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Robustness of the twist parameter of Laguerre-Gaussian mode superpositions
against atmospheric turbulence
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Iso-variance-matrix Laguerre-Gaussian superpositions corresponding to fundamental Laguerre-Gaussian
modes are constructed and propagated numerically through atmospheric turbulence. The fact that these
superpositions are iso-variance-matrix with the corresponding fundamental Laguerre-Gaussian mode ensures that
both the superposition and the corresponding Laguerre-Gaussian mode evolve identically at the level of second
moments on free propagation. Consequently they share the same “divergence” and “twist” which remains invariant
on free propagation. The robustness of twist associated with such superpositions on passage through atmospheric
turbulence is studied. It is found that, for Laguerre-Gaussian superpositions of the form f (ρ) exp[iθ ], the twist
parameter is generically robust. For other iso-variance-matrix Laguerre-Gaussian superpositions, it is found that
the twist is not equally robust on passage through atmospheric turbulence. We illustrate superpositions for which
the fluctuation of twist is significantly higher than its corresponding iso-variance-matrix Laguerre-Gaussian
mode, on passage through atmospheric turbulence, over short distances.
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I. INTRODUCTION

The twist of a paraxial light field [1] has been explored
recently for its possible application in free space optical
communication [2–7]. In the important work of Ref. [6], the
robustness of twist associated with a Laguerre-Gaussian mode,
on passage through atmospheric turbulence, was numerically
demonstrated. And this suggested its suitability in signaling
through turbulent atmosphere. In Refs. [7–13] the twist
associated with superpositions of paraxial light fields was
explored. And more recently, superpositions of Laguerre-
Gaussian modes have been used in free space communication
[14].

In this work, we explore the robustness of twist of
superpositions of Laguerre-Gaussian modes and compare it
with that of a fundamental Laguerre-Gaussian mode, on
passage through atmospheric turbulence. To render such a
comparison possible, we ensure that such a superposition
shares its variance matrix with its corresponding fundamental
mode. That is, the superposition is iso-variance-matrix with a
fundamental Laguerre-Gaussian mode, and the light fields are
identical at the level of second moments.

Given that the variance matrix of a Laguerre-Gaussian
mode at the waist plane is purely dependent on the mode
numbers and the width of the mode at the waist plane [see, for
instance, Eq. (30)], having the variance matrix of a superpo-
sition to be equal to that of a fundamental Laguerre-Gaussian
mode at the waist plane ensures that the superposition and the
fundamental mode have the same width at the waist plane.
Further, since the variance matrix evolves covariantly under
free propagation [15,16], their variance matrices are identical
at all transverse planes, and consequently, the width of the
fundamental mode and its iso-variance-matrix superpositions
are identical at all transverse planes. In other words, such light
fields “diverge” identically on free propagation, in the absence
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of atmospheric turbulence. Moreover, the twist parameter
which is identical for such light fields remains invariant on
free propagation [17].

On free propagation through atmospheric turbulence, the
variance matrix of a light field does not transform in a covariant
manner, and the twist parameter is no longer invariant. It is
nevertheless possible that the robustness of the twist parameter
of the associated light field is dependent on its initial waist
plane width (divergence of the light field in the absence of
turbulence). Having a superposition to be iso-variance-matrix
with a fundamental Laguerre-Gaussian mode ensures that,
if there are any differences in the robustness of the twist
parameter between such a superposition and its corresponding
Laguerre-Gaussian fundamental mode, they are due to reasons
other than the width (divergence) of the light field. In fact,
we may note that the composition of the phase as leading to
the net “twist” can be very different in such superpositions,
in comparison to its corresponding Laguerre-Gaussian mode
[8–11,18–20], even if they share their variance matrices. For
instance, for the Laguerre-Gaussian mode as in Eq. (7), the
field amplitude is a product in the variables ρ and θ , with the θ

dependent variable in the form of exp[i2mθ ]. On the contrary,
for a corresponding iso-variance-matrix superposition, the net
twist is 2m; however, since the transverse field amplitude is
a superposition, it is possible that the phase factor leading to
the twist is not in exp[i2mθ ] form. The goal here is to explore
the differences if any between such twists, on passage through
atmospheric turbulence. For the sake of simplicity we restrict
our analysis to superpositions that are composed of only two
modes, as detailed in Sec. IV.

The paper is organized as follows. In Sec. II, we give
a brief introduction to Hermite-Gaussian and Laguerre-
Gaussian modes. In Sec. III, we give an introduction to
variance matrix which is relevant for the present context. In
Sec. IV, we construct superpositions of Laguerre-Gaussian
modes that share their variance matrix with some of the
lower-order fundamental Laguerre-Gaussian modes. Here first
superpositions of Hermite-Gaussian modes that share their
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variance matrix with a fundamental Hermite-Gaussian mode
are constructed, and then, using the methods outlined in
Refs. [21–24], the variance matrices of the corresponding
Laguerre-Gaussian superpositions are constructed. In Sec. V,
the numerical simulation of the passage of these superpositions
through atmospheric turbulence is carried out. The turbulence
is assumed to be strong Kolmogorov, and the distance of
propagation is set to 1 km for all the examples. Plots of
twist and its fluctuation on propagation through atmospheric
turbulence are presented for several examples. We finally end
with some concluding remarks in Sec. VI.

II. HERMITE AND LAGUERRE GAUSSIAN MODES

The Hermite-Gaussian modes which are solutions of the
paraxial wave equation [25] can be written in the transverse
coordinates x and y as

�n1n2 (x,y; z) = ψn1n2 (x,y; z) exp[i φ(x,y; z)], (1)

with

ψn1n2 (x,y; z) = ψn1 (x; z)ψn2 (y; z) (2)

and

φ(x,y; z) = −(x2 + y2)

2λ̄Rz

+ (n1 + n2 + 1)ζz, (3)

where

ψn1 (x; z) =
(

2

π

) 1
4
(

1

2n1n1!wz

) 1
2

Hn1

(√
2x

wz

)
exp

(
− x2

w2
z

)
.

(4)

Here ψn2 (y; z) is the same as ψn1 (x; z) with x and n1 replaced
with y and n2, Hn1 (.) is Hermite polynomial of order n1

with n1, n2 taking integer values �0, λ̄= λ
2π

, where λ is the
wavelength, z is the distance of propagation from the waist
plane, Rz is the radius of curvature at a given z, wz is the width
of the light field at a given z, and (n1 + n2 + 1)ζz is the Gouy
phase picked by the light field on propagation [25]. The width
wz and radius of curvature Rz at a given z are related to the
width of the light field at the waist plane w0 as

w2
z = w2

0

[
1 +

(
z

zr

)2
]
, Rz = z

[
1 +

(
zr

z

)2
]
, (5)

where zr = πw2
0

λ
is the Rayleigh range of the light field. Note

that ζz = tan−1( z
zr

). As is well known, the Hermite-Gaussian
modes �n1 n2 (x,y; z) form an orthonormal basis in a transverse
plane for a given z [25], and they satisfy the orthogonality
relation:∫ ∞

−∞

∫ ∞

−∞
�∗

n1n2
(x,y; z)�n3n4 (x,y; z)dx dy = δn1n3δn2n4 . (6)

The solutions of the paraxial wave equation which possess
circular symmetry in the transverse plane are given by
the Laguerre-Gaussian modes which can be written in the

transverse variables ρ ≡
√

(x2 + y2) and θ ≡ tan−1( y

x
) as

[23,25]

�̃jm(ρ,θ ; z) =ψ̃jm(ρ,θ ; z) exp[i φ(ρ,θ ; z)], (7)

where

ψ̃jm(ρ,θ ; z) =
√

2

πw2
z

[
(j − |m|)!
(j + |m|)!

] 1
2

(√
2ρ

wz

)2|m|

× L2|m|
j−|m|

(
2ρ2

w2
z

)
exp

(
− ρ2

w2
z

)
× exp[i2m θ ] exp[−i χ (j,m)], (8)

with

χ (j,m) = π

2
[2(j − |m|) − (j − m)] (9)

and

φ(ρ,θ ; z) = −ρ2

2λ̄Rz

+ (2j + 1)ζz. (10)

Here L2|m|
j−|m|(.) is the Laguerre polynomial with radial and

azimuthal indices j and m, with j taking the half integer values
0, 1

2 ,1, . . ., and m taking the values −j, − (j − 1), . . . ,j
for a given j , and wz and Rz are as defined in Eq. (5)
for the Hermite-Gaussian situation. The Laguerre-Gaussian
modes �̃jm(ρ,θ ; z) too form an orthonormal basis in a
transverse plane for a given z [25]. It may be noted that the
Laguerre-Gaussian modes listed in Eq. (7) can be represented
alternatively as �̃lp(ρ,θ ; z), with azimuthal and radial indices
l, p assuming purely integer values [25], with p = j − |m| and
l = 2m. In this work, we will primarily use the j,m indices,
while listing the necessary conversion as and when required.

Given that both the Hermite-Gaussian and the Laguerre-
Gaussian modes form an orthonormal basis, it is natural
to expect that they are related to each other by a unitary
transformation. Clearly, by Eqs. (10) and (3), the phase
φ(ρ,θ ; z) is identical to φ(x,y; z) for n1,n2 and j,m such
that j = (n1 + n2)/2, and this suggests that, for a given z,
�̃jm(ρ,θ ; z) is a superposition of �n1n2 (x,y; z) with n1 + n2 =
2j . The explicit representation of such a unitary transformation
was detailed out in Refs. [21–23], which we briefly summarize
below.

Define the position and momentum operators in the
position representation as x̂ = x, ŷ = y, p̂x = −iλ̄ ∂

∂x
, and

p̂y = −iλ̄ ∂
∂y

. The lowering operators at the waist plane (z = 0)
are defined in terms of the position and momentum operators
as [22]

âx = 1

w0
x̂ + i

w0

2λ̄
p̂x, (11)

ây = 1

w0
ŷ + i

w0

2λ̄
p̂y, (12)

with the corresponding raising operators defined respectively
as â

†
x and â

†
y . As is well known [21–23], the raising and

lowering operators can raise and lower the mode numbers
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of the Hermite-Gaussian modes (in the waist plane) as

â†
xψn1n2 (x,y; 0) =

√
n1 + 1ψn1+1n2 (x,y; 0), (13)

âxψn1n2 (x,y; 0) = √
n1ψn1−1n2 (x,y; 0), (14)

â†
yψn1n2 (x,y; 0) =

√
n2 + 1ψn1n2+1(x,y; 0), (15)

âyψn1n2 (x,y; 0) = √
n2ψn1n2−1(x,y; 0). (16)

Two unitary operators of interest for the present work are
the free propagation unitary operator and the mode conversion
operator. The free propagation unitary operator relates a
transverse paraxial light-field amplitude at a particular z

coordinate, say z1, to the transverse field amplitude at another
z coordinate, say z2. Define the unitary operator [26]

Uf (z) = exp

[
i

z

2λ̄

(
p̂2

x + p̂2
y

)]
, (17)

with z2 − z1 = z. We then have

ψn1n2 (x,y; z) = Uf (z)ψn1n2 (x,y; 0) (18)

and

ψ̃jm(ρ,θ ; z) = Uf (z)ψ̃jm(ρ,θ ; 0). (19)

It may be noted that, while in Eqs. (18) and (19), the
unitary free propagation transformation is stated only for the
Hermite-Gaussian modes and the Laguerre-Gaussian modes,
the relation, as in Eq. (18) or (19), holds in general for any
paraxial light-field amplitude.

The mode conversion operator relates a Hermite-Gaussian
mode at a particular z coordinate to a corresponding Laguerre-
Gaussian mode at the same z coordinate. Say we are interested
in this relation at the waist plane. Now define the operators Ĵ1,
Ĵ2, and Ĵ3 as

Ĵ1 = 1
2 [̂a†

x âx − â†
y ây], (20)

Ĵ2 = 1
2 [̂a†

y âx + â†
x ây], (21)

Ĵ3 = i
2 [̂a†

y âx − â†
x ây], (22)

which obey the SU(2) algebra [23]. Now define the unitary
matrix [23]

U(α,β,γ ) = exp(−iαĴ1) exp(−iβĴ3) exp(−iγ Ĵ1), (23)

which is an infinite-dimensional representation of the SU(2)
group, in the Euler parametrization. With U0 defined
as U0 ≡ U(π/2,π/2, − π/2), we have [23] �̃jm(ρ,θ ; 0) =
U0�n1n2 (x,y; 0), with j = (n1 + n2)/2 and m = (n1 − n2)/2.
Equivalently,

ψ̃jm(ρ,θ ; 0) = U0ψn1n2 (x,y; 0). (24)

That is, U0 is the unitary transformation that converts a
Hermite-Gaussian mode to a Laguerre-Gaussian mode, at the
waist plane.

III. VARIANCE MATRIX OF THE GAUSSIAN MODES

A useful method to characterize a paraxial light field is
through its variance matrix. The variance matrix is defined

through the second moments of the position and momentum
operators on the field amplitude. Define the operator array
{̂ξ1,̂ξ2 ,̂ξ3 ,̂ξ4} = {̂x,p̂x ,̂y,p̂y}. Now given a transverse field
amplitude �(x,y; z), for instance, as in Eq. (1), �ξ̂i is
defined as �ξ̂i = ξ̂i − 〈̂ξi〉, with the expectation value 〈̂ξi〉 =∫ ∞
−∞

∫ ∞
−∞ �∗(x,y; z) ξ̂i �(x,y; z)dx dy. Then the entries Vij of

the variance matrix V corresponding to the transverse field
amplitude �(x,y; z) are defined as the expectation values
Vij = 〈�ξ̂

†
i �ξ̂j 〉, with i,j taking values from 1 to 4 [15]. In

a more explicit form, the variance matrix V corresponding to
�(x,y; z) is defined as a 4 × 4 matrix which is written in block
form as

V =
[
V 11 V 12

V 21 V 22

]
, (25)

with

V 11 =
[

〈�x̂2〉 1
2 〈{�x̂,�p̂x}〉

1
2 〈{�x̂,�p̂x}〉

〈
�p̂2

x

〉 ]
, (26)

V 22 =
[

〈�ŷ2〉 1
2 〈{�ŷ,�p̂y}〉

1
2 〈{�ŷ,�p̂y}〉

〈
�p̂2

y

〉 ]
, (27)

and

V 12 =
[ 〈�x̂�ŷ〉 〈�x̂�p̂y〉
〈�ŷ�p̂x〉 〈�p̂x�p̂y〉

]
. (28)

Here {.} denotes the anticommutator, and V 21 = (V 12)T.
With this, the variance matrix Vn1 n2 corresponding to

the Hermite-Gaussian mode ψn1n2 (x,y; 0) and the variance
matrix Ṽjm corresponding to the Laguerre-Gaussian mode
ψ̃jm(ρ,θ ; 0) are evaluated to be

Vn1n2 =

⎡⎢⎢⎢⎢⎢⎢⎣

(2n1+1)w2
0

4 0 0 0

0
(2n1+1)λ̄2

w2
0

0 0

0 0 (2n2+1)w2
0

4 0

0 0 0
(2n2+1)λ̄2

w2
0

⎤⎥⎥⎥⎥⎥⎥⎦,

(29)

Ṽjm =

⎡⎢⎢⎢⎢⎢⎢⎣

(2j+1)w2
0

4 0 0 mλ̄

0
(2j+1)λ̄2

w2
0

−mλ̄ 0

0 −mλ̄
(2j+1)w2

0
4 0

mλ̄ 0 0
(2j+1)λ̄2

w2
0

⎤⎥⎥⎥⎥⎥⎥⎦. (30)

Now the twist parameter τ , which is defined as

τ = 1

λ̄

(〈�x̂�p̂y〉 − 〈�ŷ�p̂x〉
)
, (31)

is contained in the variance matrix and it is essentially the
difference between the off-diagonal entries of the V 12 block
[see Eq. (28)]. It is easily seen that for transverse field
amplitudes which have their first moments {〈̂ξi〉} to be zero,
the twist parameter τ = 2〈Ĵ3〉[see Eqs. (22), (11), and (12)],
and when rewritten in the radial coordinates, this reduces
to the expectation value 〈−i ∂

∂θ
〉 [22,23]. For example, for
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the transverse field amplitude in Eq. (8), i.e., the Laguerre-
Gaussian mode, τ = 〈−i ∂

∂θ
〉 = 2m [the same as contained

in the V12 block of its variance matrix in Eq. (30)]. In this
sense, the twist parameter τ captures the amount of phase
dislocation (see Ref. [1]) available in the Laguerre-Gaussian
mode. More importantly, it represents the orbital angular
momentum carried by the Laguerre-Gaussian mode as it
propagates in the z direction [21].

As is well known, when a paraxial light field is transformed
unitarily as in Eqs. (18), (19), and (24), its variance matrix
transforms in a corresponding covariant manner [16,27]. For
instance, when ψn1 n2 (x,y; z) and ψ̃j m(ρ,θ ; 0) are transformed
as in Eqs. (18) and (19),

Vn1n2 → SzVn1n2S
zT, Ṽjm → SzṼjmSzT, with

Sz =

⎡⎢⎣1 z 0 0
0 1 0 0
0 0 1 z

0 0 0 1

⎤⎥⎦. (32)

Similarly, when ψn1n2 (x,y; 0) is transformed to ψ̃jm(ρ,θ ; 0) as
in Eq. (24), their variance matrices are related as [24]

Ṽjm = S0Vn1n2S
T
0 , with

S0 = 1√
2

⎡⎢⎢⎢⎢⎢⎣
1 0 0 −w2

0
2λ̄

0 1
2λ̄

w2
0

0

0 −w2
0

2λ̄
1 0

2λ̄

w2
0

0 0 1

⎤⎥⎥⎥⎥⎥⎦. (33)

In fact, the relation in (33) gives us a simple method to
evaluate the variance matrix of a Laguerre-Gaussian mode
starting from the variance matrix of a Hermite-Gaussian mode,
which is more easily evaluated as in Eq. (29) through use of
the relations in Eqs. (13)–(16). We will make effective use
of the relation in (33) in evaluating the variance matrices of
elementary superpositions of the Laguerre-Gaussian modes,
in the next section.

IV. VARIANCE MATRICES OF GAUSSIAN
MODE SUPERPOSITIONS

Having obtained the variance matrices of the elementary
Gaussian modes, we now explore variance matrices of their
superpositions. The motive here is to first construct transverse
field amplitudes that are elementary superpositions of the
Hermite-Gaussian modes such that their variance matrices
are identical to that of a standard Hermite-Gaussian mode
as in Eq. (29), at the waist plane. And then make use of
the relations in (33) and (24) to construct superpositions
of Laguerre-Gaussian modes whose variance matrices are
identical to that of a standard Laguerre-Gaussian mode, at
the waist plane. In such a construction, we then will have
by the relation in (32) that the variance matrix of such a
Laguerre-Gaussian mode and its corresponding superpositions
are identical at all transverse planes.

Consider the superposition of two Hermite-Gaussian modes
in the waist plane:

ψ = c1ψn1n2 (x,y; 0) + c2ψn3n4 (x,y; 0), (34)

with complex c1 and c2. We may without loss of generality
assume that |c1|2 + |c2|2 = 1. The variance matrix of such a
superposition can be written in block form as

Vψ =
[
V 11

ψ V 12
ψ

V 21
ψ V 22

ψ

]
. (35)

Let the variance matrix of any Hermite-Gaussian mode with
mode numbers n1 and n2 be written in block form as

Vn1n2 =
[
V 11

n1n2
V 12

n1n2

V 21
n1n2

V 22
n1n2

]
. (36)

The motive here is to construct superpositions ψ such that
Vψ = Vn5n6 . The following three situations can arise in the
superposition ψ of Eq. (34). We can have both n1 	= n3 and
n2 	= n4, or n1 	= n3 but n2 = n4, or n1 = n3 but n2 	= n4.

Now consider the first situation with n1 	= n3 and n2 	= n4.
By making use of Eqs. (13)–(16), it can be readily seen
that the first-order moments of ψ{〈̂x〉ψ,〈ŷ〉ψ,〈p̂x〉ψ,〈p̂y〉ψ }
are all equal to zero. Here the subscript ψ indicates that
the expectation value is evaluated on the transverse field
amplitude ψ . Further, by use of Eqs. (13)–(16), we have
1
2 〈{�x̂,�p̂x}〉ψ = 0, 1

2 〈{�ŷ,�p̂y}〉ψ = 0, 〈�x̂2〉ψ = |c1|2
〈�x̂2〉n1n2 + |c2|2〈�x̂2〉n3n4 , and 〈�p̂2

x〉ψ = |c1|2〈�p̂2
x〉n1n2 +

|c2|2〈�p̂2
x〉n3n4 . Similarly, 〈�ŷ2〉ψ = |c1|2〈�ŷ2〉n1n2 + |c2|2

〈�ŷ2〉n3n4 and 〈�p̂2
y〉ψ = |c1|2〈�p̂2

y〉n1n2 + |c2|2〈�p̂2
y〉n3n4 .

Here the subscript ninj denotes that the expectation value
is evaluated on the Hermite-Gaussian mode ψninj

(.). We thus
have the blocks V 11

ψ and V 22
ψ to be diagonal, and making use

of Eq. (29) on these blocks, we have

|c1|2n1 + |c2|2n3 = n5, (37)

|c1|2n2 + |c2|2n4 = n6. (38)

Now by Eqs. (37) and (38), the situation when the difference
of at least one of the mode numbers is 1 is ruled out, since
averaging n1 and n1 ± 1 or n2 and n2 ± 1 will not result in an
integer. In the remaining possibility where the modulus of the
difference of both of the mode numbers is definitely >1, it is
found that {〈̂xŷ〉ψ,〈̂xp̂y〉ψ,〈ŷp̂x〉ψ,〈p̂xp̂y〉ψ } are all equal to
zero by the application of Eqs. (13)–(16), and hence V 12

ψ = 0.
That is, when both

|n1 − n3| > 1, |n2 − n4| > 1, (39)

V 12
ψ = 0, we can write Vψ = |c1|2Vn1n2 + |c2|2Vn3n4 = Vn5n6 ,

provided we are able to solve for c1 and c2 such that Eqs. (37)–
(39) are simultaneously satisfied. With this, a superposition ψ

which shares its variance matrix with Vn5n6 can be written as

ψn5n6
n1n2,n3n4

= c1ψn1n2 (x,y; 0) + c2ψn3n4 (x,y; 0). (40)

Here the superscript n5n6 in the left-hand side (LHS) denotes
that the superposed field amplitude shares its variance matrix
with ψn5n6 (x,y; 0), and the subscript n1n2,n3n4 denotes that it
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TABLE I. Here we list the iso-variance-matrix superpositions
of the Laguerre-Gaussian modes corresponding to n5 n6 = (1 0) and
(2 1). The second column specifies the Hermite-Gaussian superposi-
tion as in Eq. (40), the third column specifies the coefficient c1 as
in Eqs. (40) and (41), the fourth column specifies the corresponding
Laguerre-Gaussian superposition as in Eq. (41) in the j m notation,
and the fifth column specifies the same in the l p notation. The sixth
column specifies the possibilities if available.

S. no. ψ
n5 n6
n1 n2, n3 n4 c1 ψ̃

j3 m3
j1 m1, j2 m2

ψ̃
l3 p3
l1 p1, l2 p2

n �

1 ψ1 0
0 0, n 0

√
n−1
n

ψ̃
1
2

1
2

0 0, n
2

n
2

ψ̃1 0
0 0, n 0 3

2 ψ2 1
0 0, 2n n

√
n−1
n

ψ̃
3
2

1
2

0 0, 3n
2

n
2

ψ̃1 1
0 0, n n 2

3 ψ2 1
1 0, n+1 n

√
n−1
n

ψ̃
3
2

1
2

1
2

1
2 , n+ 1

2
1
2

ψ̃1 1
1 0, 1 n 2

4 ψ2 1
0 1, n 1

√
n−2
n

ψ̃
3
2

1
2

1
2

−1
2 , n+1

2
n−1

2
ψ̃1 1

−1 0, n−1 1 3

5 ψ2 1
1 1, n 1

√
n−2
n−1 ψ̃

3
2

1
2

1 0, n+1
2

n−1
2

ψ̃1 1
0 1, n−1 1 4

6 ψ2 1
2 0, 2 n

√
n−1
n

ψ̃
3
2

1
2

1 1, 1+ n
2 1− n

2
ψ̃1 1

2 0, 2−n 2 3

7 ψ2 1
4 0, 0 2

√
1
2 ψ̃

3
2

1
2

2 2, 1 −1 ψ̃1 1
4 0, −2 0

8 ψ2 1
3 0, 0 3

√
2
3 ψ̃

3
2

1
2

3
2

3
2 , 3

2
−3
2

ψ̃1 1
3 0, −3 0

9 ψ2 1
3 0, 1 2

√
1
2 ψ̃

3
2

1
2

3
2

3
2 , 3

2
−1
2

ψ̃1 1
3 0, −1 1

is composed of ψn1n2 (x,y; 0) and ψn3n4 (x,y; 0). Now applying
Eq. (24) on Eq. (40), we obtain

ψ̃
j3m3
j1m1,j2m2

= U0ψ
n5n6
n1n2,n3n4

,

where

ψ̃
j3m3
j1m1,j2m2

= c1ψ̃j1m1 (ρ,θ ; 0) + c2ψ̃j2m2 (ρ,θ ; 0). (41)

Here j1 = (n1 + n2)/2, m1 = (n1 − n2)/2, j2 = (n3 + n4)/2,
m2 = (n3 − n4)/2, and j3 = (n5 + n6)/2, m3 = (n5 − n6)/2.
Note that Ṽj3m3 = S0Vn5n6S

T
0 . Further, Eq. (41) could be

alternatively written in the lp notation with the indices j3,m3

replaced with indices l3,p3 and so on (see Tables I and II).
The following three situations can arise in the context of

Eq. (41). When j1 	= j2 and m1 = m2 = m, ψ̃
j3m3
j1m1,j2m2

can be
expressed as the product f (ρ) exp[i2mθ ], with f (ρ) being a
superposition of the corresponding Laguerre-Gaussian poly-
nomials. When j1 = j2 = j and m1 = −m2 = m, ψ̃

j3m3
j1m1,j2m2

can be written as the product of f (ρ)g(θ ), with f (ρ) being
a Laguerre-Gaussian polynomial, and g(θ ) a superposition of
the phases exp[i2mθ ] and exp[−i2mθ ]. In the situation when
j1 	= j2 and m1 	= m2, ψ̃

j3m3
j1m1,j2m2

cannot be written in product
form in ρ and θ variables. We will illustrate all the three
situations later in the considered examples.

Now referring to Eq. (34), in the situation when n1 	= n3

and n2 = n4, ψ can be represented as

ψ = c1ψn1n2 (x,y; 0) + c2ψn3n2 (x,y; 0)

= [c1ψn1 (x; 0) + c2ψn3 (x; 0)]ψn2 (y; 0). (42)

Clearly the above superposition is in product form in the
variables x and y, and consequently the off-diagonal block

TABLE II. Here we list the iso-variance-matrix superpositions
of the Laguerre-Gaussian mode corresponding to n5 n6 = (3 2). The
columns are as described in the caption of Table I.

S. no. ψ
n5 n6
n1 n2, n3 n4 c1 ψ̃

j3 m3
j1 m1, j2 m2

ψ̃
l3 p3
l1 p1, l2 p2

n �

1 ψ3 2
0 0, 3n 2n

√
n−1
n

ψ̃
5
2

1
2

0 0, 5n
2

n
2

ψ̃1 2
0 0, n 2n 2

2 ψ3 2
0 1, 3n n+1

√
n−1
n

ψ̃
5
2

1
2

1
2

−1
2 , 2n+ 1

2 n− 1
2

ψ̃1 2
−1 0, 2n−1 n+1 2

3 ψ3 2
1 0, n+1 n

√
n−2
n

ψ̃
5
2

1
2

1
2

1
2 , n+ 1

2
1
2

ψ̃1 2
1 0, 1 n 3

4 ψ3 2
1 1, 2n−1 n

√
n−2
n−1 ψ̃

5
2

1
2

1 0, 3n−1
2

n−1
2

ψ̃1 2
0 1, n−1 n 3

5 ψ3 2
2 0, n+2 2n

√
n−1
n

ψ̃
5
2

1
2

1 1, 1+ 3n
2 1− n

2
ψ̃1 2

2 0, 2−n 2+n 2

6 ψ3 2
2 1, n+1 n

√
n−2
n−1 ψ̃

5
2

1
2

3
2

1
2 , n+ 1

2
1
2

ψ̃1 2
1 1, 1 n 3

7 ψ3 2
0 2, n 2

√
n−3
n

ψ̃
5
2

1
2

1 −1, n
2 +1 n

2 −1 ψ̃1 2
−2 0, n−2 2 4

8 ψ3 2
1 2, n 2

√
n−3
n−1 ψ̃

5
2

1
2

3
2

−1
2 , n

2 +1 n
2 −1

ψ̃1 2
−1 1, n−2 2 4

9 ψ3 2
2 2, n 2

√
n−3
n−2 ψ̃

5
2

1
2

2 0, n
2 +1 n

2 −1 ψ̃1 2
0 2, n−2 2 5

10 ψ3 2
3 0, 3 n

√
n−2
n

ψ̃
5
2

1
2

3
2

3
2 , 3+n

2
3−n

2
ψ̃1 2

3 0, 3−n 3 3

11 ψ3 2
3 1, 3 n

√
n−2
n−1 ψ̃

5
2

1
2

2 1, 3+n
2

3−n
2

ψ̃1 2
2 1, 3−n 3 4

12 ψ3 2
4 0, 0 8

√
3
4 ψ̃

5
2

1
2

2 2, 4 −4 ψ̃1 2
4 0, −8 0

13 ψ3 2
5 0, 0 5

√
3
5 ψ̃

5
2

1
2

5
2

5
2 , 5

2
−5
2

ψ̃1 2
5 0, −5 0

14 ψ3 2
6 0, 0 4

√
1
2 ψ̃

5
2

1
2

3 3, 2 −2 ψ̃1 2
6 0, −4 0

15 ψ3 2
9 0, 0 3

√
1
3 ψ̃

5
2

1
2

9
2

9
2 , 3

2
−3
2

ψ̃1 2
9 0, −3 0

16 ψ3 2
4 0, 1 6

√
2
3 ψ̃

5
2

1
2

2 2, 7
2

−5
2

ψ̃1 2
4 0, −5 1

17 ψ3 2
5 0, 1 4

√
1
2 ψ̃

5
2

1
2

5
2

5
2 , 5

2
−3
2

ψ̃1 2
5 0, −3 1

18 ψ3 2
7 0, 1 3

√
1
3 ψ̃

5
2

1
2

7
2

7
2 , 2 −1

ψ̃1 2
7 0, −2 1

19 ψ3 2
4 0, 2 4

√
1
2 ψ̃

5
2

1
2

2 2, 3 −1 ψ̃1 2
4 0, −2 2

20 ψ3 2
5 0, 2 3

√
1
3 ψ̃

5
2

1
2

5
2

5
2 , 5

2
−1
2

ψ̃1 2
5 0, −1 2

21 ψ3 2
4 1, 0 5

√
3
4 ψ̃

5
2

1
2

5
2

3
2 , 5

2
−5
2

ψ̃1 2
3 1, −5 0

22 ψ3 2
6 1, 0 3

√
1
2 ψ̃

5
2

1
2

7
2

5
2 , 3

2
−3
2

ψ̃1 2
5 1, −3 0

23 ψ3 2
4 1, 1 4

√
2
3 ψ̃

5
2

1
2

5
2

3
2 , 5

2
−3
2

ψ̃1 2
3 1, −3 1

24 ψ3 2
5 1, 1 3

√
1
2 ψ̃

5
2

1
2

3 2, 2 −1 ψ̃1 2
4 1, −2 1

25 ψ3 2
4 1, 2 3

√
1
2 ψ̃

5
2

1
2

5
2

3
2 , 5

2
−1
2

ψ̃1 2
3 1, −1 2

of the variance matrix V 12
ψ = 0 in this situation. For instance,

〈̂xŷ〉ψ = 〈̂x〉ψ 〈ŷ〉ψ , 〈̂xp̂y〉ψ = 〈̂x〉ψ 〈p̂y〉ψ , and so on, and
hence {〈�x̂�ŷ〉ψ,〈�x̂�p̂y〉ψ,〈�ŷ�p̂x〉ψ,〈�p̂x�p̂y〉ψ } are
all zero. Note that the first moments are not zero in this
situation.
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Now concerning the diagonal blocks V 11
ψ and V 22

ψ , since the
superposition ψ in Eq. (42) is in product form, we have V 22

ψ =
V 22

n1n2
= V 22

n3n2
which is already in diagonal form. However,

regarding the entries of V 11
ψ , the following observations can be

made. Consider the situation when n3 = n1 + 1; the value of
1
2 〈{�x̂,�p̂x}〉ψ = 0 [Eqs. (13)–(16)] if and only if (c∗

1)2c2
2 −

c2
1(c∗

2)2 = 0. On the other hand, requiring the diagonal entries
of V 11

ψ to be equal to the diagonal entries of V 11
n5n2

demands

that the ratio of 〈�p̂2
x〉ψ to 〈�x̂2〉ψ be equal to

4λ̄2

w4
0

[Eq. (29)].

Using Eqs. (13)–(16), we find that this condition is met if
and only if (c∗

1)2c2
2 + c2

1(c∗
2)2 = 0. Thus V 11

ψ cannot be made
equal to V 11

n5n2
unless c1 = 0 or c2 = 0. Thus the situation n3 =

n1 + 1 is ruled out. In the situation when n3 = n1 + 2, the first
moments 〈̂x〉 and 〈p̂x〉 are zero, but for 1

2 〈{�x̂,�p̂x}〉ψ = 0,
(c1c

∗
2 − c∗

1c2) must be zero. On the other hand, demanding
that ratio of 〈�p̂2

x〉ψ to 〈�x̂2〉ψ to be equal to 4λ̄2

w4
0

requires

(c1c
∗
2 + c∗

1c2) = 0. Thus the situation n3 = n1 + 2 is ruled out.
When n1 and n3 are such that

|n1 − n3| > 2, (43)

the first moments 〈̂x〉 and 〈p̂x〉 are zero. We also
have 1

2 〈{�x̂,�p̂x}〉ψ = 0, 〈�x̂2〉ψ = |c1|2〈�x̂2〉n1n2 +
|c2|2〈�x̂2〉n3n2 , and 〈�p̂2

x〉ψ = |c1|2〈�p̂2
x〉n1n2 +

|c2|2〈�p̂2
x〉n3n2 . Thus V 11

ψ is diagonal, and by requiring
it to be equal to V 11

n5n2
we have

|c1|2n1 + |c2|2n3 = n5. (44)

Thus a superposition ψ as in Eq. (42) shares its variance matrix
with ψn5n2 (x,y; 0) provided we are able to solve for c1 and
c2 such that Eqs. (43) and (44) are simultaneously satisfied.
With this, such an iso-variance-matrix superposition ψ can
be written [Eq. (40)] as ψn5n2

n1n2,n3n2
, and we have ψ̃

j3m3
j1m1,j2m2

=
U0ψ

n5n2
n1n2,n3n2

. As is evident, j1 	= j2 and m1 	= m2 (since n1 	=
n3), and hence ψ̃

j3m3
j1m1,j2m2

cannot be written in product form in
ρ and θ variables.

The remaining possibility in regard of Eq. (34) is when
n1 = n3 and n2 	= n4, and we can write the superposition ψ as

ψ = c1ψn1n2 (x,y; 0) + c2ψn1n4 (x,y; 0)

= ψn1 (x; 0)[c1ψn2 (y; 0) + c2ψn4 (y; 0)]. (45)

The superposition is in product form as in the previous
situation, except that n1,n2 and n3,n4 have been interchanged,
along with the variables x and y. The analysis can be carried
out as before and we have that when

|n2 − n4| > 2, (46)

and if we are able to solve for c1 and c2 such that

|c1|2n2 + |c2|2n4 = n6, (47)

we can write Vψ = |c1|2Vn1n2 + |c2|2Vn1n4 = Vn1n6 . In such a
case, the superposition ψ which shares its variance matrix
with ψn1n6 (x,y; 0) can be written as [Eq. (40)] ψn1n6

n1n2,n1n4
=

c1ψn1n2 (x,y; 0) + c2ψn1n4 (x,y; 0), and we have ψ̃
j3m3
j1m1,j2m2

=
U0ψ

n1n6
n1n2,n1n4

. It is evident that j1 	= j2 and m1 	= m2 (since

n2 	= n4), and hence ψ̃
j3m3
j1m1,j2m2

cannot be written in product
form in ρ and θ variables.

A. Examples

We now construct the possible iso-variance-matrix su-
perpositions corresponding to ψn5n6

n1n2,n3n4
and equivalently to

ψ̃
j3m3
j1m1,j2m2

for the choices of n5 n6 = (1 0), (2 1), and (3 2).
For each of these pairs, as is evident, the net twist τ = 1.

In the situation when n5 n6 = (1 0) for which j3 m3 = ( 1
2

1
2 ),

since n6 = 0, the only possible value that n2 and n4 can take
is zero. Through solving Eqs. (43) and (44), we find a one
parameter family of superpositions which can be constructed.
The modulus of the coefficient c1 of such a superposition
[Eqs. (40) and (41)] is as written in the first row of Table I.

In the situation when n5 n6 = (2 1) for which j3 m3 = ( 3
2

1
2 ),

there are several possibilities. For instance, when n1 	= n3 and
n2 	= n4, the following four situations can arise, i.e., n1 < n5

and n2 < n6, n1 > n5 and n2 < n6, n1 < n5 and n2 > n6, and
n1 > n5 and n2 > n6. It is evident that the first and the fourth
of these situations, and the second and third of these situations,
are similar, except that n1 is replaced with n3 and n2 with n4.
Thus it is sufficient to address the situations n1 < n5 and n2 <

n6, and n1 > n5 and n2 < n6. When n1 < n5 and n2 < n6,
n1 = 0 or 1 and n2 = 0. Hence two one parameter family of
examples can be constructed by solving Eqs. (37)–(39). They
are as illustrated in rows 2, 3 of Table I. With n1 > n5 and
n2 < n6, n3 = 0 or 1 and n2 = 0. The constructed examples
are as in rows 7–9 as given in Table I. When n1 	= n3 and
n2 = n4, the only possible values for indices are n1 = 0 or
1 and n2 = n4 = 1, since n1 < n5. Thus we can construct
two families of superpositions considering the conditions in
Eqs. (43) and (44), which are as given in rows 4, 5 of Table I.
Finally, when n1 = n3 and n2 	= n4, it can be easily seen that
n1 = n3 = n5 = 2 and n2 = 0, since n2 < n6. The family of
superpositions which can be constructed in this situation is as
listed in row 6 of Table I.

In the situation when n5 n6 = (3 2) for which j3 m3 = ( 5
2

1
2 ),

as in the previous example, when n1 	= n3 and n2 	= n4, it
is sufficient to consider the two cases namely n1 < n5 and
n2 < n6, and n1 > n5 and n2 < n6. When n1 < n5 and n2 <

n6, n1 = 0 or 1 or 2 and n2 = 0 or 1. Thus six families of
examples can be constructed considering the conditions as
given in Eqs. (37)–(39). They are as listed in rows 1–6 of
Table II. With n1 > n5 and n2 < n6, n3 = 0 or 1 or 2, and
n2 = 0 or 1, the constructed examples are listed in rows 12–25
of Table II. Thus following the conditions given in Eqs. (37)–
(39), when n1 	= n3 and n2 = n4, the only possible values for
indices are n1 = 0 or 1 or 2 and n2 = n4 = 2, since n1 < n5.
Thus we can construct three families of superpositions, which
are listed in rows 7–9 of Table II. Finally, when n1 = n3 and
n2 	= n4, it can be easily seen that n1 = n3 = 3 and n2 = 0 or
1, since n2 < n6. And the two families of examples that can
be constructed are as listed in rows 10, 11 of Table II.

We have the following observations in regard of all the
superpositions listed in Tables I and II. By Eqs. (39), (43),
(46), and Eqs. (11)–(16), it is easily verified that for all the
superpositions, the first moments {〈̂ξi〉} are zero. Thus the
twist parameter τ for all these superpositions is equal to
2〈Ĵ3〉 = 〈−i ∂

∂θ
〉. By Eq. (41), the twist parameter for such

superpositions is evaluated to be

τ = 2(|c1|2m1 + |c2|2m2). (48)

043836-6



ROBUSTNESS OF THE TWIST PARAMETER OF . . . PHYSICAL REVIEW A 95, 043836 (2017)

Thus τ represents the “average” phase dislocation as available
in the superposition. In a different perspective, it represents
the z component of the intrinsic orbital angular momentum
associated with the superposition, as it propagates along the
z direction (see the Appendix). Further, for any superposition
as in Eq. (41), with different j1 and j2 indices, any relative
phase difference δ between the complex coefficients c1 and
c2 effectively rotates the transverse field amplitude by the
same amount in the x-y plane. This for instance can be
seen from the fact that such a superposition when written
in the ρ, θ variables, introducing a relative phase δ, simply
mounts to replacing θ with θ + δ. Moreover, the variance
matrix corresponding to a particular j3m3 as in Eq. (30),
and in particular the twist τ , is invariant under transverse
plane rotation [16,17,27]. Further, the effect of atmospheric
turbulence (which is considered in next section) on a paraxial
light field is isotropic in the transverse plane [28]. Thus in the
present context, it is sufficient to consider the situation where
c1 is replaced with |c1| and c2 with |c2| for the purpose of
numerical simulation, which is described in the next section.

V. NUMERICAL SIMULATION OF PROPAGATION
THROUGH ATMOSPHERIC TURBULENCE

A paraxial light field, on propagation through atmospheric
turbulence, not only Fresnel propagates, but also acquires
random phases due to the turbulence simultaneously. Never-
theless, such a propagation can be modeled as a sequence
of Fresnel propagations, and random phases, acquired at
regular intervals, by the propagation of the light field on
passage through such intervals [29]. The acquired phase
in such an interval can be numerically modeled based on
Kolmogorov power spectral density. The phase spectrum of
a two-dimensional random phase is related to the Kolmogorov
power spectral density as follows [29–31]. We have

φθ (K) = 2π

λ̄2
δzφn(K), (49)

where δz is the propagated distance through which the light
field acquires the random phase and φn(K) is the Kolmogorov

power spectral density. The Kolmogorov spectrum is written
as

φn(K) = 0.033C2
nK

− 11
3 , (50)

with C2
n denoting the atmospheric structure constant and

K2 = K2
x + K2

y . Here C2
n characterizes the strength of the

atmospheric turbulence; for instance, C2
n ≈ 10−12 m−2/3 can

be deemed to correspond to “strong” atmospheric turbulence,
and C2

n ≈ 10−14 m−2/3 can be deemed to correspond to “weak”
atmospheric turbulence [31].

The two-dimensional random phase acquired by the
paraxial light field on propagation through an interval δz

can be numerically generated using the method outlined in
Ref. [29]. This used sequentially with corresponding Fresnel
propagation, in a repeated manner, effectively simulates the
passage of a light field through atmospheric turbulence. The
grid size was appropriately chosen so that the input light field,
as well as the emerging light field, was well represented on the
grid. For the numerical simulations performed in this work,
the grid was chosen to be of size 1024 × 1024. The length
of the window was chosen as 25 cm. The propagation was
carried out sequentially on intervals of 10 m over a total
distance of 1 km, with C2

n = 10−12 m−2/3, corresponding to
strong turbulence. All the superpositions considered here were
assumed to start their propagation in the waist plane. The w0 at
the waist plane was varied from 1 cm to 3 cm in steps of 0.5 cm
for the studied examples. The twist τ of the propagated field
was estimated at steps of 10 m, for all the considered examples.
The twist τ was evaluated numerically using the expression
in Eq. (31). Here, the numerical differentiation was carried
out using the finite difference coefficients given in Ref. [32]
for first-order differentiation with order of accuracy 6. And
this ensured that the twist was estimated to an accuracy in
the sixth decimal. The root mean square error in twist was

calculated as �τ =
√∑

(τ−τ0)2

N
, where τ is the numerically

evaluated twist of the field propagated through a distance
d through atmospheric turbulence, τ0 is the twist of the
freely propagated field amplitude at the same distance of
propagation (which is invariant), and N is the number of
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FIG. 1. Twist τ [dimensionless as in Eq. (31)], vs the distance of propagation d in km, for the Laguerre-Gaussian mode corresponding to
n5 n6 = (1 0) and some of its iso-variance-matrix Laguerre-Gaussian superpositions, for 100 samples each, as the field amplitude propagates
through strong turbulent atmosphere with C2

n = 10−12 m−2/3 over a distance of 1 km, for w0 = 2 cm. Frame (a) corresponds to the Laguerre-
Gaussian mode corresponding to n5 n6 = (1 0). The frames labeled as (b)–(j) correspond to its respective iso-variance-matrix Laguerre-Gaussian
superpositions listed in row 1 of Table I, with n going from 3 to 11.
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FIG. 2. Twist τ (dimensionless), vs the distance of propagation d in km, for the Laguerre-Gaussian mode corresponding to n5 n6 = (2 1) and
some of its iso-variance-matrix superpositions, for 100 samples each, as the field amplitude propagates through strong turbulent atmosphere
with C2

n = 10−12 m−2/3 over a distance of 1 km, for w0 = 2 cm. Frame (a) corresponds to the Laguerre-Gaussian mode corresponding to
n5 n6 = (2 1). The frames labeled as (b)–(e) correspond to its respective iso-variance-matrix Laguerre-Gaussian superpositions listed in row 3
with n going from 2 to 5, frame (f) corresponds to the Laguerre-Gaussian superposition listed in row 5 with n = 4, frame (g) corresponds to
the Laguerre-Gaussian superposition listed in row 4 with n = 3, and frames (h)–(j) correspond to the Laguerre-Gaussian superpositions listed
in row 7, row 9, and row 8 of Table I.

samples considered. In all the examples considered, N was
chosen to be 100. The light fields were assumed to have a
wavelength λ = 632.8 × 10−9 m.

We now discuss the results. Figures 1 and 2 illustrate
examples drawn from Table I, and Fig. 3 as drawn from
Table II. For all the examples considered in Figs. 1–3, w0 was
set at 2 cm. Figure 1 plots the numerically evaluated twist τ of
the Laguerre-Gaussian mode corresponding to n5 n6 = (1 0)
and its corresponding iso-variance-matrix Laguerre-Gaussian
superpositions listed in the first row of Table I. Frame (a)
plots τ versus distance of propagation, for 100 samples, for
the fundamental Laguerre-Gaussian mode. Frames (b)–(j) plot
τ versus distance of propagation, for 100 samples, for the
iso-variance-matrix Laguerre-Gaussian superpositions listed
in row 1 of Table I for n varying from 3 to 11. Clearly, the
fluctuation of τ for the superposition corresponding to n = 3
[frame (b)] is significantly higher than that of its correspond-
ing Laguerre-Gaussian mode [frame (a)]. Nevertheless, the
fluctuation in twist is seen to be decreasing with increasing
n, and becomes comparable to that of the corresponding
Laguerre-Gaussian mode, for instance, for n = 10,11. Note
that |c1| (which corresponds to the fundamental mode ψ̃00)
in the superposition, increases with increasing n (see row 1
of Table I). A similar analysis was performed on the n

dependent superpositions listed in rows 2–6 of Table I which
are iso-variance-matrix with the Laguerre-Gaussian mode
corresponding to n5 n6 = (2 1) and superpositions listed in
rows 1–11 of Table II, which are iso-variance-matrix with
the Laguerre-Gaussian mode corresponding to n5 n6 = (3 2),
and a significant reduction in �τ at a given distance, with
increasing n (though not as significant as in the examples of
row 1 of Table I), was observed for some of the examples. For
instance, it was observed in the superpositions listed in row
2 with n going from 2 to 7, row 4 with n going from 3 to 8,
and row 6 with n going from 3 to 8, of Table I. The same was
observed in the superpositions listed in row 2 with n going
from 2 to 7, row 4 with n going from 3 to 8, and row 9 with n

going from 5 to 10, of Table II.

In Fig. 2, the twist τ of the Laguerre-Gaussian mode
corresponding to n5 n6 = (2 1) and some of its iso-variance-
matrix Laguerre-Gaussian superpositions listed in rows 2 to
9 of Table I are plotted. Frame (a) plots τ versus distance of
propagation, for 100 samples, for the fundamental Laguerre-
Gaussian mode. Frames (b)–(e) plot τ versus distance of
propagation, for 100 samples, for its iso-variance-matrix
Laguerre-Gaussian superpositions listed in row 3 of Table I
with n going from 2 to 5. Note that all the corresponding
superpositions are of the form f (ρ) exp[iθ ], and the fluctuation
of τ is comparable to that of its corresponding Laguerre-
Gaussian mode. This is further illustrated in frame (a) of
Fig. 4, where the fluctuation in twist �τ is plotted with
respect to propagation distance for Laguerre-Gaussian mode
corresponding to n5 n6 = (2 1), and its iso-variance-matrix
Laguerre-Gaussian superpositions listed in row 3 of Table I
with n going from 2 to 7. Frames (f)–(j) of Fig. 2 plot
τ versus distance of propagation, for 100 samples, for the
Laguerre-Gaussian superpositions listed in row 5 with n = 4,
row 4 with n = 3, row 7, row 9, and row 8, of Table I. Clearly,
for these superpositions the fluctuation of τ is significantly
higher than in the examples addressed in frames (a)–(e), and
note that these superpositions are not of the form f (ρ) exp[iθ ].

In Fig. 3, the twist τ of the Laguerre-Gaussian mode
corresponding to n5 n6 = (3 2) and some of its iso-variance-
matrix Laguerre-Gaussian superpositions (Table II) is plotted
with respect to the propagation distance. Frame (a) plots
τ versus distance of propagation, for 100 samples, for the
fundamental Laguerre-Gaussian mode. Frames (b)–(e) plot
τ versus distance of propagation, for 100 samples, for its
iso-variance-matrix Laguerre-Gaussian superpositions listed
in row 3 with n going from 3 to 4 and row 6 with n going from
3 to 4, of Table II. Note that these superpositions are of the form
f (ρ) exp[iθ ], and as in the previous example, the fluctuation
of τ on propagation is comparable to that of its corresponding
Laguerre-Gaussian mode [frame (a)], for a given distance of
propagation d. This is further illustrated in frames (b) and (c)
of Fig. 4. In frame (b), the fluctuation in twist �τ is plotted
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FIG. 3. Twist τ (dimensionless) vs the distance of propagation d in km, for the Laguerre-Gaussian mode corresponding to n5 n6 = (3 2)
and some of its iso-variance-matrix Laguerre-Gaussian superpositions, for 100 samples each, as the field amplitude propagates through strong
turbulent atmosphere with C2

n = 10−12 m−2/3 over a distance of 1 km, for w0 = 2 cm. Frame (a) corresponds to the Laguerre-Gaussian
mode corresponding to n5 n6 = (3 2). The frames labeled as (b) and (c) correspond to its respective iso-variance-matrix Laguerre-Gaussian
superpositions listed in row 3 with n going from 3 to 4, frames (d) and (e) correspond to the Laguerre-Gaussian superpositions listed in row 6
with n going from 3 to 4, and frames (f)–(j) correspond to the Laguerre-Gaussian superpositions listed in row 12, row 21, row 23, row 13, and
row 14 of Table II.

with respect to propagation distance for the Laguerre-Gaussian
mode corresponding to n5 n6 = (3 2) and its iso-variance-
matrix Laguerre-Gaussian superpositions listed in row 3 of
Table II with n going from 3 to 8. And in frame (c), the
fluctuation in twist �τ is plotted with respect to propagation
distance for the Laguerre-Gaussian mode corresponding to
n5 n6 = (3 2) and its iso-variance-matrix Laguerre-Gaussian
superpositions listed in row 6 of Table II with n going from 3 to
8. Frames (f)–(j) of Fig. 3 plot τ versus distance of propagation,
for 100 samples, for the Laguerre-Gaussian superpositions
listed in row 12, row 21, row 23, row 13, and row 14, of
Table II. Clearly, for these superpositions the fluctuation of τ

is significantly higher than the examples addressed in frames
(a)–(e) of Fig. 3, and note that these superpositions are not of
the form f (ρ) exp[iθ ]. We further note that for the examples
illustrated in frame (j) of Fig. 2 and frames (h) and (i) of Fig. 3,
the superpositions are in the product form f (ρ)g(θ ), with g(θ )
being a superposition of the phase factors exp[±i2mθ ], and
these superpositions show a significantly higher fluctuation of
twist among their respective iso-variance-matrix counterparts.

The variability of �τ at a given distance of propagation
for some of the considered examples is illustrated in Fig. 5.
Here, the legend (1) in all the frames of this figure corresponds
to the fundamental Laguerre-Gaussian modes corresponding
to n5 n6 = (1 0), (2 1), and (3 2), respectively. In all the three
frames, the legends (2)–(4) correspond to various examples
as drawn from the three families (see caption of Fig. 5).
The variability in �τ as seen in the plots of Fig. 5 may
be contrasted with those in Fig. 4. One may further note
that the plots illustrated in frames (a), and (b), (c) in Fig. 4,
though they correspond to iso-variance-matrix superpositions
of distinct Laguerre-Gaussian modes which are of the product
form f (ρ) exp[iθ ], they look similar. This is further explored
in Fig. 6.

Figure 6 plots the fluctuation of twist �τ with propagation
distance for some of the examples studied in Figs. 4 and 5,
for various choices of the waist plane width. For the studied
examples, w0 was varied from 1 cm to 3 cm in steps of 0.5 cm.
The plots correspond to the superpositions as listed in the
caption of Fig. 6. Clearly, the variability of �τ with varying
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FIG. 4. Fluctuation in twist �τ (dimensionless) for various iso-variance-matrix superpositions of the form f (ρ) exp[iθ ], with respect to
distance of propagation d in km, over 100 samples. In frame (a), legend (1) plots �τ vs distance of propagation d for the Laguerre-Gaussian
mode corresponding to n5 n6 = (2 1) and legends (2)–(7) plot the same for its iso-variance-matrix Laguerre-Gaussian superpositions listed
in row 3 of Table I with n going from 2 to 7. Frames (b) and (c) correspond to iso-variance-matrix Laguerre-Gaussian superpositions
of the Laguerre-Gaussian mode corresponding to n5 n6 = (3 2). In frame (b), legend (1) plots �τ vs distance of propagation d for the
Laguerre-Gaussian mode and legends (2)–(7) plot the same for its iso-variance-matrix Laguerre-Gaussian superpositions listed in row 3 of
Table II with n going from 3 to 8. In frame (c), legend (1) plots �τ vs distance of propagation d for the Laguerre-Gaussian mode and legends
(2)–(7) plot the same for its iso-variance-matrix Laguerre-Gaussian superpositions listed in row 6 of Table II with n going from 3 to 8. In all
these plots, w0 was set at 2 cm.
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FIG. 5. Fluctuation in twist �τ (dimensionless) for various iso-variance-matrix superpositions drawn from Tables I and II against the
propagation distance d in km over 100 samples, with w0 = 2 cm. Frame (a) corresponds to iso-variance-matrix superpositions of the Laguerre-
Gaussian mode corresponding to n5 n6 = (1 0), frame (b) to n5 n6 = (2 1), and frame (c) to n5 n6 = (3 2). In frame (a), legend (1) plots
�τ of the Laguerre-Gaussian mode corresponding to n5 n6 = (1 0) with distance d , and legends (2)–(4) plot the same for its respective
iso-variance-matrix Laguerre-Gaussian superpositions listed in row 1 of Table I with n going from 3 to 5. In frame (b), legend (1) plots �τ

with respect to propagation distance d for the Laguerre-Gaussian mode corresponding to n5 n6 = (2 1), and legends (2)–(4) plot the same for its
respective iso-variance-matrix Laguerre-Gaussian superpositions listed in row 4 with n = 3, row 7, and row 8, of Table I. In frame (c), legend
(1) plots �τ with respect to propagation distance d for the Laguerre-Gaussian mode corresponding to n5 n6 = (3 2), and legends (2)–(4) plot
the same for its respective iso-variance-matrix Laguerre-Gaussian superpositions listed in row 8 with n = 5, row 17, and row 23, of Table II.

waist plane width, for a propagation distance, for superposi-
tions of the product form f (ρ) exp[iθ ] illustrated in frames (b)
and (e), is comparable to that of the respective fundamental
Laguerre-Gaussian modes illustrated in frames (a) and (d).
Further note that the plots in frames (a), (b), and (d), (e),
look similar despite the fact that they correspond to different
modes. This suggests that the fluctuation of twist �τ with
propagation distance, for Laguerre-Gaussian superpositions
of form f (ρ) exp[iθ ], may not have significant dependence
on f (ρ), and on the width of the light field as captured
by f (ρ). This may be contrasted with the plots in frames
(c) and (f), which correspond to superpositions not of the
product form f (ρ) exp[iθ ], and are iso-variance-matrix with
Laguerre-Gaussian light fields of different mode numbers. We

studied other examples listed in Tables I and II in this regard,
and for the examples illustrated in frames (c) and (f), the
variability of �τ with varying w0 was significantly manifest,
though were other examples which showed similar but lesser
variability. For examples of the product form f (ρ) exp[iθ ],
the results were similar to those obtained in frames (b)
and (e).

VI. CONCLUSION

To conclude, we have constructed iso-variance-matrix
superpositions corresponding to some of the lower-order
Laguerre-Gaussian modes. Such a construction ensures that
the divergence of the light field on free propagation, as captured
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FIG. 6. Fluctuation in twist �τ (dimensionless) for various iso-variance-matrix superpositions drawn from Tables I and II against the
propagation distance d in km over 100 samples, for different initial waist plane widths (different choices of w0). Here, frames (a) and
(d) correspond to the fundamental Laguerre-Gaussian modes, frames (b) and (e) correspond to their iso-variance-matrix Laguerre-Gaussian
superpositions of the form f (ρ) exp[iθ ], and frames (c) and (f) correspond to their iso-variance-matrix Laguerre-Gaussian superpositions
which are not of the f (ρ) exp[iθ ] form. Frame (a) plots �τ of the Laguerre-Gaussian mode corresponding to n5 n6 = (2 1) with distance d

for different choices of w0, frames (b) and (c) plot the same for its respective iso-variance-matrix Laguerre-Gaussian superpositions listed in
row 3 with n = 2 and row 8 of Table I, frame (d) plots it for the Laguerre-Gaussian mode corresponding to n5 n6 = (3 2), and frames (e) and
(f) plot it for its respective iso-variance-matrix Laguerre-Gaussian superpositions listed in row 6 with n = 3 and row 13 of Table II. The plots
corresponding to the various w0 are as represented in the legends in the inset of the respective frames.
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by the second moments, is identical for all these superpositions
and the corresponding fundamental mode, in the absence of
atmospheric turbulence. All these superpositions have the
same twist which remains invariant under free propagation.
It is, however, found that the fluctuation of twist in regard
of these superpositions, on propagation through atmospheric
turbulence, can be varied. Our simulations suggest that for
superpositions of the form f (ρ) exp[iθ ] the twist parameter
is generically robust. Even so, there are superpositions which
are not of the form f (ρ) exp[iθ ] whose twist is as robust
as its corresponding fundamental mode, for a given waist
plane width. Nevertheless, we have superpositions for which
the fluctuation of twist is significantly higher than its corre-
sponding fundamental Laguerre-Gaussian mode, on passage
through atmospheric turbulence, and dependent on the waist
plane width. Our analysis suggests that the robustness of twist
is inherently superposition dependent, and this is definitely
relevant in the context of some recent experiments [33–44].
Further, the notion of iso-variance-matrix is useful in the
context of free space optical communication where detectors
of fixed size are used at the receiver end. A treatment along
these lines will be presented elsewhere.
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APPENDIX

A paraxial scalar field amplitude � ≡ �(x,y; z) as in
Eq. (1) can be thought of as resulting from a vector field
amplitude with fixed polarization. The vector potential asso-
ciated with such a scalar field amplitude can be written as
�A = ê1�(x,y; z)e

i( z
λ¯
−ωt)

, where ê1 is the unit vector in the
transverse x direction, and ω = c

λ
the frequency [21]. The

electric and magnetic fields consistent with �A can be written
as [45]

�E = iω

[
�ê1 + iλ̄

∂�

∂x
ê3

]
e
i( z

λ¯
−ωt)

, (A1)

�B = i

λ̄

[
�ê2 + iλ̄

∂�

∂y
ê3

]
e
i( z

λ¯
−ωt)

. (A2)

Here ê2 and ê3 are the unit vectors in y and z directions. Note
that �E and �B in Eqs. (A1) and (A2) satisfy the Maxwell’s equa-
tions in the paraxial approximation. As outlined in Ref. [21],
the linear momentum density associated with the field

amplitude � can be defined through the Poynting vector as

�p = ε0( �E × �B) = ε0

2
( �E∗ × �B + �E × �B∗)

= iω
ε0

2
(�∇�∗ − �∗∇�) + ω

λ̄
|�|2ê3, (A3)

where ∇ stands for the transverse gradient operator given by
∇ = ê1

∂
∂x

+ ê2
∂
∂y

. With this, the “average” value of the linear
momentum associated with the field amplitude � is obtained
by integrating �p over the transverse coordinates x, y and
given by

〈 �p〉 = ωε0

λ̄
(〈p̂x〉ê1 + 〈p̂y〉ê2 + ê3). (A4)

Now the orbital angular momentum density associated with
the field amplitude � is given by

�L = �r × �p = �r × ε0( �E × �B). (A5)

The average orbital angular momentum associated with the
field amplitude � is obtained by integrating �L in the transverse
coordinates. In particular, by Eqs. (A3) and (A5), the z

component of the orbital angular momentum associated with
field � is given by

〈L3〉 = ωε0

λ̄
(〈̂xp̂y〉 − 〈ŷp̂x〉). (A6)

Clearly, for field amplitudes with first moments to be zero, by
Eqs. (31) and (A6), 〈L3〉 = ωε0τ . That is, the twist parameter
τ is identified with the orbital angular momentum of the field
amplitude, as it propagates along the z direction. Now for
field amplitudes whose first moments {〈̂ξi〉} are not zero, we
can define the extrinsic orbital angular momentum as 〈 �Lext〉 =
〈�r〉 × 〈 �p〉, where 〈�r〉 is the average vectorial displacement of
the field amplitude �, and 〈 �p〉 is as defined in Eq. (A4) [46,47].
Note that the x and y components of 〈�r〉 are given by 〈̂x〉 and
〈ŷ〉, respectively. With this, the z component of the 〈 �Lext〉 is
given by

〈Lext
3 〉 = ωε0

λ̄
[〈̂x〉〈p̂y〉 − 〈ŷ〉〈p̂x〉]. (A7)

Further, one may define intrinsic orbital angular momentum
associated with field amplitude � as 〈 �Lint〉 = 〈 �L〉 − 〈 �Lext〉
[46,47]. With this, the z component of the intrinsic angular
momentum associated with the field amplitude � is given by
[Eqs. (A6), (A7), and (31)]

〈Lint
3 〉 = 〈L3〉 − 〈Lext

3 〉 = ωε0τ. (A8)

Thus the twist parameter τ is identified with the z component
of the intrinsic orbital angular momentum associated with field
amplitude �, as it propagates along the z direction.
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