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Multiple topological phase transitions in a gyromagnetic photonic crystal
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We present the design of a tunable two-dimensional photonic crystal that exhibits multiple topological phases,
including a conventional insulator phase, a quantum spin Hall phase, and a quantum anomalous Hall phase under
different combinations of geometric parameters and external magnetic fields. Our photonic crystal enables a
platform to study the topology evolution attributed to the interplay between crystalline symmetry and time-reversal
symmetry. A four-band tight-binding model unambiguously reveals that the topological property is associated
with the pseudospin orientations and that it is characterized by the spin Chern number. The emerging quantum
anomalous Hall phase features a single helical edge state that is locked by a specific pseudospin. Simulation
results demonstrate that the propagation of such a single helical edge state is robust against magnetic impurities.
Potential applications, such as spin splitters, are described.

DOI: 10.1103/PhysRevA.95.043827

I. INTRODUCTION

A key principle of the quantum Hall (QH) effect is the
presence of a magnetic field that breaks the time-reversal
(TR) symmetry, leading to quantized Hall conductance and
the chiral edge states of electrons [1–3]. Quantized Hall
conductance is associated with the Chern number, a mathemat-
ical concept that characterizes the topology of the electronic
bands. Recently, a new class of topological effect, namely, the
quantum spin Hall (QSH) effect [4–6], was predicted in the
two-dimensional (2D) Kane-Mele model [7] and confirmed
in HgTe quantum wells [8,9]. Different from the QH effect,
the QSH effect is attributed to the spin-orbit coupling that
preserves TR symmetry. The QSH effect gives rise to helical
edge states [10] in which opposite spins counterpropagate and
contribute to opposite quantized Hall conductivities. The chiral
and helical edge states, respectively, produce robust charge and
spin charge edge currents protected by the bulk topology of
the system, implying promising possibilities for spintronics
and quantum computing [11].

TR symmetry plays a subtle role in the robustness of the
QSH effect [12–14]. For Fermi particles, such as electrons,
preserved TR symmetry guarantees Kramers’ degeneracy and
associates two oppositely moving edge states with opposite
spins. Elastic backscattering is thus forbidden under any
nonmagnetic scatterer that preserves TR symmetry. Slightly
breaking the TR symmetry in a QSH sample leads to a
TR-broken QSH phase in which the states associated with
different spins are separated without changing their propa-
gating directions [15]. Further breaking the TR symmetry
results in a quantum anomalous Hall (QAH) phase [16] in
which only one helical edge state locked by a particular
moving direction (or spin orientation) survives on the boundary
[17,18]. Due to the well-known difficulties in realizing the
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sophisticated Hamiltonian, the experimental demonstration of
the TR-broken-QSH effect in the electronic system is limited.

Recently, the study of the QH effect and chiral edge
states was extended successfully to classical wave systems
due to the analogy between the electronic and the photonic
or phononic band gaps [13,19–23]. However, the extension
of the QSH effect was more challenging because fermions
and bosons are radically different under the time-reversal
operation. Despite this difficulty, many groups have observed
that Kramers’ degeneracy and the associated QSH effect
can also be achieved for pseudospin-1/2 states in systems
where pseudo-TR symmetry is constructed from particular
spatial symmetries [24–34]. Pioneering examples of construc-
tions of pseudospin-1/2 states include the use of hybrid
transverse electric (TE) + transverse magnetic (TM) and
TE-TM states [26,28,29], left circular polarization and right
circular polarization states, or clockwise and counterclockwise
helical energy flow states [24,25,30,33]. It has been proved
that applying the pseudo-TR operator on a pseudospin-1/2
state is mathematically equivalent to applying the real TR
operator on a real spin-1/2 state. Given these observations,
we wondered what the consequence would be when real
TR symmetry is broken in a QSH sample that possesses
pseudo-TR symmetry. The answer to this question should
provide more profound understanding of the band topology
in both classical and quantum systems because these two
types of systems share similar mathematical foundations. The
seemly difficult problem in quantum systems may be resolved
in classical systems as more degrees of freedom are offered in
the engineering of the band topology.

In this paper, we seek an answer to the question by analyzing
the topological properties of a simple 2D photonic crystal
(PC) made from a gyromagnetic material. Without an external
magnetic field, such a 2D PC may behave either as a QSH
insulator with pseudo-TR symmetry or as a conventional
insulator, depending on the geometry. We found that, by
applying a gradually enhanced external magnetic field, the
2D PC goes through either a phase transition from a QSH
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FIG. 1. Construction of a photonic crystal supporting the topo-
logical transition from a conventional insulator (or a QSH insulator) to
a QAH insulator. (a) Schematic of a unit cell. Parameter R is tunable,
and the permeability tensor μ̂1 can also be tuned under a dc magnetic
field. (b) Evolution of the eigenstates under an increasing external
magnetic-field H . The gray area indicates a band gap. There are two
initial phases: A conventional insulator when a/R > 3 and a QSH
insulator when a/R < 3. Increasing H lifts the degeneracies of the
pseudospins, resulting in a gap closing and reopening. (c) Frequencies
of the eigenstates as functions of the applied external magnetic field
when a/R = 2.92. (d) A phase diagram of the topological property
with combined modulation of R and H . The left blue (right red)
line indicates the topological transition between the QSH insulator
(conventional insulator) and the QAH insulator. Note that H starts
from 100 G, which is strong enough for the magnetization of the
yttrium iron garnet (YIG) material to reach the saturated state.

insulator to a TR-broken-QSH insulator and then to a QAH
insulator or a transition from a conventional insulator to a
QAH insulator. If the external magnetic field is fixed, gradually
increasing the distance between the neighboring cylinders in
a unit cell may result in a phase transition from a conventional
insulator to a QAH insulator and then to a TR-broken-QSH
insulator. To capture the essence of these phase transitions,
we developed an effective Hamiltonian and classified the
topological properties by the spin Chern number, a topological
invariant that is uniquely defined in different phases [35].
Both our theoretical model and numerical simulations show
the existence of a tunable topological edge state locked by a
particular pseudospin orientation.

II. PHOTONIC CRYSTAL AND TOPOLOGICAL PHASES

The 2D PC considered here is a triangular lattice of
hexagonal clusters. The lattice constant, i.e., the distance
between the centers of the neighboring clusters, is a. A
hexagonal cluster (unit cell) is illustrated in Fig. 1(a), which
shows six identical cylinders made from the gyromagnetic
material yttrium iron garnet (YIG, ε1 = 15ε0) and distributed
in air. ε0 is the dielectric constant of air. The distance between
the center of a cluster to the center of its associated cylinder is

R, which can be adjusted. The diameter of each cylinder is set
to D/a = 0.17. The permeability tensor μ̂1 of YIG depends
on the applied magnetic field and frequency, whose detailed
expressions are obtained from the Drude model [36].

We start from the eigenvalue problem of an out-of-plane
wave [ �E = (0,0,Ez)] governed by Maxwell’s equation in our
design of a PC [3]. Without the external magnetic field, the PC
possesses two doubly degenerate eigenstates in the center of
the Brillouin zone. These eigenstates are associated with two
2D irreducible representations of a C6v point group, i.e., E1

and E2, and share the same symmetry with the basis functions
of them. The basis functions can be classified according to
their spatial parities, marked as px,py,dxy, and dx2−y2 , a
conventional notation widely adopted to describe electronic
orbitals. The px and py states degenerate and so do the dxy and
dx2−y2 states. There exists a band gap between the p states and
the d states. It was demonstrated in Ref. [30] that these states
can form two pseudospin states (p± = px ± ipy and d± =
dxy ± idx2−y2 ) that can be recognized from the patterns of the
Poynting vectors �S = Re[ �E × �H ∗]/2. The Poynting vectors
circle around in a unit cell, and the counterclockwise (clock-
wise) rotation corresponds to the pseudospin-up (pseudospin-
down) state. These states form a basis ([p+,d+,p−,d−]) upon
which a tight-binding model is developed. The Hamiltonian
near the � point is written as H0 = E0 + Dk2 + A(τ̂zkyσ̂x −
kxσ̂y) + (M0 − Bk2)σ̂z, where E0, A, D, M0, and B are model
parameters [37] and are described in detail in Appendix A. τ̂

and σ̂ are the Pauli matrices for the two pseudospins and the
two bands, respectively.

The external magnetic field separates the degenerate pseu-
dospin states. The magnetic field is modeled by an effective
vector potential [3], resulting in the split of the spinlike
Zeeman-type spin splitting. We introduce a perturbation
Hamiltonian [38,39],

Hz =

⎛
⎜⎝

zp 0 0 0
0 zd 0 0
0 0 −zp 0
0 0 0 −zd

⎞
⎟⎠ + z0I,

where the pseudospin splitting is 2zp for the p± states and
2zd for the d± states. z0 is the total energy shift caused by
the gyromagnetic material under an applied magnetic field,
which does not affect the topology of the bands. Since the
“effective masses” for the p band and the d band have opposite
signs, we have zpzd < 0 (here zp < 0, zd > 0). The detailed
expressions of the Hamiltonian with an external magnetic field
are presented in Appendix A.

Figure 1(b) shows the evolution of the eigenfrequencies of
the originally degenerate pseudospin states under the excita-
tion of an external magnetic field. Two initial states associated
with different geometries are considered. To characterize the
topology of the band, we employ the theory of the spin Chern
number [40] and derived the following expression (details are
available in Appendix B):

C± = ±[sgn(B) + sgn(M0 ± g)]/2, (1)

where g = (zp − zd )/2 < 0 in our photonic system. When
g = 0, the system exhibits a topological transition from a
conventional insulator to a QSH insulator by simply increasing
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FIG. 2. Bulk bands of four PCs with a common global band
gap. (a) System I with a/R = 3.75, and H = 0 corresponds to a
conventional insulator. (b) System II with a/R = 3.04, and H =
3300 G corresponds to a QAH insulator. (c) System III with a/R =
2.6, and H = 200 G corresponds to a TR-broken-QSH insulator.
(d) The same as (b) but a/R = 2.95.

R. For example, without the external magnetic field, the
system is a QSH insulator (M0 > 0, B > 0) with spin Chern
number C± = (1,−1) when a/R < 3; but it is a conventional
insulator (M0 < 0, B > 0) with spin Chern number C± = 0
when a/R > 3. These two cases correspond to the initial
states shown in Fig. 1(b), which were extensively discussed in
Ref. [30]. It is noted that these two initial phases can also be
characterized by the Z2 index since they respect the TRS.
Once the external magnetic field is applied, the Z2 index
is not valid, and the spin Chern number has been proved
to be the topological invariant [35]. In this case, the g in
Eq. (1) is no longer zero, and its magnitude increases as the
applied field increases. When the magnitude of g is greater
than M0, the spin Chern number becomes C± = (0,−1), and
the system becomes a QAH insulator regardless of the initial
state. The topological transition from a QSH phase (or a
conventional insulator phase) to a QAH phase is associated
with the band inversion of p+ and d+ (or p− and d−)
shown in Fig. 1(c) and can be predicted numerically from the
evolution of the eigenfrequencies of the relevant states at the
� point. Figure 1(d) presents the topological phase diagram
as a function of the geometric parameters and the external
magnetic field. Each point on the curve indicates a Dirac cone
at the � point. These cones are attributed to the accidental
degeneracy of the p+ and d+ states (red) or the p− and d−
states (blue). Topological transitions between QSH and QAH
phases occur across the blue curve. Similarly, the topological
transition between QAH and conventional insulator phases
happens on the red curve.

Figure 2 shows four representative band structures of
the photonic crystal with different geometric parameters
and external magnetic fields. The results are calculated by
the commercial software COMSOL MULTIPHYSICS under the
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FIG. 3. Projected band structures and edge states. (a) Dispersion
relation for a ribbon-shaped 2D topological PC with 80 unit cells
formed by systems I and IV. Red triangles (blue circles) indicate
the edge state in the left (right) interface. The gray arrows represent
the pseudospins. (b) The same as (a) but for systems III and IV. (c)
Distributions of the Ez field at k = 0.4π/a with clockwise Poynting
vectors. (d) Edge states with counterclockwise Poynting vectors
between systems III and IV.

assumption that the parameters ε1 and μ̂1 are not sensitive
to frequency. This assumption is valid around 14.5 GHz. We
set the lattice constant to be a = 1.15 cm in our simulations
for the sake of producing a common band gap for various
scenarios in our later analysis. In Fig. 2, the upper (lower)
panel corresponds to two cases with a/R > 3 (a/R < 3). The
respective external magnetic fields are marked in each plot. All
scenarios share a common band gap around the dimensionless
frequency ωa/(2πc) = 0.5541. According to our previous
analysis as shown in Fig. 1(c), system I is a conventional
insulator with C± = 0, systems II and IV are QAH insulators
with the same topological invariant C± = (0,−1), and system
III is a TR-broken-QSH insulator with C± = (1,−1). We note
that the external magnetic field applied on system III is weak,
meaning the TR symmetry is broken slightly.

III. EDGE STATES

Overlapping the band gaps of different types of insulators
benefits the study of edge states on the interfaces between
insulators with different spin Chern numbers. We construct
two supercells, one from a conventional insulator (system I)
sandwiched between two identical QAH insulators (system
IV), and the other a broken TR-QSH insulator (system III)
in a QAH insulator (system IV). As illustrated in Figs. 3(a)
and 3(b), both supercells contain 80 unit cells divided
equally into different insulators. Each supercell contains two
interfaces. The calculated projected band structures are plotted
in Figs. 3(a) and 3(b) where the red and blue lines indicate
the edge states on the left and right interfaces, respectively.
For the case shown in Fig. 3(a), systems I and IV carry
spin Chern numbers C± = 0 and C± = (0,−1), respectively.
For the pseudospin-up (+) component, the entire system is
topologically equivalent, but for the pseudospin-down (−)
component, it behaves like a QH system characterized by a
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FIG. 4. Single helical edge state and robust one-way propa-
gation. The source is marked as a star with operating frequency
0.5533ωc/(2πa). S+ (S−) represents pseudospin-up (pseudospin-
down), which is excited by in-plane magnetic fields with a π/2 phase
difference: S± = H0(x̂ ∓ iŷ). (a) Conventional insulator behavior
when excited by a pseudospin-up source. (b) Robust one-way
propagation of a helical state against magnetic impurities with a
pseudospin-down source excitation. (c) Robust one-way propagation
of a helical state against sharp bends.

gapless edge state as shown in Fig. 3(a). We find that the
edge states are located at the interface and decay exponentially
into the bulk [displayed in Fig. 3(c)]. The edge state exhibits
clockwise rotation behavior in the Poynting vector, indicating
that the state is associated with a pseudospin-down state, which
verifies our prediction. A similar argument can be extended to
the case shown in Fig. 3(b) in which the spin Chern numbers are
C± = (1,−1) for system III and C± = (0,−1) for system IV.
Although spin Chern numbers for the pseudospin-down com-
ponent in both systems are nonzero, they are identical. Thus,
there exists no edge state associated with the pseudospin-down
component. The difference in the spin Chern numbers for the
pseudospin-up component guarantees the existence of the edge
state as shown in Figs. 3(b) and 3(d). The counterclockwise
pattern of the Poynting vector shown in Fig. 3(d) coincides
with the characteristic of a pseudospin-up state.

The pseudospin-dependent feature also is manifested in
our full wave simulations of a finite (40 × 20) lattice as
shown in Fig. 4 in which the upper half of each panel
shows system I and the lower half shows system IV. When
excited by a pseudospin-up source, the entire system behaves
like a conventional insulator, and there exists no edge state
[Fig. 4(a)]. On the contrary, if the source contains only
a pseudospin-down component, one-way propagation edge
states emerge as displayed in Fig. 4(b). This behavior is distinct
from that in QSH insulators which are characterized by pairs
of helical edge states.

The robustness of the edge states is demonstrated by
introducing a magnetic impurity or geometric deformations

FIG. 5. A photonic pseudospin splitter. The insets: schematic
of the pseudospin splitter. The star indicates an out-of-plane Ez

source. The black arrows indicate the propagation directions of the
edge states, whose pseudospins are represented by blue arrows. The
structure (40 × 20 lattices) is surrounded by a perfectly matched layer.
The operating frequency is the same as that in Fig. 4. The enlarged
field patterns show the pseudospin splitting effect in which the arrows
denote the Poynting vectors (pseudospin orientations).

on the edge. The magnetic impurity is caused by replacing the
cylinders in one unit cell with different permeability tensors
[Fig. 4(b)], and geometric deformations are constructed by
replacing a parallelogram region of system IV with that
of system I [Fig. 4(c)]. Both Figs. 4(b) and 4(c) clearly
exhibit the defect-immune one-way propagation behavior of
pseudospin-down edge states. It should be noted that the
robustness of helical edge states in QSH insulators is protected
by TR symmetry. Thus, introducing a magnetic impurity would
cause backscattering in a QSH insulator. In our system, due
to the lattice deformation and the applied magnetic field,
both pseudo-TR symmetry and real TR symmetry are broken.
However, the single helical edge state is protected by the
topological invariant and spin Chern number, and therefore
no backscattering occurs even with the presence of magnetic
impurities. This striking difference distinguishes our system
from conventional QSH insulators. Similar results can be
obtained for the pseudospin-up component along the interface
between systems III and IV. We also want to emphasize that the
one-way propagation edge states here are associated with the
pseudospin states which require the C6 lattice symmetry in 2D.
It is impossible to achieve such a kind of pseudospin-locked
edge state in a PC with C4 symmetry.

The robust pseudospin-dependent propagation against mag-
netic impurities has several potential applications. Figure 5
shows that the waves emanating from a trivial source (a line
source with an out-of-plane Ez field) can be divided into
separate pseudospin-up and pseudospin-down components in
a carefully designed sample. We insert two QAH insulators
into the interface of a conventional insulator (system I)
and a TR-broken-QSH insulator (system III). The geometric
parameters of these two QAH insulators are identical to those
of insulator IV, but the applied magnetic field is in the opposite
direction. Both theoretical analysis and numerical simulation
demonstrate the robust one-way propagation behavior of
particular spin orientations. The existence of the two QAH
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insulators ensures that the edge states are robust against both
magnetic and nonmagnetic defects.

IV. CONCLUSION

In conclusion, we propose a tunable photonic crystal with
multiple topological phases. It can behave as a conventional
insulator, a QSH insulator, or a QAH insulator by simply ad-
justing the geometric parameters and/or the magnetic field. A
four-band tight-binding model clearly captures the phase tran-
sitions between different phases and reveals the subtle relation
between the pseudo-TR symmetry and the real TR symmetry. It
unambiguously shows that the topological invariant of the band
is the spin Chern number and predicts the existence of a robust
single helical edge state that is associated with pseudospin.
The prediction is verified by numerical simulations, implying
potential applications, such as spin splitter devices.
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APPENDIX A: HAMILTONIAN WITHOUT AND WITH AN
APPLIED MAGNETIC FIELD

In this appendix, we derive the Hamiltonian based on the
tight-binding method. The system we studied requires a four-
band model containing four basis states classified by different
symmetries. The total energy is given in the language of second
quantization: Ĥ0 = ∑

m̂n̂αβ t
αβ

m̂n̂cn̂β , where m̂ and n̂ are indices
of the lattice sites and α and β take the values (1–4), which
correspond to the states (px,py,dxy, and dx2−y2 ), respectively.
t
αβ

m̂n̂ describes the coupling between state α on site m̂ and state
β on site n̂. On the conditions that only the nearest coupling is
considered and that the periodic boundary condition is invoked
and after taking the Fourier transform, we obtain the Hamilto-
nian Ĥ0(k), whose entries are Ĥαβ(k) = ∑6

r=0 t
αβ
r e−ik·r. Here,

r represents the relative locations of the neighboring unit cells.
The r = 0 term corresponds to the coupling of a unit cell
with itself. By fully exploiting the C6v symmetry, we found
that there are eight independent coupling coefficients, and the
resulting Hamiltonian can be written as [37]

Ĥ0(k) =

⎛
⎜⎜⎜⎝

H11 H12 H13 H14

H ∗
12 H22 H23 −H13

H ∗
13 H ∗

23 H33 H34

H ∗
14 −H ∗

13 H ∗
34 H44

⎞
⎟⎟⎟⎠, (A1)

where

H11 = t11
0 + 2t11

1 cos (kx)

+ (
t11
1 + 3t22

1

)
cos

(
kx

2

)
cos

(√
3ky

2

)
,

H22 = t22
0 + 2t22

1 cos (kx)

+ (
3t11

1 + t22
1

)
cos

(
kx

2

)
cos

(√
3ky

2

)
,

H33 = t33
0 + 2t33

1 cos (kx)

+ (
t33
1 + 3t44

1

)
cos

(
kx

2

)
cos

(√
3ky

2

)
,

H44 = t44
0 + 2t44

1 cos (kx)

+ (
3t33

1 + t44
1

)
cos

(
kx

2

)
cos

(√
3ky

2

)
,

H12 =
√

3
(
t11
1 − t22

1

)
sin

(
kx

2

)
sin

(√
3ky

2

)
,

H13 = i
√

3
(
t14
1 + t23

1

)
cos

(
kx

2

)
sin

(√
3ky

2

)
,

H14 = 2it14
1 sin (kx) + (−t14

1 + 3t23
1

)
sin

(
kx

2

)
cos

(√
3ky

2

)
,

H23 = 2it23
1 sin (kx) + (

3t14
1 − t23

1

)
sin

(
kx

2

)
cos

(√
3ky

2

)
,

H34 = −
√

3
(
t33
1 − t44

1

)
sin

(
kx

2

)
sin

(√
3ky

2

)
.

After converting Eq. (A1) into a new basis representation,
i.e., (p+,d+,p−,d−) and expanding it near the � point, we
deduce that

H0(k) = A(τ̂zkyσ̂x − kxσ̂y) + E0 + Dk2 + (M0 − Bk2)σ̂z.

(A2)

Here, A, E0, D, M0, and B are model parameters defined
by the coupling coefficients as follows:

E0 = [
t11
0 + t33

0 + 3
(
t11
1 + t22

1 + t33
1 + t44

1

)]/
2,

D = −3
(
t11
1 + t22

1 + t33
1 + t44

1

)/
8,

A = 3
(
t14
1 + t23

1

)/
2,

M0 = [
t11
0 − t33

0 + 3
(
t11
1 + t22

1 − t33
1 + t44

1

)]/
2,

B = 3
(
t11
1 + t22

1 − t33
1 − t44

1

)/
8.

The Hamiltonian shares the same structure as the Bernevig-
Hughes-Zhang model for the CdTe/HgTe/CdTe quantum well
structure. We note that B > 0 in our system. According to the
expression of the spin Chern number in Eq. (1) of the main
text (g = 0 because there is no external magnetic field), two
different phases can be distinguished by the sign of M0. If
E(p) < E(d), M0 < 0, the crystal behaves like a conventional
insulator, and if E(p) > E(d), the crystal behaves like a QSH
insulator because M0 > 0.

As discussed in Ref. [3] with transverse electric states
[ �E = (0,0,Ez)], the system made from YIG follows the
equation for zero-energy wave functions of a nonrelativistic

043827-5



CHEN, MEI, SUN, ZHANG, ZHAO, AND WU PHYSICAL REVIEW A 95, 043827 (2017)

particle in a periodic vector ( �A = μ2−κ2

2μ
ẑ × ∇ −κ

μ2−κ2 ) and scalar
potentials. The effective vector potential induces Zeeman-type
splitting in the pseudospin states. We consider the splitting
evolution under a conventional transparency region [41]. It
should be noted that the introduced magnetic field breaks
the symmetry from C6v to C6, which modifies the basis
function written as p+, d+, p−, and d−. Then the Zeeman-type
perturbation can be expressed as Hz = (zp − zd )τ̂zσ̂z/2 +
z0I + (zp + zd )σ̂z/2 where the pseudospin splitting is 2zp for
the p± states and 2zd for the d± states, z0 is the total energy
shift. It also should be noted that zp < 0 and zd > 0 in our
model. We can rewrite the perturbation term in terms of Pauli
matrices τ̂ and σ̂ and consider the approximation of zp ≈ −zd

as suggested by the simulated results (such an assumption
will only alter the position where the topological transition
occurs; it does not affect the general topological properties of
the system). By defining g = (zp − zd )/2, we obtain the new
Hamiltonian as

H (k) = E0 + z0 + Dk2 + (M0 − Bk2)σ̂z

+A(τ̂zkyσ̂x − kxσ̂y) + gτ̂zσ̂z. (A3)

APPENDIX B: CALCULATION OF THE SPIN
CHERN NUMBER

The topological invariant for the QSH effect that preserves
TR symmetry is the Z2 index or the spin Chern number. It
has been argued that the spin Chern number has no symmetry
restrictions and can be viewed as a topological invariant in the
TR-broken-QSH effect [17]. We check the Hamiltonian for a
thin film of Bi2Se3, which can be described by the following
Hamiltonian:

H1(k) = E0 + Dk2 + (M0 − Bk2)σ̂z

+ [A(kyσ̂x − kxσ̂y) + γU ]τ̂x, (B1)

where γU stands for a gate voltage applied between the two
surfaces of the film, which breaks the TR symmetry. The spin
Chern number can be evaluated by [40]

C± = ±[sgn(B) + sgn(M0)]/2, (B2)

which is independent of γU . We let γU = 0 for the
convenience of the following analysis.

We perform a unitary transformation to H (k) in Eq. (A3)
and obtain Hs(k) = S†H (k)S, where

S =

⎡
⎢⎢⎢⎣

1 0 0 0

0 0 0 1

0 0 1 0

0 −1 0 0

⎤
⎥⎥⎥⎦.

We find an interesting mapping between the eigenvalues of
H1(k) and Hs(k) as well as their eigenfunctions by substi-
tuting M0 in H1(k) with M0 ± g. That means Es(M0,g) =
E1(M0 ± g) and �s(M0,g) = �1(M0 ± g), where E and �

denote the eigenvalue and corresponding eigenfunction. Since
the calculation of the spin Chern number relies only on
the eigenvalues and the corresponding eigenfunctions, the
mapping indicates that the expression of the spin Chern
number for H (k) takes the form

C± = ±[sgn(B) + sgn(M0 ± g)]/2. (B3)

In our system, g < 0. Increasing the magnetic field would
increase |g|. In the initial QSH phase, both M0 and B are
positive. M0 − g is always positive regardless of the magnitude
of |g|. The topological phase transition occurs only when M0 +
g changes sign, which corresponds to the spin-up component.
On the other hand, if the initial phase is a conventional insulator
phase M0 < 0,B > 0, and the topological phase transition is
only for the spin-down component when M0 − g changes its
sign. Both transitions would lead to a QAH phase characterized
by the spin Chern number C± = (0,−1).
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