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Single-photon superradiant emission rate scaling for atoms trapped in a photonic waveguide
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A recent experiment reveals the linear scaling property of the superradiant emission rate for a trapped atom
cloud that is excited by weak and short light pulses. We adopt a real-space approach to numerically demonstrate
that such a linear scaling law can be interpreted as single-photon superradiance, in both the time domain and
the frequency domain. The dependence of the single-photon superradiant emission rate on the distance between
atoms is investigated. We further study the single-photon superradiance for artificial atoms that have deviations
in transition frequencies and decay rates.
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The collective spontaneous emission of a cloud of dilute
excited atoms, wherein atoms are considered as interacting
independently with the radiation field, obeys an exponential
law characterized by a time scale, τsp, equal to the reciprocal
of the single-atom decay rate, �1 [1]. When the density of
atoms is large enough, the excited atom cloud is radiatively
damped in a short radiation burst, with a time scale of the
order of τsp/N (N is the number of atoms). The peak intensity
of the radiation is proportional to N2. This phenomenon is
called superradiance and was first theoretically analyzed by
Dicke [2]. In addition to the multiphoton superradiance, a
single-photon radiation speed-up that is much faster than
the single-atom spontaneous emission can also occur when
a single photon is stored uniformly in an N -atom cloud.
Such a single-photon superradiance has recently attracted
considerable attention [3–7], as the effective strong atom-
photon coupling is promising for ultrafast quantum optical
devices for high-speed quantum networks [8–12]. For the
time-reversed process of capturing an incident single photon
by the atom cloud, the capturing time could be substantially
reduced and the excited state of the atom ensemble can
be designed to be maximally entangled. These features are
important for efficient quantum information storage and for
quantum communication [13].

The dependence of the effective decay rate �N on the atom
number N , which is called the superradiant emission rate
scaling, is an important measure of superradiance. Superradi-
ance from atomic gas was experimentally observed decades
ago [14,15]. However, due to the challenge of precisely
controlling the atom number, these experiments could not
directly check the scaling law. Recently, by trapping atoms
in a single-mode photonic crystal waveguide (SMPCW), the
superradiant emission rate scaling has been experimentally
verified [16,17]. In these experiments, the average number is
controlled (N < 3 in these experiments), and weak and short
excitation pulses (with an average photon number much less
than one per pulse) are injected in the PCW to excite the
atoms. By measuring the output intensity and transmission
spectrum for a varying average atom number (controlled by
changing the hold time after loading), the dependence of the
total decay rate on the atom number can be determined. In this
article, we numerically demonstrate both in the time domain
and the frequency domain that the scaling law in this scenario
can be interpreted as single-photon superradiance. We also
investigate the single-photon scaling law for an ensemble of

quantum emitters when their locations are spatially distributed
or when the transition frequencies or the coupling strengths
vary.

Figure 1 depicts the system: an ensemble of N atoms
trapped in a SMPCW [17]. Each atom is a two-level system,
initially at its ground state. The waveguide is single mode
so that multimode interferences, which in general degrade
the quantum coherence, are absent. The electric field is
sharply peaked at the center of the unit cells. Only atoms
trapped at the center of the unit cell couple to the optical
field, and the coupling strengths are approximately considered
identical. The off-centered atoms are neglected. To simulate
the process, we send in a single-photon Gaussian wave packet
with a spatial width, σp, from the far left. By numerically
evolving the system dynamics in time, the optical responses
are determined. Specifically, the system is modeled by the
following Hamiltonian [18]:

H =
∫

dx

[
−ivgh̄c

†
R(x)

∂

∂x
cR(x) + ivgh̄c

†
L(x)

∂

∂x
cL(x)

]

+
N∑

n=1

[h̄(�ne − iγn)a†
neane + h̄�nga

†
ngang]

+
∫

dxh̄V

N∑
n=1

δ(x − xn)[c†R(x)a†
ngane + cR(x)a†

neang

+ c
†
L(x)a†

ngane + cL(x)a†
neang]. (1)

The first two terms describe the freely propagating photons
in the waveguide with a group velocity, vg . cR(x) [c†R(x)] is
the annihilation (creation) operator for a right-moving photon
at position x. cL(x) [c†L(x)] is similarly defined for the left-
moving photon. The third term describes the atoms. ane (a†

ne)
and ang (a†

ng) are the annihilation (creation) operators of the
excited and the ground state of the nth atom, respectively. �ne

and �ng are the excited and the ground state frequency of
the nth atom, respectively; �n ≡ �ne − �ng is the transition
frequency. The decay rate γn describes the decay into free
space [19]. The remaining terms describe the photon-atom
interaction, where V is the coupling strength. The single-atom
decay rate �1 ≡ V 2/vg describes the atomic decay into the
waveguide [18]. It can be shown that the total atom decay rate
of the nth atom is �1 + γn [20]. The general state of the entire
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system is

|	(t)〉 =
∫

dx[φR(x,t)c†R(x) + φL(x,t)c†L(x)]|0,−〉

+
N∑

n=1

en(t)e−i(�n−iγn)t a†
neang|0,−〉, (2)

where the vacuum state |0,−〉 ≡ |0〉 ⊗ |−1〉 ⊗ · · · ⊗ |−N 〉
has no photon in the waveguide and all atoms are at the
ground state. φR(x,t) and φL(x,t) are the single-photon wave
functions and en(t) is the excitation amplitude of the nth
atom.

It is often advantageous to map the atomic cloud with a
single excitation onto an effective two-level system. Here we
present such a mapping and discuss the criteria for the mapping
to be valid. The state describing an effective two-level system
interacting with a single photon is

|	(t)〉 =
∫

dx[φR(x,t)c†R(x) + φL(x,t)c†L(x)]|0,−〉

+ e(t)e−i(�−iγ )t a†
eag|0,−〉, (3)

where |0,−〉 ≡ |0〉 ⊗ |−〉 is the vacuum state of the effective
system, containing zero photons and the effective atom at
ground state. The effective Hamiltonian is (excluding the
photon part for brevity)

H = h̄(�e − iγ )a†
eae + h̄�ga

†
gag

+
∫

dxh̄V δ(x − x)[cR(x)a†
eag + c

†
R(x)a†

gae

+ cL(x)a†
eag + c

†
L(x)a†

gae], (4)

where an overline is used to denote the corresponding terms
in the effective system. It is mathematically convenient to
describe the two systems in the same Hilbert space; thus we
define |−〉 ≡ |−〉. We require that the two states [Eq. (2) and
Eq. (3)] are asymptotically equal before and after scattering
for any single excitation. That is, |	(t)〉 ≈ |	(t)〉 for t → −∞
and t → ∞ for the same single-photon input or for physically
accessible spontaneous emission. The asymptotic condition
ensures the same scattering matrix for both systems. The
physically accessible spontaneous emission uniquely maps the
excited state of the effective atom to a single state in the atom
cloud (among many states of single excitation). By satisfying
the asymptotic condition, we find a set of conditions and unique
mappings between the parameters and the operators of the two
systems. The conditions are the following: first, the size of the
incident photon must be much larger than the atom cloud, i.e.,
the mapping is valid for single frequency, which is met in many
experiments; second, x1 � x � xN and xn − x � σp,∀n. The
mappings are [21]

a†
eag =

N∑
n=1

eik0(xn−x)a†
neang/

√
N, (5a)

V =
√

NV, (5b)

e(t) =
√

Ne−ik0(xn−x)ena(t), ∀n, (5c)

Input  Light

Reflected

Transmitted 

FIG. 1. Schematic of the system of trapped atoms (denoted by
orange circles) in a single-mode waveguide. The single photon is
injected from the left and interacts with the cloud of atoms. xn is the
position of the nth atom.

�g =
N∑

n=1

�ng, (5d)

� = �n, γ = γn, ∀n, (5e)

e2ik0(xn−x) = 1, ∀n, (5f)

where approximation eik(xn−x) ≈ eik0(xn−x) (k0 = ω0/vg =
2π/λ is the center frequency of the photon) has been used.
Equation (5b) immediately implies that the effective decay
rate in the waveguide for the N -atom cloud �N is enhanced

by N -fold: �N = V
2
/vg = N�1. Equations (5d) and (5e)

indicate all atoms (including the effective atom) have the same
transition frequency and dissipation rate. To satisfy Eq. (5f),
we must have xn = x1 + Mnλ/2, and x = x1 + Mλ/2, where
Mn and M are arbitrary integers (but still meet xn − x � σp);
thus e−ik0(xn−x1) = (−1)(Mn−M).

One important consequence is that when single-photon
superradiance occurs, the effective two-level system predicts
a Lorentzian transmission spectrum with a full width at half
maximum (FWHM) of 2(γ + N�1), in contrast to 2(γ + �1)
of the single atom [20,22]. The broadening of the transmission
spectrum has been suggested to be used for an atomic mirror
[23]. We note that when the mappings are not valid, i.e., the
set of Eqs. (5) is not satisfied, the transmission spectrum can
be non-Lorentzian. In the following, to illustrate the effect
of single-photon superradiance, we assume the atoms are
lossless, i.e., γn = 0,∀n.

When Mn are all even numbers, the single-photon su-
perradiance can be compactly described [1]: The transition
of a two-level system is mathematically equivalent to the
flip of a spin- 1

2 system, leading to the following relations:

a
†
ngane = σ−

n and a
†
neang = σ+

n , where σ−
n and σ+

n are the
ladder operators of the nth atom. To describe the interaction
between the photon and the atom cloud, when the atoms are in
proximity to each other, or when Mn are even, collective ladder
operators σ− = ∑N

n=1 σ−
n and σ+ = ∑N

n=1 σ+
n are defined.

The state of the atom cloud thus is equivalent to the state
of N spin- 1

2 systems. The ground state of the cloud now is
expressed as |N

2 ,−N
2 〉, and the absorption of a single photon

raises it to |N
2 ,−N

2 + 1〉, which is a symmetric multiatom
state for the single-photon excitation. Here the atomic state
is expressed in the angular momentum representation |J,Z〉,
where J is the total angular momentum and Z is the z

component. The general state of the atom cloud is |Cloud(t)〉 =
C1(t)|N

2 ,−N
2 + 1〉 + C0(t)|N

2 ,−N
2 〉, where now C1(t) is the ef-

fective atom excitation e(t) in Eq. (3) (differs by a trivial phase
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e−i�t ). Equating the photon emission rate to the decreasing rate
of the excited state population of the atoms, d|C1(t)|2/dt =
−�1〈Cloud(t)|σ+σ−|Cloud(t)〉, we obtain |C1(t)|2 = e−N�1t

by the equation, with the initial conditions C1(t = 0) = 1 and
C0(t = 0) = 0. That is, the cloud is initially in the single-
photon excitation state |N

2 ,−N
2 + 1〉. We note that the exact

scaling �N = N�1 is a direct consequence from the symmetric
excited state of the atom cloud and also from the phase
coherence in the interaction (Mn are even). Considering that
each atom cannot be distinguished in this scenario, superra-
diance can also be interpreted as the interference of photon
paths [24].

With the physical insights, we now present the numerical
results. By applying the Schrödinger equation, we obtain the

following equations of motion:

∂

∂t
φR(x,t) = −vg

∂

∂x
φR(x,t) − iV �N

n=1δ(x−xn)ena(t)e−i�nt ,

∂

∂t
φL(x,t) = vg

∂

∂x
φL(x,t) − iV �N

n=1δ(x − xn)ena(t)e−i�nt ,

∂

∂t
ena(t) = −iV [φL(xn,t) + φR(xn,t)]e

i�nt . (6)

At t = 0, a right-moving photon is launched from the left of
the atom cloud. The single-photon wave form is φR(x,t =
0) = (1/2πσ 2

p)1/4e
− (x−x0)2

4σ2
p eik0x , where σp = 0.1vg/�1, x0 is

the center of the photon wave form at t = 0, which is chosen
to be at the far left of the atom cloud (the specific value

Δω
0

tra
ns

m
is

si
on

0

0.  5

1 1

Δω

WN

Δω

time

co
lle

ct
iv

e 
ex

ci
ta

tio
n

-1 5

-1 0

-5

0

time
0 2 4 6

time 

spatial position
-26 -24 -22 -20 -18

re
fle

ct
ed

 w
av

ef
or

m

0

1

spatial position
-26 -24 -22 -20 -18
0

1

N=1
N=2
N=3

-39 -37 -35 -33

0.

1

0

0.

  2

spatial position

0 2 4 6
-1 5

-1 0

-5

0

0 2 4 6 8 10
-1 5

-1 0

-5

0

0

0.  5

1

0

0.  5

1

-2-6-8 00186424-01- -2-6-8 00186424-01- -2-6-8-10 -4 2 4 6 8 10

units of

units of

units of

FIG. 2. Responses of an N -atom ensemble interacting with a single photon pulse: N = 1 (red, square symbol), 2 (orange, round symbol), and
3 (green, star symbol). Left column (d = 0λ): (upper panel) reflected wave form, origin at x1; (center panel) collective excitation

∑N

n=1 |ena(t)|2
(in loge scale); and (lower panel) transmission spectrum. Center column: d = 0.25λ. Right column: d = 0.5λ. �ω is the detune from the
transition frequency.
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of x0 is irrelevant). k0 = �1/vg is the center frequency of
the photon, which is on resonance with the atoms. When
the photon is incident upon the atomic cloud in its ground
state, the numerical results are presented in Figs. 2 and 3.
In Fig. 2, we vary the number of atoms N and the dis-
tance d (d = Mλ/2) between them. In the left column of
Fig. 2 (d = 0λ and M = 0), the reflected single-photon wave
peaks increasingly sharper when N increases, indicating the
emergence of single-photon superradiance (upper panel). The
collective excitation (center panel)

∑N
n=1 |ena(t)|2 undergoes

an exponential decay with a collective emission rate �N =
N�1 numerically, and the state of atoms is a symmetric state,
e(t)

∑N
n=1 a

†
neang|0,−〉/√N , in agreement with theoretical

predictions. The transmission spectra (lower panel) all have
a Lorentzian shape with a FWHM WN = NW1 numerically.
Thus we have numerically demonstrated the single-photon
superradiance. In the center column of Fig. 2 (d = 0.25λ and
M = 0.5, not an integer), the amplitude of the reflected single-
photon wave now decreases and distorts when the number of
atoms increases. The burst emission is absent in this case.
The long-time decay rates of collective excitations for N = 1
and N = 2 are the same. The collective excitation for the
N = 3 case wiggles and slows down, indicating the photonic
interference due to the finite distance between the atoms. The
transmission spectra for N = 2 and N = 3 are non-Lorentzian.
In the right column of Fig. 2 (d = 0.5λ and M = 1), all
quantities in Fig. 2 are identical to those of the d = 0λ case,
but the atomic state is different and becomes a staggered
state, e(t)

∑N
n=1(−1)n−1a

†
neang|0,−〉/√N . The numerical re-

sults are in agreement with the aforementioned theoretical
discussions.

The cooperative emission of a group of quantum emitters
applies equally to both atoms and artificial atoms [25,26].

In recent years, significant effort has been devoted to gener-
ating quantum optical phenomena in solid state platforms.
Multiphoton superradiance from artificial atoms has been
experimentally demonstrated [27–29]. Theoretical aspects of
superradiance from two artificial atoms have been considered
using input-output formalism [30]. Here we use a Hamiltonian-
based approach to numerically investigate the more general
scenarios that are directly relevant to current single-photon
superradiance experiments using artificial atoms.

Figure 3(a) presents the numerical investigations for the
single-photon superradiance when deviations in transition
frequencies (upper row) and in decay rates (lower row) are
present in the artificial atoms. In the upper row of Fig. 3,
we investigate three collocated artificial atoms. In practice,
the deviations in transition frequencies approximately follow
a Gaussian distribution. Three cases with different standard
deviation σ are studied. To mimic the worst scenario, the
spectral distances between transition frequencies of artificial
atoms are chosen to be on the order of the standard deviation.
The incident photon is tuned to be on resonance with the first
artificial atom. Also, the bandwidth of the photon is taken
to be ten times the single atom decay rate �1. In case I, the
deviation is 3% of the center frequency (∼106�1), which is
far larger than the bandwidth of the photon [see Fig. 3(b),
configuration I, for the placement of all bandwidths]. In
this case, the two far-detuned artificial atoms outside of the
photon bandwidth do not interact with the photon and appear
to be transparent to the photon. Thus the responses of the
three-artificial atom cloud [red curves with square symbols
in the upper row of Fig. 3(a)] are the same as those of the
one-atom case in Fig. 2. In case II, the deviation is reduced
to be smaller than the bandwidth of the photon [σ = 3�1, see
Fig. 3(b), configuration II, for bandwidth placement]. Now
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FIG. 3. (a) Responses of an ensemble of artificial atoms, including the reflected wave form, the collective excitation (in loge scale), and
the transmission spectrum. Upper row: Deviations in transition frequency. Case I: σ = 3% of the center frequency; case II: σ = 3�1; case
III: σ = 0.5�1. Lower row: Deviations in decay rates. Case I: �(1) = 0.8�1 and �(2) = 1.4�1; case II: �(1) = �1 and �(2) = 1.2�1; case III:
�(1) = �1 and �(2) = 5�1; case IV: �(1) = �1, �(2) = 2�1, and �(3) = 3�1 (three artificial atoms). (b) Placement of the photon’s and the artificial
atoms’ bandwidths for the first row in panel (a) (not to scale).
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the three artificial atoms interact with different frequency
components of the photon. So that the reflected photon wave
form (orange curve with round symbols) exhibits several
peaks. Such a beating phenomenon is a direct consequence
of the interference between those frequency components, and
it is also visible in the collective excitation. The transmission
spectrum has three dips, corresponding to the three atomic
transition frequencies. These results also confirm that the
effective mapping does not hold for this case. In case III, the
deviation is further decreased to be 0.5�1. The artificial atoms
now interact with essentially the same frequency component in
the photon bandwidth [see Fig. 3(b), configuration III]. Now
the reflected photon wave (green curve with star symbols)
exhibits superradiance. The collective excitation exhibits a
speed-up decay in the short-time limit, indicating the single-
photon superradiance, and becomes flat in the long-time limit
(albeit small), as a tiny portion of the photonic wave is trapped
between atoms. As the detuning is small, the effective mapping
is approximately valid; so the single-photon superradiance is
present in this case. In real experiments, the decay rate usually
has a value of 0.1–100 MHz. For the artificial atoms operating
at an optical frequency of 200–1000 THz, to fulfill the relation
shown in Fig. 3(b), configuration III, the deviation of transition
frequencies must be controlled within 0.0001% to observe
single-photon superradiance. For a microwave frequency of
5–10 GHz, the required deviation is not hard to achieve, which
is about 1%.

Next, for cases of varying decay rates, when the distance
between atoms is Mλ/2 (M is an integer), by a direct
generalizing of the previous effective mapping procedure,
we could prove that an effective mapping still holds and
the superradiant emission rate scaling �N = � = ∑N

n=1 �(n)

(�(n) denotes the decay rate of the nth atom), regardless of
the individual decay rate and the total atom number N . We
numerically demonstrate this relation by simulating four cases.
In cases I and II, we keep the atom number (N = 2) and
the total decay rate fixed, but the individual decay rate can
be different otherwise. In cases III and IV, the atom number
is different, but the total decay rate is still kept same. The
numerical results are in agreement with those from an effective
two-level system.

In this article, we present a quantitative investigation
for single-photon superradiance, in both the time and the
frequency domain. One of our results provides a recipe for
enhancing the decay rate of an atomic cloud. In any quantum
optical device, the rate for processing photons is fundamentally
limited by the decay rate of qubits. The processing rate is
around 1 GHz for qubits with �1 = 108–109 Hz. Our work
could facilitate the design of ultrafast quantum optical devices
for ultrahigh bit rate operations for quantum information
science.

This work was supported in part by NSF ECCS Grant No.
1608049.
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