E1 (i.e.,
neglecting dressing).

To solve Eq. (2.15) coupled to Maxwell’s equations we
here consider that the matrix elements 〈G(0)|A(t)|I (0)〉 =
〈G(t)|A(0)|I (t)〉 associated with the operator A(t) are ex-
pressed in the Heisenberg picture. We also remind that
if U (t,0) denotes the unitary evolution operator associ-
ated with the full Hamiltonian H (t), we have |I (t)〉 =
U (t,0)|I (0)〉, |G(t)〉 = U (t,0)|G(0)〉 and, therefore we have
A(t) = U−1(t,0)A(0)U (t,0). Using Eq. (2.15) we get

d

dt
〈G(0)|σ (t)|I (0)〉 = −iω21〈G(0)|σ (t)|I (0)〉

− iμ∗
1,2

h̄
· 〈G(0)|σz(t)[Ē(t) + P̄�(t)]|I (0)〉. (4.5)

In order to solve this equation we should evaluate the different
matrix elements involved. First, we have

〈G(0)|σ (t)|I (0)〉 = 〈G(t)|σ (0)|I (t)〉
� ei(E1/h̄)t 〈G(0)|σ (0)|I (t)〉 = S(t), (4.6)

where we have used Eq. (4.4).
Second, the matrix element

〈G(0)|σz(t)[Ē(t) + P̄�(t)]|I (0)〉
= 〈G(t)|σz(0)[Ē(0) + P̄�(0)]|I (t)〉
� ei(E1/h̄)t 〈G(0)|σz(0)[Ē(0) + P̄�(0)]|I (t)〉 (4.7)

can be rewritten as −ei(E1/h̄)t 〈G(0)|[Ē(0) + P̄� (0)]|I (t)〉 �
〈G(0)|[Ē(t) + P̄�(t)]|I (0)〉 since the quantum state |G(0)〉
corresponds to the eigenvalue σz = −1. Regrouping the terms
we finally get the dynamical equation

d

dt
S(t) = −iω21S(t) + iμ∗

1,2

h̄

· 〈G(0)|[Ē(t) + P̄� (t)]|I (0)〉. (4.8)

Now, to evaluate 〈G(0)|Ē(t)|I (0)〉 we need to insert the
electric-field solution of Maxwell’s equations evaluated at
the dipole position. We remind that from Eq. (3.13) the
total field (in the frequency domain) is given by Ẽ(x,ω) =
Ẽ(0)(x,ω) + Ẽ(s)

eff.(x,ω) where Ẽ(0)(x,ω) is associated with
incident photon modes scattered by the dielectric medium
and Ẽ(s)

eff.(x,ω) denotes the electric induced by the dipole
distribution P̃eff.(x,ω) = P̃(0)(x,ω) + P̃�(x,ω). In the time
domain we use Eq. (3.21) and the field is written E(x,t) =
E(0)(x,t) + E(s)

eff.(x,t) where

E(s)
eff.(x,t) =

∫ t−t0

0
dτ

∫
d3x′�(τ,x,x′) · Peff.(x′,t − τ )

(4.9)

is the (effective) scattered field induced by the dipole distri-
bution Peff.(x,t) = P(0)(x,t) + P�(x,t). From Eq. (3.11) and
Eq. (2.14) we can split E(s)

eff.(x,t) = E(s)
eff.,f (x,t) + E(s)

eff.,σ (x,t)

where E(s)
eff.,f (x,t) associated with the fluctuating Langevin’s

distribution P(0) is, in agreement with Eq. (3.20), given by

E(s)
eff.,f (x,t) =

∫ t−t0

0
dτ

∫
d3x′�(τ,x,x′) · P(0)(x′,t − τ )

(4.10)

while E(s)
eff.,σ (x,t) which is induced by the atomic dipole

P� (x,t) is given by

E(s)
eff.,σ (x,t) =

∫ t−t0

0
dτ

∫
d3x′�(τ,x,x′) · P�(x′,t − τ ).

(4.11)

We illustrate in Fig. 2(b) the different contributions to the total
electric field in the presence of the dielectric medium. We
can compare this situation to the simpler case illustrated in
Fig. 2(a) where the atom located in vacuum is excited either
by the free-space photon field E(v)(x,t) [see Eq. (3.3)] or by
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FIG. 2. Sketch of the different contributions to the total electric
field in presence of a radiating atomic dipole. In (a) the atom is in
vacuum and the electric field is separated into a E(v)(x,t) contribution
and a radiation field E(s)

σ (x,t) associated with the dipole. In (b) we
have a contribution E(0)(x,t), i.e., associated with scattered photon
modes (see Fig. 1), and two contributions of the scattered fields, i.e.,
induced by the fluctuating current E(s)

eff.,f (x,t) and the atomic dipole

E(s)
eff.,σ (x,t).

the source field

E(s)
σ (x,t) =

∫ t−t0

0
dτ

∫
d3x′�v(τ,x,x′) · P� (x′,t − τ ).

(4.12)

In this example it is well known [10] that only the total
field E(x,t) = E(v)(x,t) + E(s)

σ (x,t) has an absolute meaning.
In particular, it is only after considering the total field that
canonical commutation relations and full unitarity of the
evolution are respected [10,65,66]. Therefore, in the more
general problem where a dipole distribution P�(x,t) is coupled
to the photon field and dielectric oscillators one must keep
the different contributions to the electric-field operator. It is
only when we calculate the matrix elements or the mean
values corresponding to the physical measured observables
that we can cancel specifically some terms. This again is well
documented in the literature for the case of a single atom in
vacuum (see the complete discussion in [10] and the references
therein).

For the present example, by using the form for 〈G(0)|
and |I (t)〉 it is not difficult [69] to show that we have
〈G(0)|Ē(0)(t)|I (0)〉 = 0, 〈G(0)|P̄(0)(t)|I (0)〉 = 0. Therefore,
the only contribution to the electric-field matrix element comes
out from the field generated by the atomic dipole itself with

〈G(0)|P̄�(t)|I (0)〉 = (μ1,2〈G(0)|σ (t)|I (0)〉
+μ∗

1,2〈G(0)|σ †(t)|I (0)〉)�(0)

� μ1,2S(t)�(0), (4.13)

where we have used

〈G(0)|σ †(t)|I (0)〉 � ei(E1/h̄)t 〈G(0)|σ †(0)|I (t)〉 = 0.

(4.14)

Regrouping all these expressions, Eq. (4.8) finally reads

d

dt
S(t) = −iω0S(t) +

∫ t

0
dτ

iμ∗
1,2 · �̄(τ,x0,x0) · μ1,2

h̄

·S(t − τ ), (4.15)

where ω0 = ω21 − |μ1,2|2�(0)
h̄

is a modified pulsation, due to the
dipole 〈G(0)|P̄�(t)|I (0)〉. This result is central for the present
analysis since it shows that the vacuum photon field and the
material fluctuating currents are not playing an effective role
in the dynamical equation. Therefore, the transition dynamics
is driven by the self-interaction of the source electromagnetic
field. We emphasize that in Eq. (4.15) the Green dyadic tensor
�(τ,x,x0) is actually a highly singular function both in the
spatial (near x0) and in the time domain (near τ = 0). Actually,
we showed in [66], using the Laplace transform method,
that �(τ,x,x0) = [Q(τ,x,x0) − Iδ3(x − x0)δ(τ )]�(τ ) where
Q(τ,x,x0) is a distribution that is regular in the time domain at
τ = 0. Introducing this definition in Eq. (4.15) shows that the
integral

∫ t

0 dτQ(τ,x,x0)S(t − τ ) actually vanishes for t → 0+
and that the dipole correction to ω21 seen in ω0 compensates
exactly for the additional dipole term coming from the
equality

∫ t

0 dτ�̄(τ,x0,x0) · μ1,2S(t − τ ) = ∫ t

0 dτ Q̄(τ,x0,x0) ·
μ1,2S(t − τ ) − 〈G(0)|P̄�(t)|I (0)〉.

Equation (4.15) can be solved more easily using the Laplace
transform formalism applied to the field S(t). Using Eq. (4.15)
one obtains

pS(p) − S(0) = −iω0S(p)

− iμ∗
1,2 · p2

c2 G(x0,x0,ip) · μ1,2

h̄
S(p).

(4.16)

Therefore the following solution holds:

S(t) =
∫ γ+i∞

γ−i∞

idp

2π

eptS(0)

p + iω0 + iμ∗
1,2· p2

c2 G(x0,x0,ip)·μ1,2

h̄

.

(4.17)

The calculation of this integral is given in Appendix A
using the Wigner-Weisskopf approach. In short, the idea is
to assume for long time t 
 0 the exponential decay law
S(t) = S(0)e−iω̃0t , where ω̃0 is a complex frequency defined as
ω̃0 = ω0 − i�/2 + δ, where � � 0 and δ are real numbers [we
have also S(0) = 1 by definition of the operator and quantum
state]. Now if we suppose that to a good approximation (called
the polar approximation) we have

ω̃0 = ω0 − μ∗
1,2 · ω2

0
c2 G(x0,x0,ω0 + i0+) · μ1,2

h̄
, (4.18)

which indeed justifies the decay law (see Appendix A). This
allows us to write the decay rate

� = 2Im

[
μ∗

1,2 · ω2
0

c2 G(x0,x0,ω0 + i0+) · μ1,2

h̄

]
(4.19)
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and the Lamb shift

− δ = Re

[
μ∗

1,2 · ω2
0

c2 G(x0,x0,ω0 + i0+) · μ1,2

h̄

]

=
∫ +∞

−∞

dω

π
P.V.

[
Im

[μ∗
1,2· ω2

c2 G(x0,x0,ω)·μ1,2

h̄

]
ω − ω0

]
, (4.20)

where we used the Kramers-Kronig relation at the end.
We point out that from the symmetry Im[G(x,x′, − ω)] =
−Im[G(x,x′,ω)] we have

− δ =
∫ +∞

0

dω

π
P.V.

[
Im[

μ∗
1,2· ω2

c2 G(x0,x0,ω)·μ1,2

h̄
]

ω − ω0

]

+
∫ +∞

0

dω

π

[
Im

[μ∗
1,2· ω2

c2 G(x0,x0,ω)·μ1,2

h̄

]
ω + ω0

]
. (4.21)

The first integral term is the correct Lamb shift obtained in
the rotating wave approximation and the Wigner-Weisskopf
theory. The second integral has actually the wrong sign
(see the analysis of the problem in [10]) and is clearly
nonresonant. Only a more precise theory going beyond the
Wigner-Weisskopf polar approximation would justify this
erroneous (small) value and this will not be considered here.

Moreover, the total field at point x would in principle be
calculated using

E(x,t)

:= 〈G(0)|E(x,t)|I (0)〉

=
∫ +∞

−∞

dω

2πi

ω2

c2 G(x,x0,ω) · μ1,2e
−iωtS(0)

ω0 − ω − i0+ − ω2
0

h̄c2 μ
∗
1,2 · G(x,x0,ω) · μ1,2

.

(4.22)

However, the polar approximation allows us to define in
a simpler form this matrix element associated with the
spontaneously emitted photon electric field:

E(x,t) := 〈G(0)|E(x,t)|I (0)〉

=
∫ +∞

−∞

dω

2πi

ω2

c2 G(x,x0,ω)

ω̃0 − ω − i0+ · μ1,2e
−iωtS(0).

(4.23)

The explicit calculation of E(x,t) can only be done with the
same conditions as used for evaluating S(t) in Eq. (4.17).
For Eq. (4.17) it was necessary to suppose t 
 t0. This is
however not sufficient here and we will consider the far
field far away from the source region where the propa-
gator reads asymptotically G(x,x0,ω0 + i0+) � F(x,x0,ω0 +
i0+)eiω0

√
ε̃(ω0)R/c where R = |x − x0| 
 c/ω0 and where

F(x,x0,ω0 + i0+) is a smoothly varying form factor character-
izing the emission profile (for the permittivity we here suppose
a background but this could be vacuum). Using this robust
far-field approximation we have

E(x,t) � ω2
0

c2
F(x,x0,ω0 + i0+) · μ1,2

× e−iω̃0(t−√
ε̃(ω0)R/c)S(0)�(t −

√
ε̃(ω0)R/c),

(4.24)

where the Heaviside function is reminiscent of the causal na-
ture of the single-photon emission (since the photon emission
starts at t0 = 0 no light exists outside the future-oriented light
cone with apex located at x0, t0) and is here justified by the
nature of the Bromwich integral.

V. DISCUSSION

A. Local density of states and polaritonic wave functions

Some important remarks should be done here concerning
the above derivation and its meaning. First, as observed
by Sipe [9] and Bialinicky-Birula [70], E(x,t) is defining
together with B(x,t) := 〈G(0)|B(x,t)|I (0)〉 a wave function
for the single emitted photon [more precisely, these authors
defined the photon wave function as the Riemann-Silberstein
vectors E(x,t) ± iB(x,t)]. Starting from Maxwell’s quantum
equations for operators E(x,t) and B(x,t) we can define some
Maxwell’s equations for the complex fields E(x,t) and B(x,t)
which reads

∇ × B(x,t) = 1

c
∂tD(x,t), ∇ · D(x,t) = 0,

∇ × E(x,t) = −1

c
∂tB(x,t), ∇ · B(x,t) = 0. (5.1)

In these equations D(x,t) is defined as 〈G(0)|D(x,t)|I (0)〉
and involves the complex polarization field P(x,t) :=
〈G(0)|P(x,t)|I (0)〉. From [65,66] and Eq. (4.13) we get

P(x,t) = Peff.(x,t) +
∫ t

0
χ (x,τ )dτE(x,t − τ ), (5.2)

where χ (x,τ ) is the local linear susceptibility of the inhomo-
geneous medium defined in [65]. From Eq. (4.13) we have

Peff.(x,t) � μ1,2S(t)�(x − x0) (5.3)

and S(t) = e−iω̃0t is the complex valued dipole amplitude given
in Eq. (4.17). In other words, if we insert the source term given
by Eq. (5.3) in the Maxwell equations (5.1) we can solve
the problem directly using the propagator �(τ,x,x′) defined
previously for the inhomogeneous dielectric problem. This
solution is essentially classical and will automatically lead to
Eq. (4.24) in the far field of the quasipointlike dipole μ1,2S(t)
associated with the polarization density given by Eq. (5.3).
The method is associated with the first quantization approach
of a photon proposed by Sipe [9] and Bialinicky-Birula [70] in
which D and B define a wave function for the emitted photon.

A second remark connected to the first one deals with
the energy conservation and the meaning of � in Eq. (4.19).
Indeed, the structure of this mathematical expression for � is
reminiscent of a classical calculation for the power radiated by
an oscillating pointlike dipole [2]. This is clear since we can
write � as

� = π

3

ω0

h̄
|μ1,2|2ρLDOS(x0), (5.4)

where

ρLDOS(x0) = 6ω0

πc2
Im[n̂∗ · G(x0,x0,ω0 + i0+)] · n̂

(5.5)
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with μ1,2 = |μ1,2|n̂. This is rigorously equivalent to the
classical formula obtained for the power P0 of a radiating
dipole at the pulsation ω0 which reads

P0 = π

3
ω2

0|μ1,2|2ρLDOS(x0). (5.6)

The last expression is identical to Eq. (5.4) if we identify
the radiative power P0 and the rate h̄ω0�. In order to give a
justification to this identification we start from Eq. (5.1) and we
obtain a complexified version of the Poynting theorem which
reads

− ∂t (|B|2 + |E |2) = 2c∇ · (Re[E × B∗]) + 2Re[J · E∗],

(5.7)

with J = ∂tP the complex dipolar current associated with
Eq. (5.2),

J (x,t) = ∂tPeff.(x,t) +
∫ t

0
χ (x,τ )dτ∂tE(x,t − τ )

+χ (x,t)dτE(x,0). (5.8)

Moreover, by integration over the volume we can de-
fine the dissipated power inside the particle as W�(t) :=∫

d3x2Re[∂tP∗
eff.(x,t) · E(x,t)]. Using Eq. (5.3) we get

W�(t) � −2Im

[
μ∗

1,2 · ω3
0

c2
G(x0,x0,ω0 + i0+) · μ1,2

]
e−�t

= −h̄ω0�e−�t . (5.9)

This is with a minus sign the total radiated power P0 discussed
previously but weighted by the exponential decay factor
e−�t . Integrating −W�(t) over time we get the total energy
emitted by the dipole from the initial time t0 = 0 to time
t : δE = − ∫ t

0 dt ′W�(t ′) = h̄ω0(1 − e−�t ) which approaches
h̄ω0 if t → +∞. In evaluating W�(t) we used the fact that
while G(x0,x0,ω0 + i0+) is a badly mathematically defined
quantity this is not so for Im[G(x0,x0,ω0 + i0+)] which can
be easily obtained by contour integration in the complex plane
(see Appendix B) and leads in the homogeneous surrounding
medium case to

Im[G(x0,x0,ω0 + i0+)] = ω0

6πc
Re[n0(ω0)]I, (5.10)

where n0(ω0) is the surrounding medium optical index. This
allows us to define the LDOS in the general case and to justify
directly Eq. (5.5). Furthermore, we have also

ρLDOS(x0) = ω2
0

π2c3
Re[n0(ω0)] + 6ω0

πc2
Im[n̂∗

· Gref(x0,x0,ω0 + i0+) · n̂], (5.11)

where we have used a standard separation [68] of the Green
tensor as G = Gref + G0, where G0 is a contribution of the
bulk medium of permittivity ε̃(ω0) = n2

0(ω0) and Gref is an
additional contribution originating from the inhomogeneities
and various interfaces present in the system.

It is also important for the present study to make a
comment concerning the theory of intensity measurement
proposed by Glauber [10,71,72]. We remind that following
the theory of Glauber the photon detection rate I (x,t) at point
x and time t should generally be expressed as a convolution

between the temporal response of the detector M(τ ) and the
first-order correlation function of the electric field γ (x,t,τ ) =
〈E(−)(x,t)E(+)(x,t − τ )〉, i.e.,

I (x,t) = 2Re

[∫ +∞

0
M(τ )γ (x,t,τ )

]
. (5.12)

In the formula for γ (x,t,τ ), E(+)(x,t) and E(−)(x,t) are
respectively the positive and negative frequency operator parts
of the electric field containing as usual only annihilation and
creation operator for the photon field. In the broadband detector
limit usually considered the formula simplifies and we get
I (x,t) ∝ 〈E(−)(x,t)E(+)(x,t)〉 which is the standard formula
of Glauber [71]. We stress that in order to derive Eq. (5.12) a
dipolar coupling with the detector was taken into account using
a Hamiltonian interaction of the usual form Hint = −p · E
where p is a dipole operator for the detector. However, from
the point of view of the present dual formalism the principal
field to be coupled to the detector is not the electric field E but
the displacement D = E + P with P the total dipole density of
the medium (which in the interaction picture does not include
the detector dipole contribution). As we showed in [65,66]
this displacement field is properly quantized by introducing
a plane-wave expansion with the general form [compare with
Eq. (3.3)]

D(x,t) =
∑
α,j

−
√

h̄ωα

2
cα,j (t)k̂α × ε̂α,j�α(x) + H.c.,

(5.13)

where cα,j (t) and c
†
α,j (t) are respectively the annihilation

and creation operators associated with the photons in this
dual formalism obeying usual commutation relations for
bosons [65,66]. Comparing with Eq. (3.3) for E(v)(x,t) we see
that the time dependency of cα,j (t) is not in general harmonic
due to the coupling with the dipolar sources present [65,66].
Using this description the positive frequency part D(+)(x,t) of
the displacement field operator D(x,t) is clearly defined as

D(+)(x,t) =
∑
α,j

−
√

h̄ωα

2
cα,j (t)k̂α × ε̂α,j�α(x) (5.14)

and D(−)(x,t) = D(+)†(x,t) as usual. In the dual formalism
the interaction Hamiltonian for the detection process actually
reads H new

int = −p · D and therefore the single-photon rate cor-
relation function is still given by Eq. (5.12) with the correlation
function now replaced by γ (x,t,τ ) = 〈D(−)(x,t)D(+)(x,t −
τ )〉. For all practical needs in the laboratory the use of D
instead of E will not change anything since most single-photon
detectors are located in the far-field region, i.e., generally
speaking in the air with D � E. Still in the near-field regime the
formalism is in principle more powerful since it includes from
the ground the lossy and dispersive dielectric environment.

Furthermore, for the single-photon process considered
before we can write

〈G(0)|D(x,t)|I (0)〉 � 〈G(0)|D(+)(x,t)|I (0)〉, (5.15)

where we used the fact that the ground state is sup-
posed here to be approximately the same at time t = 0
and time t . Therefore, the recorded single-photon intensity
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in the far field by an idealized broadband detector re-
quires only the knowledge of I (x,t) ∝ 〈D(−)(x,t)D(+)(x,t)〉 =
|〈G(0)|D(+)(x,t)|I (0)〉|2 which from the previous analysis and
Eq. (4.24) is given by |E(x,t)|2. In agreement with Sipe’s
analysis in vacuum [9] we thus finally obtain a description of
photon detection in terms of a single-photon wave function in
the presence of a dielectric environment.

B. Continuous regime and the optical Bloch equations

Before we conclude it is here important to study the
continuous excitation regime when a laser mode interacts
with the two-level atom considered previously. In order to
find the optical Bloch equations in this regime we go back to
Eqs. (2.13) and (2.15) and study the dynamics of 〈σ (t)〉 and
〈σz(t)〉 where the average is taken on an arbitrary initial state
for the two-level atom. More specifically, we are interested in
the evolution of 〈σ (t)〉 and 〈σz(t)〉 with time under the influence
of a quasiclassical electromagnetic wave characterized by a
harmonic electric field E(0)

L (x,t) = E0
L(x)e−ωLt + c.c. (ωL is the

pulsation of the quasiclassical laser field). This electric field
is a solution of the homogeneous classical Maxwell equations
in the presence of the dielectric medium. Therefore, from the
point of view of the QED approach considered here it will
be necessary to include a contribution of the vacuum electric
operator E(0)(x,t) in Eqs. (2.13) and (2.15). It is also clear that
without the introduction of the operator E(0)(x,t) to preserve
unitarity it would be also impossible to describe the excitation
by an incident laser mode considered as a pure photonic
state. With our formalism it is thus possible to describe the
interaction process in complete analogy with what is done in
the literature for an atom excited by a laser beam in vacuum
(i.e., without a dielectric lossy and dispersive surrounding).

Now, let us start with Eq. (2.15) and consider the average

d

dt
〈σ (t)〉 = −iω21〈σ (t)〉 − i〈[Ē(t) + P̄� (t)]σz(t)〉 · μ∗

1,2

h̄
.

(5.16)

Here comes a difficulty because to solve this equation one
must specify the operator ordering in 〈(Ē(t) + P̄�(t))σz(t)〉.
This is a central issue which is well documented in the case of
an atom in vacuum [10]. The usual trick, that we should apply
here as well, is to take a normal ordering in which the positive
frequency part of the electric field is positioned to the right
of σz while the negative frequency part of the electric-field
operator is positioned to the left of σz. This is allowed because
atomic and field operators defined at the same time commute. If
we can do that we will remove the contributions from E(0)(x,t)
associated with vacuum fluctuations and only study the effect
of the (classical) external interacting field and of the radiation
reaction. We mention that there are mathematical subtleties in
the definition of positive and negative frequency parts and there
exist actually two ways to define it which are not rigorously
equivalent. On the one side we could be tempted to consider
a Fourier transform Ã(ω) of any operator A(t) and thus define
the positive frequency part as A(+)(t) = ∫ +∞

0 dωÃ(ω)e−iωt

[similarly A(−)(t) = ∫ 0
−∞ dωÃ(ω)e−iωt ]. This way of defining

A(±)(t) is actually correct if we have no interaction. However,
the canonical approach [72,73] is to use the separation between

annihilation and creation operators for the fields and to define
the positive frequency part by using only annihilation operators
(respectively the negative frequency part is defined using
only the creation operators for the fields). This is clearly
the definition used for D(+)(x,t) in Eq. (5.14) but now this
should be generalized for taking into account the relation
Ē(t) + P̄�(t) = D̄(t) − P̄diel.(t). We give in Appendix C a
detailed discussion of this important point in the present dual
formalism. We now write

〈[Ē(t) + P̄�(t)]σz(t)〉
= 〈{[Ē(+)(t) + P̄(+)

� (t)]σz(t) + 〈σz(t)[Ē(−)(t) + P̄(−)
� (t)]}〉

(5.17)

with, for the dipole field operator, P̄(+)
� (t) = μ1,2σ (t) and

P̄(−)
� (t) = [P̄(+)

� (t)]†. We have also for the electric-field op-
erators

E(±)(x,t) = E(0,±)(x,t) +
∫ t−t0

0
dτ

∫
d3x′�(±)(τ,x,x′)

· Peff.(x′,t − τ ), (5.18)

where the field E(0,±)(x,t) = L(±)
t [E(0,±)(x,t)] and the dyadic

�(±)(τ,x,x′) = L(±)
τ [�(τ,x,x′)] are defined by applying the

operator L(±)
t = 1

2 [1 ± i∂t

c
√−∇2 ] (see Appendix C and [65]). As

shown in Appendix D a rigorous application of the operator
L(±)

t is in general difficult and an exact result is only obtained in
the vacuum. Fortunately, here we are interested in the dynamics
at long time and we can use the approximation [see Eqs. (3.15)
and (3.16)]

E(0,+)(x,t) �
∫ +∞

0
dωẼ(0)(x,ω)e−iωt ,

(5.19)

�(+)(τ,x,x′) �
∫ +∞

0

dω

2π
e−iωτ ω2

c2
G(x,x′,ω),

together with the relation E(0,−)(x,t) = [E(0,+)(x,t)]†,
�(−)(τ,x,x′) = [�(+)(τ,x,x′)]∗.

The next step is to remove the excitation from the
initial state at time t0 → −∞. For this we use [74] for ev-
ery operator the unitary transformation Anew(t) = T A(t)T −1

where T is the displacement operator defined as T =⊗
α,j e[f (v)∗

α,j (t)c(v)
α,j (t)−f

(v)
α,j (t)c(v)†

α,j (t)] with f
(v)
α,j (t) = fα,j (t0)e−iωα (t−t0)

the modal coefficients in the expansion of the free laser field.
More precisely, in analogy with Eq. (3.17) the laser field is
written E(0)

L (x,t) = ∫ +∞
−∞ dωẼ(0)

L (x,ω)e−iωt with

Ẽ(0)
L (x,ω) =

∑
α,j

[
E(0)

α,j (x)f (v)
α,j (t0)eiωαt0δ(ω − ωα) + c.c.

]
(5.20)

and where E(0)
α,j (x) is defined by Eq. (3.18) from the plane-wave

modes E(v)
α,j (x) (for the particular example used in this section

the laser is monochromatic so that we have necessarily
ωα = ωL). Moreover, within this formalism the application
of T on the initial coherent state |L,t0〉 leads to the photon
vacuum T |L,t0〉 = |0,t0〉, and since T acts only on the operator
field E(0)(x,t) we deduce T E(0,+)(x,t)T −1 = E(0,+)(x,t) +
E(0,+)

L (x,t), T E(0,−)(x,t)T −1 = E(0,−)(x,t) + E(0,−)
L (x,t). If we
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suppose that the initial quantum state is |L,t0〉 ⊗ |atom,t0〉
(where |atom,t0〉 is any coherent superposition of the atomic
states |1,t0〉 and |2,t0〉) then the coherent laser field can
be removed from the quantum state (which now reads
|0,t0〉 ⊗ |atom,t0〉) and we should in turn add a classical
laser field in the dynamical Eq. (5.16). The previous analysis
therefore generalizes the usual method for removing coherent
states. However, here the trick is now valid in the presence of
lossy and dispersive media.

The rest of the derivation is more conventional. We write
σ (t) = S(t)e−iωLt and using the rotating wave approximation
we neglect contributions from E(0,−)

L and σ †. We get after some
calculations:

d

dt
〈S(t)〉 = −i(ω0 − ωL)〈S(t)〉 − iĒ (0)

L · μ∗
1,2

h̄
〈σz(t)〉 + N (t),

(5.21)

where

N (t) = −i

∫ +∞

0

dω

2π

ω2

c2

μ∗
1,2 · G(x0,x0,ω) · μ1,2

h̄

×
∫ t−t0

−∞
ei(ωL−ω)τ 〈σz(t)S(t − τ )〉

� +i

∫ +∞

0

dω

2π

ω2

c2

μ∗
1,2 · G(x0,x0,ω) · μ1,2

h̄

×
∫ t−t0

−∞
ei(ωL−ω)τ 〈S(t)〉. (5.22)

In the last equality we used the Markovian approxima-
tion [10,73] 〈σz(t)S(t − τ )〉 � 〈σz(t)S(t)〉 = −〈S(t)〉 [since
σz(t)σ (t) = −σ (t) by definition]. In the long-time limit

with t0 → −∞ we have N (t) = i
μ∗

1,2·G(x0,x0,ω)·μ1,2

h̄
〈S(t)〉 =

(−�′/2 − iδ′) where

�′ = 2Im

[
μ∗

1,2 · ω2
0

c2 G(x0,x0,ωL + i0+) · μ1,2

h̄

]
(5.23)

is the quantum rate at the laser frequency [compare with
Eq. (4.19)] and

−δ′ =
∫ +∞

−∞

dω

π
P.V.

[
Im

[μ∗
1,2· ω2

c2 G(x0,x0,ω)·μ1,2

h̄

]
ω − ωL

]
(5.24)

is the new Lamb shift. We emphasize that for most applications
the difference between � and �′, δ, and δ′ can be neglected.
Therefore, within the general approach considered we obtained
the first Bloch equation,

d

dt
〈S(t)〉 = −i(ω0 − δ − ωL)〈S(t)〉

− iĒ (0)
L · μ∗

1,2

h̄
〈σz(t)〉 − �/2〈S(t)〉, (5.25)

which is now valid in the presence of lossy and dispersive
linear media. It is possible using the same procedure to deduce
the second optical Bloch equation which reads within the same

approximations

d

dt
〈σz(t)〉 = −2iĒ (0)∗

L · μ1,2

h̄
〈S(t)〉 + 2iĒ (0)

L · μ∗
1,2

h̄
〈S†(t)〉

−�[1 + 〈σz(t)〉]. (5.26)

Therefore, we can, by using the generalized Huttner Barnett
model, justify the use of optical Bloch equations which were
often introduced with the more phenomenological Langevin
noise approach [28–36].

VI. FINAL REMARKS AND CONCLUSION

To conclude, we provided a description of spontaneous
emission for a fluorescent two-level atom using the generalized
Hutner-Barnett approach given in [65,66]. We showed that
within this Hamiltonian description it is clearly possible to
analyze rigorously spontaneous emission in a lossy and dis-
persive inhomogeneous dielectric environment. Importantly,
we showed that while our description used the complete
electromagnetic field including photon vacuum fluctuations
and Langevin’s noise current associated with the dielectric
environment the spontaneous emission process can be un-
derstood as resulting from a self-coupling of the fluorescent
dipole. We started our analysis by reminding that the total
electric field E can always in a microscopic picture be
separated into a free space sum of photon modes (v) E(v)

and a radiation field E(s)
total(x,t) associated with the total dipole

distribution. We showed that in the presence of a dielectric
medium the field is better separated into a contribution
E(0), i.e., associated with pure photon modes scattered by
the dielectric medium, and an effective scattered field E(s)

eff.
induced by an effective dipole density Peff., i.e., the sum of
the fluctuating dipole term P(0) and the atomic dipole source
P� . We showed that while all these contributions must be
generally included in the electric-field operator in order to
preserve full quantum unitarity and canonical relations only
the source term P� contributes to the spontaneous emission
process in the representation used in our work. For the case
of Bloch equations with an external excitation we showed that
the laser field must however be included in the quantitative
analysis as a classical field solution of Maxwell equations in
the presence of the dielectric (we used a unitary transformation
for removing these spurious degrees of freedom). In the present
perspective, the LDOS appears thus mostly as a consequence
of the classical radiation reaction (in agreement with semi-
classical approaches and models neglecting the quantization
of losses [2,3]). On the one side, spontaneous emission is thus
interpreted rather classically as a radiation reaction due to the
Lorentz force [10]. However, on the other side the full unitarity
of quantum mechanics is respected in our formalism in order
to preserve the canonical equal-time commutation relations.
Therefore, as already discussed by Milonni in the context of
photons-atoms coupling in vacuum [10] the description is not
univocal and depends on the order we introduce operators in
the dynamical equations. Here, the choice was made in order
to favor the classical radiation force interpretation but other
choices are clearly possible (i.e., favoring a zero-point field
fluctuation perspective) and all of them are equivalent in QED.
Furthermore, this fact can be seen as a direct consequence of
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the preservation of unitarity in our description. Without the
inclusion of both photon vacuum and fluctuating currents the
alternative representations would not exist and the full unitarity
would be broken. The present work justifies semiclassical
results [2,3,75] and alternative quantum approaches based on
the Langevin’s noise method [28–36] which neglected the role
of photon vacuum. We think that the present work will motivate
further studies in order to analyze other regimes of coupling
between emitters and dielectric media and will impact our
description of quantum polaritonic and plasmonic physics in
the quantum regime (e.g., with near-field optical microscopes
involving single-photon emitters [6,7,76–78]. We emphasize
that in the optical near field of plasmonics systems the ohmic
losses are essential in order to describe quantitatively the
quantum electromagnetic interaction between a fluorescent
emitter and its environment. In particular, recent proposals for
exploiting quantum entanglement between separated qubits
mediated by surface plasmons [24,29,79,80] rely on the in-
clusion of losses in the theoretical description of decoherence.
Therefore, a formal discussion of the contributions of photonic
and current fluctuations is urgent in this domain. We think
that this issue will become central for quantum and nonlinear
optical applications where the volume of nanoantennas tends
to vanish (some of these points will be considered in future
publications).
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APPENDIX A: WIGNER-WEISSKOPF APPROXIMATION

The evaluation of the integral Eq. (4.17) is in gen-
eral difficult and we will here use the method pro-
posed by Wigner and Weisskopf [8]. For this we in-

troduce the notation β(p) = −μ∗
1,2· p2

c2 G(x,x′,ip)·μ1,2

h̄
and we

rewrite Eq. (4.16) as Ṡ(t) = −iω0S(t) + i
∫ t

0 dτβ(τ )S(t −
τ ) = −iω21S(t) + i

∫ t

0 dτq(τ )S(t − τ ) where q(τ ) = β(τ ) +
(ω21 − ω0)δ(τ ) is regular at time τ = 0. The ansatz made by
Wigner and Weisskopf is to suppose for time t → +∞ an
exponential decay S(t) = S(0)e−iω̃0t where ω̃0 is a complex
frequency which is defined as ω̃0 = ω0 − i�/2 + δ with � � 0
and δ real numbers. This leads to the relation∫ t

0
dτβ(τ )eiω̃0τ = i�/2 − δ

= eiω̃0t

∫ γ+i∞

γ−i∞

idp

2π

eptβ(p)

p + iω̃0
(A1)

or equivalently using p = γ − iω and defining B(ω + iγ ) :=
β(p):

i�/2 − δ = eiω̃0t

∫ +∞

−∞

dω

2π

e−iωt)B(ω)

i(ω̃0 − ω)
(A2)

in the limit γ → 0+. This integral is calculated by contour
integration in the complex plane and taking into account that

the poles of B(ω) are all located in the lower frequency half
plane (the derivation is identical to the one for ε̃(ω) as shown
in [66]). Using the residue theorem we get

i�/2 − δ = B(ω̃0) −
∑
m

res[B(�m)]ei(ω̃0−�m)t

ω̃0 − �m

, (A3)

where the sum is taken over the residues or poles �m of B(ω).
This equality cannot be valid at every time since the left-hand
side is independent of t while the right-hand side depends
explicitly on t . Actually, the exponential decay law is only
valid for long time, i.e., t 
 0. However, the equality between
the right-hand side and

∫ t

0 dτβ(τ )eiω̃0τ is valid at every time
t � 0 and since

∫ t

0 dτq(τ )eiω̃0τ vanishes for t = 0 we deduce

B(ω̃0) =
∑
m

res[B(�m)]

ω̃0 − �m

+ ω0 − ω21, (A4)

which allows us to rewrite

i�/2 − δ = lim
t→∞

∑
m

res[B(�m)]

(
1 − ei(ω̃0−�m)t

ω̃0 − �m

)

+ω0 − ω21. (A5)

To conclude this evaluation we observe that in the limit
where there is a continuum of poles �m we can with a good
approximation [81] write

∑
m

res[B(�m)]
ei(ω̃0−�m)t

ω̃0 − �m

� 2πie−iω̃0t
∑
m

res[B(�m)]δ(ω0 − �′
m). (A6)

Furthermore, in the limit where the poles are near the real axis
and where �/2 
 −�′′

m we have

B(ω̃0) � B(ω0 − i0+)

�
∑
m

res[B(�m)]P.V.

[
1

ω0 − �′
m

]

+ iπ
∑
m

res[B(�m)]δ(ω0 − �′
m)

+ω0 − ω21. (A7)

Inserting Eqs. (A6) and (A7) in Eq. (A5) leads to

i�/2 − δ �
∑
m

res[B(�m)]P.V.

[
1

ω0 − �′
m

]

− iπ
∑
m

res[B(�m)]δ(ω0 − �′
m) + ω0 − ω21.

(A8)

However from the definition of B(z), with z a complex number,
we have B(−z∗) = B∗(z). Therefore, for ω0 ± i0+ we have
after separating the real from the imaginary part B ′(ω0 +
i0+) = B ′(ω0 − i0+) and B ′′(ω0 + i0+) = −B ′′(ω0 − i0+).
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This implies

B(ω0 + i0+) �
∑
m

res[B(�m)]P.V.

[
1

ω0 − �′
m

]

− iπ
∑
m

res[B(�m)]δ(ω0 − �′
m) + ω0 − ω21

(A9)

[note the difference of sign with Eq. (A7)] and we get after
comparison wih Eq. (A8)

i�/2 − δ � B(ω0 + i0+)

= μ∗
1,2 · ω2

0
c2 G(x,x′,ω0 + i0+) · μ1,2

h̄
, (A10)

which is the final result.

APPENDIX B: RADIATED POWER AND THE LDOS
OF A QUANTUM DIPOLE

In order to calculate W�(t) we have to consider the local
field in the vicinity of the dipole. Using Eq. (4.23) we get for
x → x0

E(x,t) � ω2
0

c2
G(x,x0,ω0 + i0+) · μ1,2e

−iω̃0t . (B1)

Moreover, the normed and finite function �(x − x0) charac-
terizing the dipole polarization prevents us from obtaining
divergence in evaluating W�(t). In the case of a homogeneous
medium the Green tensor G(x,x0,ω0 + i0+) is easily obtained
as an integral over polarization states and wave vectors. We
get (see [82])

G(x0,x0,ω0 + i0+)

=
∫

d3k
(2π )3

1

k2 − ω2
0 ε̃(ω0)
c2

(
I − k ⊗ k

ω2
0 ε̃(ω0)
c2

)

=
∫ +∞

−∞

kdk

(2π )3

2πIfreg(k)

k − ω0
√

ε̃(ω0)
c

(
1 − 2

3

k2

ω2
0 ε̃(ω0)
c2

)
. (B2)

In the last line we introduced a regularization function freg(k)
such as freg(k) � 1 for values near k � 0 but freg(k) � 0 is
|k| → +∞. This trick prevents the divergence and allows us
to calculate the integral along a contour in the upper part of
the complex plane. Using the residue theorem one gets finally

G(x0,x0,ω0 + i0+)

= i
ω0

6πc

√
ε̃(ω0)Ifreg

(
ω0

√
ε̃(ω0)

c

)
. (B3)

At the end we can simplify since freg(ω0
√

ε̃(ω0)
c

) � 1. We point
out that this result depends on the assumption concerning the
convergence of freg(k) at infinity. It is well known that the
Green dyadic propagator is badly defined at the spatial origin
and this is clearly another manifestation of this fact. Still the
result concerning the imaginary part of G(x0,x0,ω0 + i0+) is
very robust and will keep its absolute meaning since only
the real part contains potential divergences. Finally, taking
the imaginary part of Eq. (B3) leads directly to the result
Eq. (5.10).

APPENDIX C: DEFINITION OF THE POSITIVE
AND NEGATIVE FREQUENCY PARTS OF

THE ELECTRIC-FIELD OPERATOR

As we explained in Appendix B of [65] (see also [83]) the
positive (respectively negative) frequency part of the electric
displacement operator D(±)(x,t) is given by

D(±)(x,t) = L(±)
t [D(x,t)], (C1)

where we have defined [83] the operatorL(±)
t = 1

2 [1 ± i∂t

c
√−∇2 ].

With this definition we get Eq. (5.13) which ensures a
separation between annihilation and creation operators, i.e.,
between terms containing cα,j (t) and those containing c

†
α,j (t).

Similarly, for the electric dipole density P̄diel.(t) we introduce
a separation between positive and negative frequency parts
by using the definition P(+)

diel.(x,t) = M(±)
t [Pdiel.(x,t)] where

the linear operator M(±)
t acts on the material oscillator

fields Xω(x,t) in order to separate the contribution containing
annihilation operators fω(x,t) from the contribution containing
only creation operators f†ω(x,t). Moreover, as shown in [65,66]
we have fω(x,t) = i∂t Xω(x,t)+ωXω(x,t)√

2h̄ω
and

Pdiel.(x,t) =
∫ +∞

0
dω

√
h̄σω(x)

πω
[fω(x,t) + f†ω(x,t)]. (C2)

Therefore if we define

P(+)
diel.(x,t) =

∫ +∞

0
dω′

∫
d3x′fω′(x′,t) · [fω′(x′,t),Pdiel.(x,t)]

(C3)

and use the canonical commutation relations [65] we get

P(+)
diel.(x,t) =

∫ +∞

0
dω

√
h̄σω(x)

πω
fω(x,t), (C4)

which defines the positive frequency part P(+)
diel.(x,t) and the

operator M(±)
t [for the negative frequency part we simply use

P(−)
diel.(x,t) = [P(+)

diel.(x,t)]†].
Finally, if we use the definition P� (x,t) = [μ1,2σ (t) +

μ∗
1,2σ

†(t)]�(x − x0) we can obtain a separation between the

operators σ (t) and σ †(t) and we thus define P(±)
� (x,t) =

N (±)
t [P�(x,t)] by

P(+)
� (x,t) = μ1,2σ (t)�(x − x0) (C5)

and P(−)
� = P(+)

� ()†.
Now, for the electric field we have by definition E(x,t) =

D(x,t) − Pdiel.(x,t) − P�(x,t). Therefore in the full Hilbert
space we can define the operator

E(±)(x,t) = (L(±)
t + M(±)

t + N (±)
t )[E(x,t)]. (C6)

Finally, from Eq. (3.21) we deduce Eqs. (5.18) and (5.19)
which requires only L(±)

t .
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APPENDIX D: APPLICATION OF THE OPERATOR L(±)
t

IN THE LONG-TIME t APPROXIMATION

We start with the calculation of

�(±)
v (τ,x,x′) =

∫ +∞

−∞

dω

2π

ω2

c2
L(±)

τ [e−iωτ Gv(x,x′,ω)]. (D1)

In [66] we showed that we have the dyadic expansion
Gv(x,x′,ω) = Gv,⊥(x,x′,ω) + Gv,||(x,x′,ω) with for the trans-
verse part

Gv,⊥(x,x′,ω) =
∑
α,j

c2�α(x)�∗
α(x′)ε̂α,j ⊗ ε̂α,j

ω2
α − (ω + i0+)2

(D2)

and for the longitudinal part

Gv,||(x,x′,ω) = −c2 ∑
α k̂α ⊗ k̂α�∗

α(x′)�α(x)

(ω + i0+)2
. (D3)

A direct application of L(±)
t leads to

L(±)
τ [e−iωτ Gv,⊥(x,x′,ω)]

=
∑
α,j

c2�α(x)�∗
α(x′)ε̂α,j ⊗ ε̂α,j

ω2
α − (ω + i0+)2

1

2

(
1 ± ω

ωα

)
e−iωτ .

(D4)

Moreover, if we use 1
ω2

α−(ω+i0+)2 = 1
2ωα

[ 1
ωα−ω−i0+ + 1

ωα+ω+i0+ ]

and 1
x−i0+ = P.V.[ 1

x
] + iπδ(x) for x real then we obtain

L(±)
τ [e−iωτ Gv,⊥(x,x′,ω)]

=
∑
α,j

c2�α(x)�∗
α(x′)ε̂α,j ⊗ ε̂α,j

2ωα

1

2

(
1 ± ω

ωα

)

×
{
iπδ(ω − ωα) + P.V.

[
1

ωα − ω

]

− iπδ(ω + ωα) + P.V.

[
1

ωα + ω

]}
e−iωτ , (D5)

which is actually equivalent to

L(±)
τ [e−iωτ Gv,⊥(x,x′,ω)]

=
∑
α,j

c2�α(x)�∗
α(x′)ε̂α,j ⊗ ε̂α,j

2ωα(ωα ∓ ω ∓ i0+)
e−iωτ . (D6)

Therefore, after integration in the complex plane we get

�(+)
v (t − t ′,x,x′)

= i

h̄

∑
α,j

E(v)
α,j (x) ⊗ E(v)∗

α,j (x′)e−iωα(t−t ′)�(t − t ′) (D7)

and �(−)
v (t − t ′,x,x′) = [�(+)

v (t − t ′,x,x′)]∗. We emphasize
that the longitudinal part Gv,||(x,x′,ω) does not contribute to
�(±)

v (t − t ′,x,x′) as it can be shown directly. Furthermore, if
we take the imaginary part of Eqs. (D2) and (D3) and use once

again the separation

1

ω2
α − (ω + i0+)2

= 1

2ωα

[
1

ωα − ω − i0+ + 1

ωα + ω + i0+

]

= iπ

2ωα

[δ(ω − ωα) − δ(ω + ωα)]

+ 1

2ωα

(
P.V.

[
1

ωα − ω

])
−

(
P.V.

[
1

ωα + ω

])
(D8)

we can directly demonstrate the rigorous equivalence

�(+)
v (τ,x,x′) = i

∫ +∞

0

dω

π

ω2

c2
Im[Gv(x,x′,ω)]

× e−iωτ θ (t − t ′), (D9)

in which the contribution of Gv,||(x,x′,ω) vanishes once again.
We emphasize that, despite some similarities, this result is
different from Eq. (5.19) [in particular due to the presence
of the imaginary part and the Heaviside function θ (t − t ′)
in Eq. (D9)]. In order to evaluate asymptotically Eq. (D9)
for long time t − t ′ we use the definition ω2

c2 Gv(x,x′,ω) =
∇ × ∇ × [Gv(x,x′,ω)I] where Gv(x,x′,ω) = eiω/c|x−x′ |

4π |x−x′ | is the
standard scalar Green function of the Helmholtz equation in
vacuum [66]. Now, we consider the integral

i

∫ +∞

0

dω

π
Im[Gv(x,x′,ω)]e−iωτ

=
∫ +∞

0

dω

2π

e−iω(τ−|x−x′ |/c) − e−iω(τ+|x−x′ |/c)

4π |x − x′| . (D10)

We remind that following Feynman [84] we have also the
integral δ+(x) := ∫ +∞

0
dω
π

e−iωx = 1
iπ

1
x−i0+ = 1

iπ
P.V.[1/x] +

δ(x) for x real. Therefore, we deduce

i

∫ +∞

0

dω

π
Im[Gv(x,x′,ω)]e−iωτ

= δ+(τ − |x − x′|/c) − δ+(τ + |x − x′|/c)

8π |x − x′| . (D11)

We are interested in the regime τ → +∞ and from its
definition δ+(τ + |x − x′|/c) can be neglected. We thus obtain

i

∫ +∞

0

dω

π
Im[Gv(x,x′,ω)]e−iωτ

� δ+(τ − |x − x′|/c)

8π |x − x′|

=
∫ +∞

0

dω

2π
Gv(x,x′,ω)e−iωτ . (D12)

Finally, we deduce the asymptotic result

�(+)
v (τ,x,x′) �

∫ +∞

0

dω

2π

ω2

c2
Gv(x,x′,ω)e−iωτ , (D13)

which is valid in the limit τ → +∞. In this formula the
absence of a contribution like

∫ 0
−∞ dω[. . .] clearly means
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that such a term is nonresonant. Moreover, from Eqs. (3.15)
and (3.16) we know that generally speaking Ẽ(0)(x,ω) and
G(x,x′,ω), i.e., the relevant fields for the inhomogeneous
problem, can be calculated by using Lippman-Schwinger

integrals which depend on the knowledge of the dyadic Green
function in vacuum Gv(x,x′,ω). Using the previous asymptotic
of L(±)

t [Gv(x,x′,ω)e−iωτ ] it is thus not difficult to deduce the
generality of Eq. (5.19) in the long-time limit τ → +∞.
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[69] The operators Ē(0)(t) and P̄(0)(t) can be directly expressed as

a function of operators cα,j (0), fω(x,0), and their Hermitian
conjugate at the initial time. The action of these field operators in
the matrix elements considered imply directly their cancellation.

[70] I. Bialynicki-Birula, Acta Phys. Pol. A 86, 97 (1994).
[71] R. J. Glauber, Phys. Rev. 130, 2529 (1963).
[72] P. W. Milonni, D. F. V. James, and H. Fearn, Phys. Rev. A 52,

1525 (1995).
[73] P. W. Milonni and W. A. Smith, Phys. Rev. A 11, 814 (1976)
[74] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons

and Atoms: An Introduction to Quantum Electrodynamics (John
Wiley, New York, 1989).

[75] A. Drezet, A. Cuche, and S. Huant, Opt. Commun. 284, 1444
(2011).

[76] A. Cuche, O. Mollet, A. Drezet, and S. Huant, Nano Lett. 11,
4566 (2010).

[77] O. Mollet, S. Huant, G. Dantelle, T. Gacoin, and A. Drezet,
Phys. Rev. B 86, 045401 (2012).

[78] A. Cuche, M. Berthel, U. Kumar, G. Colas des Francs, S.
Huant, E. Dujardin, C. Girard, and A. Drezet, Phys. Rev. B
95, 121402(R) (2017).

[79] A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-
Moreno, C. Tejedor, and F. J. Garcia-Vidal, Phys. Rev. Lett.
106, 020501 (2011).

[80] M. Otten, J. Larson, M. Min, S. M. Wild, M. Pelton,
and S. K. Gray, Phys. Rev. A 94, 022312 (2016).

[81] B. H. Holstein, Topics in Advanced Quantum Mechanics
(Addison-Wesley, Reading, MA, 1992), p. 151.

[82] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-
Photon Interactions: Basic Processes and Applications (John
Wiley, New York, 1992).

[83] E. Marx, Int. J. Theor. Phys. 18, 819 (1979).
[84] R. P. Feynman, Phys. Rev. 76, 769 (1949).

043844-16

https://doi.org/10.1103/PhysRevA.73.063808
https://doi.org/10.1103/PhysRevA.73.063808
https://doi.org/10.1103/PhysRevA.73.063808
https://doi.org/10.1103/PhysRevA.73.063808
https://doi.org/10.1103/PhysRevA.87.033824
https://doi.org/10.1103/PhysRevA.87.033824
https://doi.org/10.1103/PhysRevA.87.033824
https://doi.org/10.1103/PhysRevA.87.033824
https://doi.org/10.1088/1367-2630/12/12/123008
https://doi.org/10.1088/1367-2630/12/12/123008
https://doi.org/10.1088/1367-2630/12/12/123008
https://doi.org/10.1088/1367-2630/12/12/123008
https://doi.org/10.1103/PhysRevA.94.053826
https://doi.org/10.1103/PhysRevA.94.053826
https://doi.org/10.1103/PhysRevA.94.053826
https://doi.org/10.1103/PhysRevA.94.053826
https://doi.org/10.1103/PhysRevA.95.023831
https://doi.org/10.1103/PhysRevA.95.023831
https://doi.org/10.1103/PhysRevA.95.023831
https://doi.org/10.1103/PhysRevA.95.023831
https://doi.org/10.1103/PhysRevA.28.2649
https://doi.org/10.1103/PhysRevA.28.2649
https://doi.org/10.1103/PhysRevA.28.2649
https://doi.org/10.1103/PhysRevA.28.2649
https://doi.org/10.1088/0034-4885/59/5/002
https://doi.org/10.1088/0034-4885/59/5/002
https://doi.org/10.1088/0034-4885/59/5/002
https://doi.org/10.1088/0034-4885/59/5/002
https://doi.org/10.12693/APhysPolA.86.97
https://doi.org/10.12693/APhysPolA.86.97
https://doi.org/10.12693/APhysPolA.86.97
https://doi.org/10.12693/APhysPolA.86.97
https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1103/PhysRevA.52.1525
https://doi.org/10.1103/PhysRevA.52.1525
https://doi.org/10.1103/PhysRevA.52.1525
https://doi.org/10.1103/PhysRevA.52.1525
https://doi.org/10.1103/PhysRevA.11.814
https://doi.org/10.1103/PhysRevA.11.814
https://doi.org/10.1103/PhysRevA.11.814
https://doi.org/10.1103/PhysRevA.11.814
https://doi.org/10.1016/j.optcom.2010.10.097
https://doi.org/10.1016/j.optcom.2010.10.097
https://doi.org/10.1016/j.optcom.2010.10.097
https://doi.org/10.1016/j.optcom.2010.10.097
https://doi.org/10.1021/nl102568m
https://doi.org/10.1021/nl102568m
https://doi.org/10.1021/nl102568m
https://doi.org/10.1021/nl102568m
https://doi.org/10.1103/PhysRevB.86.045401
https://doi.org/10.1103/PhysRevB.86.045401
https://doi.org/10.1103/PhysRevB.86.045401
https://doi.org/10.1103/PhysRevB.86.045401
https://doi.org/10.1103/PhysRevB.95.121402
https://doi.org/10.1103/PhysRevB.95.121402
https://doi.org/10.1103/PhysRevB.95.121402
https://doi.org/10.1103/PhysRevB.95.121402
https://doi.org/10.1103/PhysRevLett.106.020501
https://doi.org/10.1103/PhysRevLett.106.020501
https://doi.org/10.1103/PhysRevLett.106.020501
https://doi.org/10.1103/PhysRevLett.106.020501
https://doi.org/10.1103/PhysRevA.94.022312
https://doi.org/10.1103/PhysRevA.94.022312
https://doi.org/10.1103/PhysRevA.94.022312
https://doi.org/10.1103/PhysRevA.94.022312
https://doi.org/10.1007/BF00670460
https://doi.org/10.1007/BF00670460
https://doi.org/10.1007/BF00670460
https://doi.org/10.1007/BF00670460
https://doi.org/10.1103/PhysRev.76.769
https://doi.org/10.1103/PhysRev.76.769
https://doi.org/10.1103/PhysRev.76.769
https://doi.org/10.1103/PhysRev.76.769



