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A rigorous description of volume and surface spontaneous parametric down-conversion in one-dimensional
nonlinear layered structures is developed considering exact continuity relations for the fields’ amplitudes at the
boundaries. The nonlinear process is described by the quantum momentum operator that provides the Heisenberg
equations whose solution is continuous at the boundaries. The transfer-matrix formalism is applied. The volume
and surface contributions are clearly identified. Numerical analysis of a structure composed of 20 alternating
GaN/AlN layers is given as an example.
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I. INTRODUCTION

Spontaneous parametric down-conversion (SPDC) is a
second-order nonlinear process [1–3] in which one photon
with higher energy is annihilated and two photons of lower
energies are simultaneously created. Due to the laws of energy
and momentum conservations quantum correlations (entan-
glement) between the photons in a pair emerge [4–7]. The
process of SPDC occurs either inside the media with nonzero
second-order permittivity tensor (noncentrosymmetric
crystals) or at the boundaries of these media [8–10].

The process of SPDC has been observed in nonlin-
ear bulk media [10,11], systems of nonlinear thin layers
[12–14] including metallodielectric layers [7,15,16], nonlinear
photonic fibers [7,17,18], nonlinear photonic waveguides
[19–22], as well as in complex nonlinear photonic struc-
tures [23]. Bulk media including the most common nonlinear
crystals LiNbO3 and KTP represent the historically oldest
sources of photon pairs. Periodically poled nonlinear crystals
with their freedom in tailoring phase-matching conditions
have been obtained later, at the beginning of the 1990s [24].
At the same time periodically poled waveguides [25,26] and
fibers [27,28] followed them up.

In the process of SPDC in homogeneous bulk media, phase
matching of all three interacting fields (pump, signal, and
idler) in the direction of their propagation as well as in their
transverse planes is needed to arrive at an efficient nonlinear
interaction. Phase-matching conditions can be achieved by
angle or temperature tuning of birefringent crystals [10]. Or,
alternatively, by poling a nonlinear crystal [29–32] which
results in quasi-phase-matching conditions. However, if the
length of a nonlinear medium is comparable to the interacting
fields’ wavelengths, the phase-matching condition does not
play an important role in reaching an efficient nonlinear
interaction. Instead, the overlap of electric-field amplitudes of
the interacting fields inside the medium is crucial. Moreover,
the contribution of the nonlinear interaction around the
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boundaries of such thin media becomes important [33–36].
Provided that the number of boundaries per unit length (or
volume) of the crystal (photonic structure) is sufficiently high,
the emission rate of photon pairs coming from the boundaries
may even be comparable to the emission rate of photon pairs
created in the volume [37]. This also concerns the nonlinear
poled structures in which the boundaries are formed in between
the domains with different signs of χ (2) susceptibility.

Theoretical approaches to SPDC in layered structures (in-
cluding poled crystals) have been developed in the Schrödinger
as well as the Heisenberg pictures. In the Schrödinger picture,
a perturbation solution of the Schrödinger equation in the
nonlinear coupling constant was found. In the first order,
it describes the generation of one photon pair [14,15,38].
On the other hand, linear Heisenberg equations occur in
the Heisenberg picture. They allow us to treat the nonlinear
interaction for arbitrarily intense signal and idler fields.
Their solution can also be conveniently written such that the
continuity requirements of the electric- and magnetic-field
operator amplitudes at the boundaries are fulfilled. This
allows us to describe simultaneously the volume and surface
contributions to SPDC.

Using the Heisenberg picture, the volume contribution to
SPDC has been widely studied in Refs. [14,39,40], whereas
the emission of photon pairs at the boundaries has been
treated in Ref. [37] applying the perturbation technique. The
perturbation approach allowed to introduce corrections to the
creation and annihilation operators of the signal and idler fields
independently and then to apply the transfer-matrix formalism.
Contrary to this, the theory developed here treats the fields
at the boundaries in general which results in the coupling
between the signal- and idler-field operators analyzed first
in Refs. [41,42] for the cw interaction. This means that the
developed theory is more general (and more precise) compared
to that of Ref. [37], though it requires an extensive numeric
approach. Moreover, it clearly identifies the fields arising in
the volume and surface SPDC.

The paper is structured as follows. In Sec. II the model
describing both volume and surface SPDC is developed. In
Sec. III quantities characterizing photon pairs and derived
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FIG. 1. Scheme of a layered structure. Second-order tensor χ (2)(l)

of nonlinear susceptibility characterizes an lth layer with index n(l)(ω)
of refraction; Ll is the length of the lth layer and zl (zl+1) denotes the
position of its left (right) boundary.

from the general solution are defined. Results of numerical
simulations are discussed in Sec. IV. Conclusions are drawn
in Sec. V. The input-output relations for fields’ operators in
layered media are found in the Appendix.

II. VOLUME AND SURFACE SPONTANEOUS
PARAMETRIC DOWN-CONVERSION

The proposed model of SPDC is appropriate for one-
dimensional (1D) nonlinear photonic structures composed of
parallel layers (or domains) having in general different material
parameters and lengths. As an example, we consider a layered
structure composed of alternating layers with different linear
indices of refraction and nonlinear susceptibilities (see Fig. 1).

The process of SPCD is assumed to be pumped by a
strong (undepleted) classical field. In a layered structure, the
positive-frequency vectorial electric-field amplitude E(+)

p (z,t)
of the pump beam can conveniently be decomposed as
follows [14,37]:

E(+)
p (z,t) =

∫ ∞

0
dωp

N+1∑
l=0

rect(l)(z)
γ=x,y∑
g=F,B

ep,γ A(l)
pg,γ

(ωp)

× exp
[
ik(l)

pg,γ
(ωp)(z − zl) − iωpt

]
, (1)

ωp denotes the angular frequency of the pump beam.
Function rect(l)(z) is nonzero only for z ∈ (zl,zl+1) where
rect(l)(z) = 1, l ∈ {1, . . . ,N}. For the input [output] medium,
we have rect(0)(z) = 1 for z ∈ (−∞,z1) [rect(N+1)(z) = 1 for
z ∈ (zN+1,∞)] and it equals zero otherwise. Amplitude A(l)

pg,γ

occurring in Eq. (1) denotes the spectral pump electric-field
amplitude at the left boundary of an lth layer. The forward-
(backward-) propagating fields are indicated by index F
(B). The unit electric-field vectors ep,γ determine the field’s
polarization either along the x or y axis [9,14,43]. The
wave numbers k(l)

pg,γ
satisfy the linear dispersion relations

appropriate to an lth layer, k(l)
pg,γ

(ωp) = ±(ωp/c)n(l)
p,γ (ωp), c

being the speed of light in vacuum, and n(l)
p,γ (ωp) denoting

index of refraction in this layer. The plus (minus) sign in
the definition of k(l)

pg,γ
refers to the forward- (backward-)

propagating field. Symbol
∑γ

g stands for the summation over
both the direction of field’s propagation and polarization.

The signal and idler positive-frequency vectorial electric-
field operator amplitudes Ê(+)

s (z,t) and Ê(+)
i (z,t), respectively,

are defined similarly as the pump amplitude:

Ê(+)
m (z,t) = i

∫ ∞

0
dωm

N+1∑
l=0

τ (l)
m,α(ωm)rect(l)(z)

×
α=x,y∑
a=F,B

em,αâ(l)
ma,α

(z,ωm)exp(−iωmt),

m ∈ {s,i}. (2)

In Eq. (2), amplitude τ (l)
m,α(ωm) per one photon is defined as

τ (l)
m,α(ωm) =

√
h̄ωm

4πε0cn
(l)
m,α(ωm)A

(3)

assuming homogeneous fields localized in transverse area A.
Symbols em,α , α ∈ {x,y}, introduced in Eq. (2) denote the
unit polarization vectors in field m and h̄ stands for the
reduced Planck constant. Operator â(l)

ma,α
(z,ωm) annihilates

one photon at position z in field m propagating in direction
a with polarization α and frequency ωm. The annihilation
operator â(l)

ma,α
(z,ωm) is assumed to fulfill the equal-space

commutation relations together with its Hermitian conjugated
creation operator â

(l)†
ma,α(z,ωm) [37,39,40]:[

â(l)
ma,α

(z,ωm),â(l)†
m′

a′ ,α′ (z,ω′
m)

] = δaa′δmm′δαα′δ(ωm − ω′
m). (4)

Spatial evolution of the operator â(l)
ma,α

(z,ωm) is given by
the Heisenberg equation

∂â(l)
ma,α

∂z
(z,ωm) = 1

ih̄

[
Ĝz(z),â(l)

ma,α
(z,ωm)

]
(5)

derived from the following momentum operator Ĝz [40]:

Ĝz(z) = A

∫ ∞

−∞
dt σ̂ eff

zz (z,t), (6)

σ̂ eff
zz (z,t) =

∑
m=s,i

α=x,y∑
a=F,B

{
ε0Ê(−)

ma,α
(z,t) · Ê(+)

ma,α
(z,t) + 1

μ0
B̂(−)

ma,α
(z,t) · B̂(+)

ma,α
(z,t)

+ ε0

∫ ∞

0
dωm

∫ ∞

0
dω′

m χ (1)(ωm)Ê(−)
ma,α

(z,ω′
m) · Ê(+)

ma,α
(z,ωm)exp[−i(ωm − ω′

m)t]

}

+ 2ε0

∫ ∞

0
dωp

∫ ∞

0
dωs

∫ ∞

0
dωi χ

(2)(ωp; ωs,ωi):Ep(z,ωp)Ê†
s(z,ωs)Ê†

i (z,ωi)exp[−i(ωp − ωs − ωi)t]. (7)
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In Eq. (7), σ̂ eff
zz means the zz component of the effective Maxwell stress-tensor operator and Ê(+)

ma,α
(z,ωa) stands for the

spectral positive-frequency electric-field operator amplitude [Ê(+)
m (z,t) = ∑α=x,y

a=F,B

∫ ∞
0 dωm Ê(+)

ma,α
(z,ωm) exp(−iωmt)]. Spectral

positive-frequency magnetic-field operator amplitudes B̂(+)
ma,α

(z,ωm) are derived from the Maxwell equations [B̂(+)
ma,y

(z,ωm) =
km,α(ωm)×Ê(+)

ma,x
(z,ω)/ωm]. Symbol · denotes scalar product and operation : shorthands tensor χ (2) with respect to its three

indices.
Applying Eqs. (1), (2), (6), and (7) the following explicit form of momentum operator Ĝz(z) is obtained:

Ĝz(z) =
∑
m=s,i

N+1∑
l=0

∫ ∞

0
dωm

α=x,y∑
a=F,B

rect(l)(z)h̄k(l)
m,α(ωm)â(l)†

ma,α
(z,ωm)â(l)

ma,α
(z,ωm)

− ih̄

∫ ∞

0
dωs

∫ ∞

0
dωi

α,β,γ=x,y∑
a,b,g=F,B

N∑
l=1

T αβγ,(l)∗
g (ωs,ωi) exp

[
ik(l)

pg,γ
(ωs + ωi)(z − zl)

]
â(l)†

sa ,α
(z,ωs)â

(l)†
ib,β(z,ωi) (8)

and

T αβγ,(l)
g (ωs,ωi) ≡ 4iπε0A

h̄
τ (l)

s,α(ωs)τ
(l)
i,β(ωi)χ

(2)(l)(ωs + ωi; ωs,ωi):ep,γ es,αei,βA(l)∗
pg,γ

(ωs + ωi). (9)

Symbol k(l)
m,α occurring in Eq. (8) denotes the absolute value of wave vector k(l)

ma,α
. Up to this point, we have utilized the formalism

that does not distinguish explicitly between the forward- and backward-propagating fields via the sign of wave vectors. In what
follows we add appropriate signs to the linear and nonlinear terms in the momentum operator Ĝz.

Applying the commutation relations (4) the Heisenberg equations (5) are obtained in their explicit form:

∂â(l)
sa ,α

∂z
(z,ωs) = ik(l)

sa ,α
â(l)

sa ,α
(z,ωs) + [±1]a

∫ ∞

0
dωi

β,γ=x,y∑
b,g=F,B

T αβγ,(l)∗
g (ωs,ωi) exp

[
ik(l)

pg,γ
(z − zl)

]
â

(l),†
ib,β (z,ωi). (10)

Symbol [±1]a equals +1 for a forward propagating field (a = F) and −1 for a backward propagating field (a = B).
The solution of Heisenberg equation (10) for the signal-field operator â(l)

sa ,α
consists of the homogeneous and particular

solutions:

â(l)
sa ,α

(z,ωs) = ˆ̄a(l)
sa ,α

(zl,ωs) exp[ik(l)
sa ,α

(ωs)(z − zl)] +
∫ ∞

0
dωi

β=x,y∑
b=F,B


αβ,(l)∗
s,ab (z,ωs,ωi) ˆ̄a(l)†

ib,β(zl,ωi) × exp
[
ik(l)

sa ,α
(ωs)(z − z(l)

a )
]
(11)

and


αβ,(l)
s,ab (z,ωs,ωi) ≡ [±1]ai

γ=x,y∑
g=F,B

T αβγ,(l)
g (ωs,ωi)rect(l)(z) exp

[ − iφ
βγ,(l)
sa ,bg

(ωs,ωi)
]exp

[ − i�k
αβγ,(l)
abg (z − z(l)

a )
] − 1

�k
αβγ,(l)
abg

. (12)

We note that the particular solution has been derived by
the convolution of the Green function of Eq. (10) and the
nonlinear source term on the right-hand side of Eq. (10). The
signal-field annihilation operator ˆ̄a(l)

sa ,α
(zl,ωs) and idler-field

creation operator ˆ̄a(l)†
ib,β (zl,ωi) occurring at the right-hand side of

Eq. (11) are appropriate for the homogeneous solution and so
they describe the free-field propagation. Spatial dependence of
the signal-field operator ˆ̄a(l)

sa ,α
(z,ωs), considered as an example,

is thus described as

ˆ̄a(l)
sa ,α

(z,ωs) = ˆ̄a(l)
sa ,α

(zl,ωs) exp
[
ik(l)

sa ,α
(z − zl)

]
. (13)

The signal- and idler-field operators ˆ̄a(l)
sa ,α

(z,ωs) and ˆ̄a(l)†
ib,β(z,ωi)

also obey the equal space commutation relations

[
ˆ̄a(l)
ma,α

(z,ωm), ˆ̄a(l)†
m′

a′ ,α′ (z,ω′
m′)

] = δmm′δaa′δαα′δ(ωm − ω′
m).

(14)

In Eq. (12) the difference �k
αβγ,(l)
abg of wave vectors in an

lth layer equals �k
αβγ,(l)
abg = k(l)

pg,γ
− k(l)

sa ,α
− k

(l)
ib,β . Position z(l)

a

in the lth layer equals zl (zl+1) for forward- (backward-)
propagating fields. Similarly, phase factor φ

βγ,(l)
sa ,bg

introduced

in Eq. (12) is equal to zero [(k(l)
pg,γ

− k
(l)
ib,β)L(l)] for forward-

[backward-] propagating fields. The solution for the idler-field
operators is derived from Eq. (11) invoking the symmetry
between the signal and idler fields (s ↔ i).

The spatial dependence of signal [idler] electric-field
operator amplitude Ês(z,t) [Êi(z,t)] inside the structure is
determined once we know the transformations between the
signal [idler] operators ˆ̄a(l−1)

sa ,α
[ ˆ̄a(l−1)†

ib,β ] and ˆ̄a(l)
sa ,α

[ ˆ̄a(l)†
ib,β] in all

adjacent layers l − 1 and l. The transformation is derived from
the boundary conditions for the electric- and magnetic-field
operators and the propagation formula (13). The boundary
conditions for the signal-field operators between layers l − 1
and l require the continuity of electric-field [Ê(l−1)

s (z,t) and
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Ê(l)
s (z,t)] and magnetic-field [Ĥ(l−1)

s (z,t) and Ĥ(l)
s (z,t)] vecto-

rial operator amplitudes. Applying the field’s decomposition
written in Eq. (2) the boundary conditions are transformed into
the following relations:

τ (l−1)
m,α (ωm)

∑
a=F,B

â(l−1)
ma,α

(zl,ωm) = τ (l)
m,α(ωm)

∑
a=F,B

â(l)
ma,α

(zl,ωm),

(15)

τ (l−1)
m,α (ωm)

∑
a=F,B

∂â(l−1)
ma,α

∂z
(zl,ωm)

= τ (l)
m,α(ωm)

∑
a=F,B

∂â(l)
ma,α

∂z
(zl,ωm), α ∈ {x,y}. (16)

The relations (15) and (16) assume that both x and y polar-
ization vectors em,α of the electric field [see Eq. (2)] preserve
their orientation after reflection at the boundary. This definition
is equivalent to that of the TE-polarized electric-field vector
in the general linear transmission-reflection scheme [43].
We note that, in the analyzed 1D geometry, the TE- and
TM-polarized waves are physically equivalent.

To allow for further manipulations with the above derived
relations (and later the numerical treatment), we introduce
suitable orthonormal bases fs,k(ωs) and fi,k(ωi), k = 0, . . . ,∞,
in the signal and idler fields, respectively. This results in the
replacement of “continuous indices” ωs and ωi by discrete
indices ks and ki. In these bases, new signal [idler] field
operators Â

(l)
sa ,α,k(z) [Â(l)

ib,β,k(z)] are defined as follows:

Â
(l)
sa ,α,k(z) =

∫ ∞

0
dωs f ∗

s,k(ωs) â(l)
sa ,α

(z,ωs). (17)

The original operators are obtained by the inverse transforma-
tion

â(l)
sa ,α

(z,ωs) =
∞∑

k=0

fs,k(ωs)Â
(l)
sa ,α,k(z). (18)

Equations (15) and (16) can be conveniently rewritten into
a matrix form. As the derivation procedure is similar for both
equations, we focus here only on the transformation of Eq. (15)
written for the signal field. The solution for signal-field
operator â(l)

sa ,α
(zl,ωs) given in Eq. (11) is inserted into Eq. (15)

first. Then, introducing vectorial operators Â(l)
sa ,α

and Â(l)†
ib,β

with the elements [Â(l)
sa ,α

]k = Â
(l)
sa ,α,k and [Â(l)†

ib,β]k = Â
(l)†
ib,β,k

the relations in Eq. (15) for the continuity of electric-field
amplitudes are expressed in the form

I(l−1)
Es,α

∑
a=F,B

Â(l−1)
sa ,α

(zl) +
β=x,y∑

a,b=F,B

I(l−1)
s,α Jαβ,(l−1)

Es,ab (zl)Â
(l−1)†
ib,β (zl)

= I(l)
Es,α

∑
a=F,B

Â(l)
sa ,α

(zl) +
β=x,y∑

a,b=F,B

I(l)
s,αJαβ,(l)

Es,ab(zl)Â
(l)†
ib,β(zl).

(19)

The elements of matrices I(l)
Es,α , I(l)

s,α , and Jαβ,(l)
Es,ab found in

Eq. (19) are defined as

[
I(l)

s,α

]
kn

= [
I(l)
Es,α

]
kn

≡
∫ ∞

0
dωs

f ∗
s,k(ωs)fs,n(ωs)√

n
(l)
s,α(ωs)

, (20)

[
Jαβ,(l)

Es,ab

]
kn

(z) ≡ λ
αβ,(l)
Es,ab,kn(z), (21)

and the expansion coefficients λ
αβ,(l)
Es,ab,kn(z) are introduced

according to the relation


αβ,(l)∗
s,ab (z,ωs,ωi) =

∞∑
k,n=0

λ
αβ,(l)
Es,ab,kn(z)fs,k(ωs)fi,n(ωi). (22)

Equation (15) written for the idler field can be recast into the
form of Eq. (19) similarly. Equation (16) written for the signal
and idler fields can be rearranged into the form of Eq. (19)
as well. All four equations are then used together to describe
photon-pair generation.

Equation (19) can be divided into three independent
equations according to the physical origin of individual terms:
The first equation describes the linear field’s transformation at
a boundary, the second equation governs photon pairs emitted
in the volumes of the (l − 1)th and lth layers, and the third
equation is appropriate for photon pairs born at the boundary
between the (l − 1)th and lth layers in surface SPDC. We
note that the propagation index a together with the layer
number (l − 1, l) separate in Eq. (19) the terms describing
the fields impinging on the boundary (ingoing) from those
leaving the boundary (outgoing). In Eq. (19), there occur the
free-field idler creation operators Â(l′)†

ib,β in the terms arising in
the particular solution. Their spatial evolution is described by
the homogeneous solution (without the nonlinear interaction)
and so we denote them by the upper index 0 (Â(l′),0†

ib,β ).

The operators (Â(l)
sF,α and Â(l−1)

sB,α ) that describe in Eq. (19)
the fields propagating away from the boundary, can be
decomposed into three additive terms characterizing linear
transmission Â(l′),0

sa ,α
, photon pairs generated in the volume

Â(l′),V
sa ,α

, and photon pairs coming from the boundary Â(l′),S
sa ,α

:

Â(l′)
sa ,α

= Â(l′),0
sa ,α

+ Â(l′),V
sa ,α

+ Â(l′),S
sa ,α

,

(l′ = l − 1 ∧ a = B) ∨ (l′ = l ∧ a = F). (23)

Inserting Eq. (23) into Eq. (19), we arrive at different terms
that are identified with volume SPDC, surface SPDC, and
linear transition at the boundary. Identification and separation
of different terms in Eq. (19) according to the field’s direction
of propagation is shown in Fig. 2.

Volume SPDC as well as the linear propagation are
described by one input term and one output term for each field
in each layer. On the other hand, surface SPDC is described
only by two output terms for both the signal and idler fields at
each boundary. These fields arising in surface SPDC represent
a nonlinear correction to the usual Fresnel relations at the
boundaries (see Refs. [33,34]) valid for linear materials. The
equations arising in the separation of different terms in Eq. (19)
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FIG. 2. Different terms occurring in Eq. (19) written for the
boundary between (l − 1)th and lth layers and the signal field.
The upper index w in the operators Â(l),w

ma,α , m ∈ {s,i}, identifies
volume-emitted photon pairs (w = V, red color), surface-emitted
photon pairs (w = S, blue color), and linear propagation (w = 0,
black color).

are written in the form

I(l−1)
Es,α

∑
a=F,B

Â(l−1),0
sa ,α

(zl) = I(l)
Es,α

∑
a=F,B

Â(l),0
sa ,α

(zl), (24)

I(l−1)
Es,α Â(l−1),V

sB,α (zl) + I(l−1)
s,α

β=x,y∑
b=F,B

Jαβ,(l−1)
Es,Fb (zl)Â

(l−1),0†
ib,β (zl)

= I(l)
Es,αÂ(l),V

sF,α (zl) + I(l)
s,α

β=x,y∑
b=F,B

Jαβ,(l)
Es,Bb(zl)Â

(l),0†
ib,β (zl), (25)

I(l−1)
Es,α Â(l−1),S

sB,α (zl) + I(l−1)
s,α

β=x,y∑
b=F,B

Jαβ,(l−1)
Es,Bb (zl)Â

(l−1),0†
ib,β (zl)

= I(l)
Es,αÂ(l),S

sF,α (zl) + I(l)
s,α

β=x,y∑
b=F,B

Jαβ,(l)
Es,Fb(zl)Â

(l),0†
ib,β (zl). (26)

If we consider only the requirement of electric-field
continuity on the boundary and omit that for the magnetic
field, no surface SPDC would occur. This follows from the
solution for signal-field operators âsa ,α(z,ωs) given in Eq. (11).
The functions 

αβ,(l−1)
s,Bb (zl,ωs,ωi) and 

αβ,(l)
s,Fb (zl,ωs,ωi) equal

zero [see Eq. (12)] and so the matrices Jαβ,(l−1)
s,Bb and Jαβ,(l)

s,Fb

equal zero. Equations (26) thus separate from the remaining
two Eqs. (24) and (25) and the operators Â(l−1),S

sB,α and Â(l),S
sF,α

describing the surface emission could be set to zero. However,
the continuity of the magnetic field requires nonzero operators
Â(l−1),S

sB,α and Â(l),S
sF,α . These operators then describe the surface

emission of photon pairs at the boundary.
The requirement of continuity for the magnetic field Ĥs(z,t)

across the boundary between the (l − 1)th and lth layers [see
Eq. (16)] results in the system of equations of the form written
in Eqs. (24)–(26). These equations are formally derived from
those written in Eqs. (24)–(26) if we replace matrix I(l)

Es,α by

matrix I(l)
H sa ,α

and matrix Jαβ,(l)
Es,ab(z) by matrix Jαβ,(l)

H s,ab(z). The

matrices I(l)
H sa ,α

and Jαβ,(l)
H s,ab(z) are defined as

[
I(l)
H sa ,α

]
kn

≡ i

∫ ∞

0
dωs

k(l)
sa ,α

(ωs)f ∗
s,k(ωs)fs,n(ωs)√
n

(l)
s,α(ωs)

, (27)

[
Jαβ,(l)

H s,ab

]
kn

(z) ≡ λ
αβ,(l)
H s,ab,kn(z), (28)

and we assume the following decomposition:

∂
αβ,(l)∗
s,ab

∂z
(z,ωs,ωi)=

∞∑
k,n=0

λ
αβ,(l)
H s,ab,kn(z)fs,k(ωs)fi,n(ωi). (29)

The boundary conditions for the free signal-field operators
Â(l′),0

sa ,α
, a ∈ {F,B},α ∈ {x,y} arising from the continuity of

the electric- [Eq. (24)] and magnetic-field amplitudes and
considered for both polarizations along the x and y axes (the
Fresnel relations) can be written in the following compact
form:

L(l−1)
s Â(l−1),0

s (zl) = L(l)
s Â(l),0

s (zl) (30)

using the interface transition matrices L(l)
s [43]:

L(l)
s =

⎡
⎢⎢⎢⎢⎣

I(l)
Es,x I(l)

Es,x 0 0

0 0 I(l)
Es,y I(l)

Es,y

I(l)
H sF,x I(l)

H sB,x 0 0

0 0 I(l)
H sF,y I(l)

H sB,y

⎤
⎥⎥⎥⎥⎦. (31)

In Eq. (30) the signal-field operators Â(l),0
s are defined as

follows:

Â(l),0
s (z) ≡

⎡
⎢⎢⎢⎢⎢⎣

Â(l),0
sF,x (z)

Â(l),0
sB,x(z)

Â(l),0
sF,y (z)

Â(l),0
sB,y(z)

⎤
⎥⎥⎥⎥⎥⎦. (32)

The boundary conditions for the fields arising in volume
SPDC and considered for both electric- [Eq. (25)] and
magnetic-field operators can be expressed in the compact form
of Eq. (30):

Is(zl)ÂV
s (zl) = −J(l−1)

sF
Â(l−1),0†

i (zl) + J(l)
sB

Â(l),0†
i (zl), (33)

where

Is(zl) ≡

⎡
⎢⎢⎢⎢⎣

−I(l)
Es,x I(l−1)

Es,x 0 0

0 0 −I(l)
Es,y I(l−1)

Es,y

−I(l)
H sF,x I(l−1)

H sB,x 0 0

0 0 −I(l)
H sF,y I(l−1)

H sB,y

⎤
⎥⎥⎥⎥⎦ (34)

and

ÂV
s (zl) ≡

⎡
⎢⎢⎢⎢⎢⎣

Â(l),V
sF,x (zl)

Â(l−1),V
sB,x (zl)

Â(l),V
sF,y (zl)

Â(l−1),V
sB,y (zl)

⎤
⎥⎥⎥⎥⎥⎦. (35)
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Matrices J(l)
sa

, a ∈ {F,B}, occurring in Eq. (33), are given as

J(l)
sa

≡

⎡
⎢⎢⎢⎢⎣

I(l)
s,xJxx,(l)

Es,aF(zl) I(l)
s,xJxx,(l)

Es,aB(zl)

I(l)
s,yJyx,(l)

Es,aF(zl) I(l)
s,yJyx,(l)

Es,aB(zl)

I(l)
s,xJxx,(l)

H s,aF(zl) I(l)
s,xJxx,(l)

H s,aB(zl)

I(l)
s,yJyx,(l)

H s,aF(zl) I(l)
s,yJyx,(l)

H s,aB(zl)

I(l)
s,xJxy,(l)

Es,aF(zl) I(l)
s,xJxy,(l)

Es,aB(zl)

I(l)
s,yJyy,(l)

Es,aF(zl) I(l)
s,yJyy,(l)

Es,aB(zl)

I(l)
s,xJxy,(l)

H s,aF(zl) I(l)
s,xJxy,(l)

H s,aB(zl)

I(l)
s,yJyy,(l)

H s,aF(zl) I(l)
s,yJyy,(l)

H s,aB(zl)

⎤
⎥⎥⎥⎥⎦. (36)

Similarly, the boundary conditions for surface SPDC
including both electric- [Eq. (26)] and magnetic-field operators
and their polarizations are obtained in the following compact
form:

Is(zl)ÂS
s (zl) = −J(l−1)

sB
Â(l−1),0†

i (zl) + J(l)
sF

Â(l),0†
i (zl). (37)

Equations (30), (33), and (37) characterize the behavior of
the overall signal field at the boundaries.

To describe completely the behavior of the signal field
inside the structure, we have to add to the above equations
the following one originating in Eqs. (13), (17), and (18) and
describing the free-field propagation:

Â(l),0
s (zl+1) = P(l)

s Â(l),0
s (zl). (38)

The matrix P(l)
s occurring in Eq. (38) is given as

P(l)
s ≡ diag

[
P(l)

sF,x,P
(l)
sB,x,P

(l)
sF,y,P

(l)
sB,y

]
(39)

and[
P(l)

sa ,α

]
kn

=
∫ ∞

0
dωs exp

[
ik(l)

sa ,α
(ωs)Ll

]
f ∗

s,k(ωs)fs,n(ωs).

(40)

The idler field behaves at the boundaries as well as during
its free-field propagation in the same way as the signal field
and the corresponding equations characterizing its behavior
are derived in the same form as those for the signal field
given in Eqs. (30), (33), (37), and (38). Their explicit forms
are formally revealed substituting s ↔ i. All these equations
written both for the signal and idler fields represent a system of
linear algebraic equations whose solution gives the output field
operators in terms of the input field operators. Details of the
approach providing this solution are found in the Appendix.

Concentrating again on the signal field, the output signal-
field operators â(out),w

sa ,α
, w ∈ {S,V}, describing signal photons

arising in the nonlinear interaction are obtained in the
Appendix in terms of the input idler-field operators ˆ̄a(in)†

ib,β as

follows:

â(out),w
sa ,α

(ωs) = fT
s (ωs)

β=x,y∑
b=F,B

[Gw]saα,ibβ

∫ ∞

0
dωifi(ωi)

× ˆ̄a(in),0†
ib,β (ωi), w ∈ {S,V},
a ∈ {F,B}, α ∈ {x,y}. (41)

The output signal-field operators â(out),w
sF,α ≡ â(N+1),w

sF,α (zN+1,ωs)
[â(out),w

sB,α ≡ â(0),w
sB,α (z1,ωs)] are located at the position z = zN+1

[z = z1]. On the other hand, the input idler-field operators
ˆ̄a(in),0

iF,β ≡ ˆ̄a(0)
iF,β(z1,ωi) [ ˆ̄a(in),0

iB,β ≡ ˆ̄a(N+1)
iB,β (zN+1,ωi)] characterize

the field at position z1 [zN+1]. In Eq. (41), vectors [fm](ωm)
containing elements fm,k(ωm) for m ∈ {s,i} have been intro-
duced and symbol T stands for transposition. The solution for
the output signal-field operators â(out),w

sa ,α
arising in the nonlinear

interaction is described by submatrices [Gw]saα,ibβ
of matrices

Gw, w ∈ {S,V}, identified by its indices. The matrices GV

and GS, defined in Eq. (A25) in the Appendix, are derived in
the form of coherent superpositions of amplitudes describing
photon pairs emitted inside individual nonlinear layers and at
all nonlinear boundaries, respectively.

The solution provides also formula (A15) for linear propa-
gation of the signal-field operators ˆ̄a0

sa ,α
from the input of the

layered structure to its output including scattering of the field
at the boundaries:

ˆ̄a(out),0
sa ,α

(ωs) ≡ fT
s (ωs)

β=x,y∑
b=F,B

[
F

]
saα,sbβ

∫ ∞

0
dω′

sf
∗
s (ω′

s)

× ˆ̄a(in),0
sb,β

(ω′
s), a ∈ {F,B}, α ∈ {x,y}. (42)

In Eq. (42), submatrices [F]saα,sbβ
of matrix F defined in

Eq. (A16) in the Appendix are again identified by its indices.

III. EXPERIMENTAL CHARACTERISTICS
OF PHOTON PAIRS

The emitted photon pairs are characterized by the joint
signal-idler photon-number density n

αβ

ab defined along the
relation

n
αβ

ab (ωs,ωi) = 〈vac|â(out)†
sa ,α

(ωs)â
(out)
sa ,α

(ωs)

× â
(out)†
ib,β (ωi)â

(out)
ib,β (ωi)|vac〉. (43)

The photon-number density n
αβ

ab (ωs,ωi) gives the density of
photon pairs with a signal photon at frequency ωs propagating
in direction a with polarization α and its idler twin at frequency
ωi propagating in direction b with polarization β. Assuming
vacuum around the structure and using Eqs. (41) and (42), we
arrive at the formula

n
αβ

ab (ωs,ωi) =
∑

w,w′=S,V

γ=x,y∑
g=F,B

f∗,T
i (ωi)[F]ibβ,igγ [Gw]T

saα,igγ f∗
s (ωs)

δ=x,y∑
d=F,B

fT
s (ωs)[F]saα,sd δ[Gw′

]∗,T
ibβ,sd δfi(ωi) + H.c.

≡ n
αβ,V
ab (ωs,ωi) + n

αβ,S
ab (ωs,ωi) + n

αβ,I
ab (ωs,ωi) ≡ n

αβ,SV
ab . (44)
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According to Eq. (44), the joint photon-number density n
αβ

ab

is decomposed into three contributions: The first contribution
n

αβ,V
ab originates in volume SPDC [w = w′ = V in the sum

at the first line of Eq. (44)], the second contribution n
αβ,S
ab

arises in surface SPDC (w = w′ = S), and the last contribution
n

αβ,I
ab occurs due to interference between the volume and

surface contributions. However, these contributions cannot
be mutually separated in the considered 1D model in the
experiment. That is why the three contributions added together
give the overall joint photon-number density n

αβ,SV
ab .

The signal photon-number density n
αβ,w

s,ab defined for w ∈
{S,V,SV} is derived along the relation

n
αβ,w

s,ab (ωs) =
∫ ∞

0
dωi n

αβ,w

ab (ωs,ωi). (45)

Similarly, the number N
αβ,w

ab of emitted photon pairs is given
by the formula

N
αβ,w

ab =
∫ ∞

0
dωs n

αβ,w

s,ab (ωs). (46)

The ratio η
αβ

s,ab of signal photon-number density n
αβ,S
s,ab

obtained by surface SPDC and density n
αβ,V
s,ab arising in volume

SPDC,

η
αβ

s,ab(ωs) ≡ n
αβ,S

s,ab (ωs)

n
αβ,V
s,ab (ωs)

, (47)

provides insight into the nature of the whole SPDC process.
For the photon numbers, we define the ratio R

αβ

ab of number
N

αβ,S
ab of photon pairs emitted at the boundaries and number

N
αβ,V
ab of photon pairs created inside the layers:

R
αβ

ab ≡ N
αβ,S
ab

N
αβ,V
ab

. (48)

To reveal temporal characteristics of photon pairs, we define
the following spectral amplitude correlation function that plays
the role of the usual spectral two-photon amplitude:

φ
αβ

ab (ωs,ωi) = 〈vac|â(out)
sa ,α

(ωs)â
(out)
ib,β (ωi)|vac〉. (49)

Its Fourier transform provides us a temporal two-photon
amplitude φ̃

αβ

ab (ts,ti) that gives the probability amplitude of
detecting a signal photon propagating in direction a and
polarized in direction α at time ts together with its idler twin
propagating in direction b with polarization β at time ti:

φ̃
αβ

ab (ts,ti) =
∫ ∞

0
dωs

∫ ∞

0
dωi φ

αβ

ab (ωs,ωi)

× exp(−iωsts − iωiti). (50)

The corresponding normalized probability density p
αβ

ab is then
obtained by the formula

p
αβ

ab (ts,ti) =
∣∣φαβ

ab (ts,ti)
∣∣2∫ ∞

−∞ dt ′s
∫ ∞
−∞ dt ′i

∣∣φαβ

ab (t ′s,t ′i )
∣∣2 . (51)

The temporal two-photon amplitude φ̃
αβ

ab also allows us to
determine the normalized signal-field photon flux p

αβ

s,ab:

p
αβ

s,ab(ts) =
∫ ∞

−∞
dti p

αβ

ab (ts,ti). (52)

IV. PROPERTIES OF THE EMITTED PHOTON PAIRS

In this section we consider a typical nonlinear layered
structure made of alternating GaN/AlN layers under usual
experimental conditions. We assume a pump beam at central
wavelength λ0

p = 400 nm that impinges on the structure at
normal incidence from its left, is polarized along the y axis,
and has a Gaussian spectral profile:

A(0)
pF,y(ωp) =

√√
μ0

ε0π

E

πσp
exp

[
−

(
ωp − ω0

p

)2

2σ 2
p

]
. (53)

The remaining input amplitudes A(N+1)
pB,y (ωp), A(0)

pF,x(ωp), and
A(N+1)

pB,x (ωp) of the pump field are assumed to be zero. In
the analysis, the pump-beam energy E per unit area equals
1×103 J/m2 (1 mJ/mm2) per one pulse. The pump-beam
spectral width σp is set such that the pump-beam intensity
spectral width (FWHM, full width at half maximum) equals
7 nm. Assuming a transform-limited pump pulse, its intensity
temporal width equals 33 fs (FWHM). In the analysis, we
focus on the properties of photon pairs with both photons
propagating forward and the signal photon polarized along the
x axis together with its idler twin polarized along the y axis. For
simplicity, we omit both propagation and polarization indices
in the following discussion.

To obtain an efficient nonlinear layered structure, all
three interacting fields have to be sufficiently enhanced by
backscattering inside the structure. This requires localization
of the fields into transmission peaks found near band gaps (for
details [14]). This can be accomplished in two steps. In the
first step, layered structures with the pump beam localized in
a transmission peak near the band gap are identified. Then,
in the second step, the identified structures are analyzed and
those exhibiting the largest number of emitted photon pairs are
chosen.

The considered structures were composed of ten GaN
and ten AlN mutually alternating layers. Their lengths l1
(GaN) and l2 (AlN) were assumed in interval (10 nm,100 nm),
in which the greatest enhancement of fields’ amplitudes
occurs. The linear intensity transmission coefficient Tp for the
pump beam at central wavelength λ0

p and for the considered
GaN/AlN structures is plotted in Fig. 3. It exhibits periodically
alternating transmission and reflection bands. In Fig. 3 the band
gaps are found in blue regions, whereas the transmission peaks
are indicated by red curves. Four transmission peaks indicated
by black curves in Fig. 3 are highlighted (Lj , j = 1, . . . ,4).
The peaks denoted as L2 and L3 occur next to a band gap
and so, according to the theory of band-gap structures, they
provide the greatest enhancement of pump-field amplitudes.
For comparison, we also analyze the structures lying in peaks
L1 and L4.

The overall number NSV of emitted photon pairs for
the structures lying on curves L1, L2, L3, and L4 defined
in the graph of Fig. 3 is determined in the second step to find the
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FIG. 3. Topo graph of linear intensity transmission coefficient
Tp as it depends on layers’ lengths l1 and l2 for the pump beam
at wavelength λ0

p = 400 nm and structure having ten double layers
GaN/AlN. Black dashed curves denoted as L1, L2, L3, and L4 indicate
transmission peaks of the structures used in further analysis.

most efficient structures. For all four curves, the number NSV

of emitted photon pairs increases with the increasing length l1
of nonlinear GaN layers (see the curves in Fig. 4). This increase
originates in the increasing amount of nonlinear GaN material
inside the structure. However, the observed dependence is
nontrivial as interference of the fields backscattered inside
the structure depends strongly on the layers’ lengths l1 and
l2. The number NSV of emitted photon pairs increases faster
for the structures lying on curves L1 and L2 situated below
the band gap compared to those found at curves L3 and L4

positioned above the band gap. This is probably caused by
the fact that the pump-field amplitudes along the structure are
localized preferably in the nonlinear GaN layers for the peaks
below the band gap, contrary to the peaks above the band gap
in which the pump-field amplitudes are preferably localized in
the linear AlN layers.

Contrary to the overall number NSV of emitted photon
pairs, the ratio R of photon-pair number NS emitted at the
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FIG. 4. Number NSV of photon pairs emitted in both volume and
surface SPDC (full curves) and ratio R of photon-pair number arising
in surface SPDC and that coming from volume SPDC (dashed curves)
as they depend on GaN layers’ length l1. The quantities are drawn
for curves L1 (blue curves), L2 (green), L3 (yellow), and L4 (red)
defined in Fig. 3.
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FIG. 5. (a) Joint signal-idler spectral photon-number density nSV

of complete SPDC and (b) profiles of joint signal-idler spectral
photon-number densities nS (red curve), nV (green), and nSV (blue)
arising in turn in surface, volume, and complete SPDC along the line
ωs + ωi = ω0

p as they depend on normalized signal frequency ωs/ω
0
p;

N = 20, l1 = 60 nm, l2 = 13 nm, λ0
p = 400 nm.

surfaces and number NV of photon pairs created in the volume
decreases with the increasing length l1 of GaN layers. This
is so as the number NS of photon pairs emitted at surfaces
decreases with the increasing length l1 and, simultaneously,
the number NV of photon pairs generated in the volume raises
as the length l1 increases. Decrease in the ratio R is faster for
curves L1 and L2 as the number NV of photon pairs plotted as
a function of length l1 raises faster.

For a detailed analysis we have chosen a structure composed
of ten GaN layers l1 = 60 nm long and ten AlN layers l2 = 13
nm long. Its joint signal-idler spectral photon-number density
nSV for the whole SPDC process is drawn in Fig. 5(a). Photon-
pair emission occurs in a broad frequency range. Three main
peaks can be found in the spectral density nSV of both signal
and idler fields shown in Fig. 5(b). The main peaks are found
at the central frequencies 2ωs/ω

0
p = 2ωi/ω

0
p = 1 where nSV =

4.97×10−33 s2 mm−2. On the other hand, the profile of photon-
number density nSV plotted as a function of the difference
ωs − ωi of the signal and idler frequencies is narrow as its
spread is dominantly given by the pump-field spectral width.
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SPDC (blue curve) and ratio ηs of the signal surface and volume
photon-number densities (red curve) for the structure described in the
caption to Fig. 5.

To get insight into the origin of photon pairs generated
in SPDC, we compare in parallel the contribution of volume
SPDC and surface SPCD to the complete SPDC process. These
contributions are compared in Fig. 5(b) where the profiles of
the corresponding joint signal-idler spectral photon-number
densities n taken along the line ωs + ωi = ω0

p are plotted. There
occur nine resonant peaks in the profiles nS and nV belonging
to volume and surface SPDC, respectively. Contrary to this,
only five well-recognized peaks are observed in the profile
nSV characterizing the complete SPDC process. This points
out a strong interference between the amplitudes describing
volume and surface SPDC processes. Indeed, this interference
suppresses two outermost peaks at both sides of the spectral
profiles nS and nV. The comparison of profiles in Fig. 5(b)
for the densities nSV and nV identifies volume SPDC as
being roughly twice intense compared to the complete SPDC
process. This means that surface SPDC has to be sufficiently
strong to cause the reduction of spectral photon-pair densities
to roughly one half via destructive interference. The profile of
density nS created by surface SPDC and plotted in Fig. 5(b)
confirms this reasoning. We note that the profiles of all three
densities nV, nS, and nSV cut along the line ωs = ωi have
comparable shapes resembling that of the pump-field intensity
spectrum.

The relative contributions of surface and volume SPDC
processes are compared in Fig. 6 where the signal spectral
photon-number density nV

s of volume SPDC and the ratio
ηs of the signal surface and volume spectral photon-number
densities are drawn. Volume SPDC is efficient in the broad
spectral range ωs ∈ (0.1,0.9)ω0

p. The smallest values of ratio
ηs are reached in the center of the emission interval (ηs ≈ 0.5)
where one surface photon pair is created together with about
two volume photon pairs. On the other hand, the values of
ratio ηs approach 1 at the edges of the spectral profile nV

s .
This means that the volume and surface SPDC processes are
comparably strong in this region and the numbers of emitted
surface and volume photon pairs are comparable.

In time domain, the joint signal-idler probability densities
pV, pS, and pSV of detecting a signal photon at time ts and
its idler twin at time ti attain typical cigar shapes in their topo
graphs in the (ts,ti) plane (for the probability density pSV,
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FIG. 7. Joint signal-idler probability density pSV of the complete
SPDC process as it depends on the signal- (ts) and idler-photon (ti)
detection times.

see Fig. 7). The joint photon-number probability densities pV

of volume SPDC and pS of surface SPDC have similar profiles.
Maximum of the probability density pV (pS) is reached at t ≡
ts = ti = 10.3 fs (t = 10.1 fs). On the other hand, maximum
of the probability density pSV is observed earlier, at t = 9.5
fs. This is the consequence of strong destructive interference
between the volume and surface contributions to the SPDC
process. We note that this time gives a relative average delay
that a signal (as well as an idler) photon needs to leave the
structure after being born “inside” the propagating pump pulse.

The profiles of conditional probabilities pS, pV, and pSV of
detecting a signal photon at time ts provided that its idler twin
was detected at time ti are close to each other. They are drawn
for the analyzed structure in Fig. 8 for ti = 10 fs, where their
widths equal 1.4 fs (FWHM).

Also the signal-field photon fluxes pS
s , pV

s , and pSV
s are

close to each other, as documented in Fig. 9. Their roughly
Gaussian temporal profiles are 35.8 fs wide (FWHM), which
is comparable to the pump-beam temporal width.

In the analyzed structure, photons comprising the gener-
ated photon pairs may leave the structure in both forward
and backward directions and also in different polarization

1

2

3

4

5

6

7

p
(1

014
s-1

)

0
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

ts (10-14 s)

pS pSV

pV

FIG. 8. Conditional probability densities pSV (complete SPDC,
blue curve), pV (volume SPDC, green), and pS (surface SPDC, red)
of detecting a signal photon at time ts provided that its idler photon
was detected at time ti = 10 fs.
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FIG. 9. Signal-field photon fluxes pSV
s (complete SPDC, blue

curve), pV
s (volume SPDC, green), and pS

s (surface SPDC, red).

combinations. The total number NSV of photon pairs leaving
the structure at both directions is 2.9×10−3 mm−2 per pulse.
Whereas the volume SPDC process would alone provide NV =
6.9×10−3 mm−2 photon pairs per pulse, the surface SPDC
process alone would generate NS = 4.1×10−3 mm−2 photon
pairs per pulse. This means that the efficiency of surface SPDC
reaches around 60% of that of volume SPDC. We note that
the absolute photon-pair generation rates reached in the
analyzed structure are comparable in the magnitude with those
characterizing a perfectly phase-matched structure containing
the same amount of nonlinear GaN material as the analyzed
structure (for more details, see [14]).

V. CONCLUSIONS

The model of complete spontaneous parametric down-
conversion comprising both its volume and surface contri-
butions has been developed for 1D nonlinear layered struc-
tures considering simultaneously the solution of Heisenberg
equations in individual layers and continuity requirements of
the field’s amplitudes at the layers’ boundaries. The analysis
of fields’ propagation around the boundaries has allowed us
to clearly separate the volume and surface contributions to
the nonlinear process. Strong destructive interference of the
fields’ amplitudes arising in the volume and surface nonlinear
processes has been observed. Owing to this interference, the
photon-pair generation rates equal around one half of those that
would be generated in the only volume nonlinear process. The
surface nonlinear process is in general weaker than that in the
volume, but both of them are comparably strong in the spectral
regions with lower efficiencies of photon-pair generation.
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APPENDIX: INPUT-OUTPUT RELATIONS
OF THE OVERALL STRUCTURE

In this Appendix we summarize the relations among the
signal- and idler-field operators at different positions in the
structure, as derived in the main text, into a compact “super-

vector” and “super-matrix” notation. Then we rearrange them
into explicit input-output relations for the field operators.
The reason for introducing this notation lies in the mutual
coupling of the signal- and idler-field operators emerging in
the nonlinear interaction.

We first rewrite Eqs. (30), (33), and (37) for the signal field
and the corresponding equations for the idler field into the
super-vector and super-matrix notation:

L(l−1)Â(l−1),0(zl) = L(l)Â(l),0(zl), (A1)

I(zl)ÂV(zl) = −J (l−1)
F Â(l−1),0(zl) + J (l)

B Â(l),0(zl), (A2)

I(zl)ÂS(zl) = −J (l−1)
B Â(l−1),0(zl) + J (l)

F Â(l),0(zl) (A3)

that uses the super-matrices L(l), I, and Ja ,

L(l) ≡ diag
[
L(l)

s ,L(l)
i

]
, (A4)

I(zl) ≡ diag[Is(zl),Ii(zl)], (A5)

J (l)
a ≡ adiag

[
J(l)

sa
,J(l)

ia

]
, a ∈ {F,B}. (A6)

Symbol diag (adiag) stands for a diagonal (antidiagonal)
matrix. Super-vector operators Â(l),0(z), ÂV(zl), and ÂS(zl)
occurring in Eqs. (A1)–(A3) are defined as

Â(l),0(z) =
[

Â(l),0
s (z)

Â(l),0†
i (z)

]
, (A7)

Âw(zl) =
[

Âw
s (zl)

Âw†
i (zl)

]
, w ∈ {S,V}. (A8)

The free-field operators Â(l),0, l ∈ {1, . . . ,N}, represent the
source of photon pairs emitted either in the volume of layers
[Eq. (A2)] or at the boundaries between the layers [Eq. (A3)].
To quantify both volume and surface SPDC, we need to express
these operators in terms of those impinging on the crystal. We
first write down the relations between the super-vectors Â(l),0

at the left and right boundaries of an lth homogeneous layer,
already expressed in Eq. (38) for the signal field:

Â(l),0(zl+1) = P (l)Â(l),0(zl) (A9)

and

P (l) =
[

P(l)
s 0

0 P(l)∗
i

]
. (A10)

The operators Â(0),0(z1) on the left-hand side of the structure
and operators Â(N+1),0(zN+1) on the right-hand side of the
structure are related by the following equation:

Â(N+1),0(zN+1) = T (N+1,0)Â(0),0(z1), (A11)

where

T (n,m) ≡ L(n)−1

(
n−1∏

l=m+1

L(l)P (l)L(l)−1

)
L(m),

m,n ∈ {0, . . . ,N + 1},n > m. (A12)

In Eq. (A12), terms in the product are multiplied from the
right to the left as index l increases. If n = m + 1, the product
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in Eq. (A12) is set to unity by definition. The general transfer
matrix T (n,m) defined in Eq. (A12) transfers the operators from
the right boundary of layer m (z = zm) to the left boundary
of layer n (z = zn−1) (see Fig. 1 in the main text). The matrix
T (N+1,0) then describes the propagation through the whole
layered structure.

The operators Â(N+1),0
a,α (zN+1) and Â(0),0

a,α (z1) embedded in
the super-vectors Â(N+1),0(zN+1) and Â(0),0(z1), respectively,
have to be rearranged to express the field operators leaving the
structure [Â(N+1),0

F,α (zN+1) and Â(0),0
B,α (z1)] in terms of the oper-

ators entering the structure [Â(0),0
F,α (z1) and Â(N+1),0

B,α (zN+1)]. As
the relations among the considered field operators are linear,
the needed formulas are easily found. To express them, we
introduce the notation in which the signal- and idler-field
operators are suitably rearranged:

Â(out),w =

⎡
⎢⎢⎢⎢⎣

Â(N+1),w
F,x

Â(0),w
B,x

Â(N+1),w
F,y

Â(0),w
B,y

⎤
⎥⎥⎥⎥⎦, Â(in),w =

⎡
⎢⎢⎢⎢⎣

Â(0),w
F,x

Â(N+1),w
B,x

Â(0),w
F,y

Â(N+1),w
B,y

⎤
⎥⎥⎥⎥⎦ (A13)

and

Â(l),w
a,α (z) ≡

[
Â(l),w

sa ,α
(z)

Â(l),w†
ia ,α (z)

]
, w ∈ {0,S,V},

a ∈ {F,B}, α ∈ {x,y}. (A14)

In this notation, the input-output formulas for fields’ operators
are written as

Â(out),0 = F Â(in),0. (A15)

Detailed calculations reveal the matrix F in the form

F ≡ U−1V,

U ≡

⎡
⎢⎢⎢⎣

1 −[T ]Fx,Bx 0 −[T ]Fx,By

0 −[T ]Bx,Bx 0 −[T ]Bx,By

0 −[T ]Fy,Bx 1 −[T ]Fy,By

0 −[T ]By,Bx 0 −[T ]By,By

⎤
⎥⎥⎥⎦,

V ≡

⎡
⎢⎢⎢⎣

[T ]Fx,Fx 0 [T ]Fx,Fy 0

[T ]Bx,Fx −1 [T ]Bx,Fy 0

[T ]Fy,Fx 0 [T ]Fy,Fy 0

[T ]By,Fx 0 [T ]By,Fy −1

⎤
⎥⎥⎥⎦, (A16)

T ≡ T (N+1,0). We remind that the operators Â(N+1),0
a,α on the

right-hand side of the structure are evaluated at position zN+1,
whereas the operators Â(0),0

a,α on the left-hand side of the
structure are determined at position z1. In the definitions of
matrices U and V in Eq. (A16), symbol 1 means the diagonal
unity matrix of appropriate dimensions.

Utilizing transformations (A11) and (A15) the operators
Â(l),0(zl) in layer l are expressed in terms of the input operators
as

Â(l),0(zl) = T (l,0)W Â(in),0 (A17)

using the following matrix W:

W ≡

⎡
⎢⎣

1 0 0 0
[F]Bx,Fx [F]Bx,Bx [F]Bx,Fy [F]Bx,By

0 0 1 0
[F]By,Fx [F]By,Bx [F]By,Fy [F]By,By

⎤
⎥⎦.

(A18)

Exploiting Eqs. (A9) and (A17) the operators Â(l),0(zl+1) are
expressed via the input operators along the relation

Â(l),0(zl+1) = P (l)T (l,0)W Â(in),0. (A19)

The operators ÂV(zl) and ÂS(zl) determined in Eqs. (A2)
and (A3), respectively, describe photons born in volume and
surface SPDC. Such photons, after being emitted in a given
layer or at a given boundary, propagate as free fields towards
the output planes of the structure. This propagation obeys the
following linear relations:

Âw(zl) = X (zl)Y Â(out),w, w ∈ {S,V}. (A20)

In Eq. (A20), matrices X (zl) and Y are defined along the
relations

X (zl) ≡

⎡
⎢⎢⎢⎣

[T (l,0)]Fx,Fx [T (l,0)]Fx,Bx

[T̃ (l,0)]Bx,Fx [T̃ (l,0)]Bx,Bx

[T (l,0)]Fy,Fx [T (l,0)]Fy,Bx

[T̃ (l,0)]By,Fx [T̃ (l,0)]By,Bx

[T (l,0)]Fx,Fy [T (l,0)]Fx,By

[T̃ (l,0)]Bx,Fy [T̃ (l,0)]Bx,By

[T (l,0)]Fy,Fy [T (l,0)]Fy,By

[T̃ (l,0)]By,Fy [T̃ (l,0)]By,By

⎤
⎥⎥⎥⎦, (A21)

Y ≡

⎡
⎢⎢⎢⎣

[Z]Fx,Fx [Z]Fx,Bx [Z]Fx,Fy [Z]Fx,By

0 1 0 0

[Z]Fy,Fx [Z]Fy,Bx [Z]Fy,Fy [Z]Fy,By

0 0 0 1

⎤
⎥⎥⎥⎦. (A22)

In Eq. (A21), T̃ (l,0) = P (l)T (l,0). The matrix Z occurring
in Eq. (A22) stands for the inverse matrix to F defined in
Eq. (A16) (Z = F−1).

Now we return back to the central equations (A2) and (A3)
of the Appendix that describe the emission of photon pairs
around the boundary surrounded by the (l − 1)th and lth layers.
Whereas Eq. (A2) describes photons emitted in volume SPDC
and propagating forward in the (l − 1)th layer and backward
in the lth layer, Eq. (A3) characterizes photon pairs coming
from surface SPDC occurring at the boundary between the
two layers. The “local” operators found in these equations
have to be replaced by those describing the fields outside the
structure and mutually related by free-field propagation. The
operators of the fields impinging on the boundary from the left-
as well as right-hand side are replaced by those entering the
structure applying Eq. (A17). On the other hand, the operators
characterizing the fields propagating out of the boundary are
substituted by those appropriate for the fields leaving the whole
structure with the help of Eq. (A20). This results in the relation
between the input and output operators of the fields describing
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one photon pair born around the boundary of the (l − 1)th and
lth layers:

Â(out),w
(l) = S (l,l−1),wÂ(in),0, w ∈ {S,V} (A23)

and

S (l,l−1),V = [I(zl)X (zl)Y]−1

× (−J (l−1)
F T̃ (l−1,0) + J (l)

B T (l,0)
)
W,

S (l,l−1),S = [I(zl)X (zl)Y]−1

× (−J (l−1)
B T̃ (l−1,0) + J (l)

F T (l,0)
)
W. (A24)

The operators of the overall fields at the output of the structure
are given by coherent superposition of the contributions from
all layers and their boundaries:

Â(out),w = Gw Â(in),0,

Gw =
N+1∑
l=1

S (l,l−1),w, w ∈ {S,V}. (A25)

Knowing relation (A25) between the operators Â(out),w, w ∈
{S,V}, and Â(in),0, the application of transformations given in
Eqs. (17) and (18) finally provides Eq. (41) in the main text that
expresses the output signal-field operators â(out),w

sa ,α
, w ∈ {S,V},

in terms of the input idler-field operators ˆ̄a(in)†
ib,β .
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[37] J. Peřina, Jr., A. Lukš, and O. Haderka, Emission of photon
pairs at discontinuities of nonlinearity, Phys. Rev. A 80, 043837
(2009).
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