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Traveling waves in the Euler-Heisenberg electrodynamics
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We examine the possibility of traveling-wave solutions within the nonlinear Euler-Heisenberg electrodynamics.
Since this theory resembles in its form the electrodynamics in matter, it is a priori not clear if there exist
traveling-wave solutions with a new dispersion relation for ω(k) or if the Euler-Heisenberg theory stringently
imposes ω = k for any arbitrary ansatz E(ξ ) and B(ξ ) with ξ ≡ k · r − ωt . We show that the latter scheme applies
for the Euler-Heisenberg theory, but point out the possibility of new solutions with ω �= k if we go beyond the
Euler-Heisenberg theory, allowing strong fields. In case of the Euler-Heisenberg theory the quantum-mechanical
effect of the traveling-wave solutions remains in h̄ corrections to the energy density and the Poynting vector.
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I. INTRODUCTION

In the presence of intense electromagnetic fields, quantum
electrodynamics predicts that the vacuum behaves like a
material medium. This happens since starting from the one-
loop level light-light interaction becomes possible for an
even number of photons. Due to this quantum effect, the
linear Maxwell theory receives nonlinear corrections. If the
electromagnetic field does not change too fast and the fields

are below the so-called critical field Bc = m2
e

e
, then the lowest-

order quantum corrections to classical electrodynamics are
encoded in the Euler-Heisenberg Lagrangian [1–5]

LEH = a[(E2 − B2)2 + 7(E · B)2], (1)

where

a = e4

360π2m4
e

. (2)

The breakdown of linearity is predicted to give rise to plenty
of new effects which do not exist in classical electrodynamics
in vacuum. At the optical level the polarization dependent
refractive index of the vacuum in the presence of a magnetic
or electric field is calculated in [6]. Calculations related
to the change of the polarization of a wave due to the
birefringence of the vacuum can be found in [6–9]. Other
effects include vacuum dichroism [10], second-harmonic
generation [11–14], parametric amplification [7,15], quantum
vacuum reflection[16,17], slow light [18], photon acceleration
in vacuum [19], pulse collapse [20,21], and more (see [22,23]
for comprehensive reviews). Examples of waves that are
solutions to the Euler-Heisenberg equations but not to the
classical Maxwell equations are solitons [24,25] and shock
waves [26,27]. Both these solutions are not traveling waves.

Worth mentioning are new developments concerning the
equation of motion for a test body with either a charged
massive particle giving rise to corrections in the Lorentz
force [28], or massless photons who now “feel” the presence
of an electromagnetic field and mimic, in a certain sense, the
motion of a massless particle in general relativity [29–33].
Such a self-interaction of the electromagnetic quanta or the
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interaction of the photon with the field raises the question
“what is the role of a plane wave within such a theory” or, more
generally, what the role of traveling waves is. Comparing the
nonlinear electrodynamics with general relativity, where plane
waves as solutions exist only in the linearized version of the
theory, it is a priori not clear what kind of traveling waves
exist in the Euler-Heisenberg theory and what happens to the
dispersion relation. It is evident that solutions for which the two
gauge invariants E2 − B2 and E · B are zero are also solutions
of the Maxwell theory with ω = k. More generally, keeping
ω = k, the Maxwell solution itself allows for nonzero values of
the gauge invariants. The first question that we can put forward
in such a context is whether these Maxwellian solutions are
also solutions in the Euler-Heisenberg theory. We will show
that the answer is affirmative if we impose a restriction. The
second question of interest is if traveling-wave solutions exist
in the Euler-Heisenberg theory which have no connection to
the Maxwellian case, i.e., waves with a new dispersion relation,
ω(k) �= k. We present a lengthy proof demonstrating that the
only traveling-wave solutions in the Euler-Heisenberg theory
are waves with ω(k) = k, i.e., they are of Maxwellian type but
with a restriction on the integration constants. Interestingly,
this result is not due to some physical principle which would
exclude all other solutions. From a purely mathematical point
of view traveling waves exist with a new dispersion relation,
but we have to reject them on physical grounds as in these
solutions the strength of the fields exceeds the critical value
allowed in the weak-field approximation. We touch upon the
possibility that such a restriction can, in principle, be avoided
by going beyond the Euler-Heisenberg theory. As far as the
Euler-Heisenberg theory is concerned, the physical effect of
traveling-wave solutions is a quantum-mechanical contribu-
tion to the energy density of the waves of the Poynting vector.

The paper is organized as follows. In Sec. II we review
in full generality the Maxwellian case allowing for nonzero
integration constants. In Sec. III we recall the salient features
of the Euler-Heisenberg theory. In Sec. IV we present the
algebraic equations of the Euler-Heisenberg theory with the
traveling waves as an ansatz. Section V probes into the
existence of traveling-wave solutions with ω = k. In the
Appendix we prove that this is the only viable case. In
Sec. VI we discuss a mathematically viable but physically
not acceptable solution with ω �= k. We present the case in
order to argue in Sec. VII that a more general Lagrangian
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allowing strong fields would make a similar and analogous
solution possible.

II. MAXWELL’S TRAVELING WAVES

The method of obtaining solutions in vacuum for the four
Maxwell equations of classical electrodynamics is well known.
It starts by taking the Maxwell equations, four linear first-order
differential equations that involve the electric and magnetic
fields, and combining them to form two waves equations,
which are second-order differential equations, and then solving
the wave equations. The answer is given by fields of the form

E = E(ξ ), (3)

B = B(ξ ), (4)

with

ξ ≡ k · r − ωt. (5)

Waves with such a dependency on the space and time
coordinates are called traveling waves.

In this paper we are interested in the traveling-wave solu-
tions in the Euler-Heisenberg electrodynamics. In the Euler-
Heisenberg case solving the wave equation is not the most
useful approach to the problem. As a preparation for the next
section and for the sake of comparison, we present a different
way to solve the Maxwell equation in vacuum which does not
make use of the wave equation. The same approach will be
used later on to deal with the Euler-Heisenberg equations.

The magnetic Gauss, Faraday, electric Gauss, and Ampere-
Maxwell laws for classical electrodynamics are

∇ · B = 0, (6)

∇ × E = −∂B
∂t

, (7)

∇ · E = 0, (8)

∇ × B = ∂E
∂t

. (9)

Using a traveling-wave condition as an ansatz, we can write
the Maxwell equation as

k · dB
dξ

= 0, (10)

k × dE
dξ

= ω
dB
dξ

, (11)

k · dE
dξ

= 0, (12)

k × dB
dξ

= ω
dE
dξ

. (13)

These equations can be directly integrated to give the following
algebraic relations for the fields:

k · B = CB, (14)

B = k × E
ω

+ dB, (15)

k · E = CE, (16)

E = −k × B
ω

+ dE. (17)

where CB , CE , dB , and dE are integration constants.
Multiplying Eqs. (15) and (17) by k·, we see these constants

are not independent, but instead obey the relations

CB = k · dB, (18)

CE = k · dE. (19)

To find further relations among the quantities involved, we
now insert Eq. (17) into Eq. (15):

B = k×
ω

(
−k × B

ω
+ dE

)
+ dB, (20)

and after some rearranging of the terms we obtain

B
(

1 − k2

ω2

)
= −CB

ω2
k + dB + k × dE

ω
. (21)

Similarly, we can insert Eq. (15) into Eq. (17) to obtain for the
electric field

E
(

1 − k2

ω2

)
= −CE

ω2
k + dB − k × dB

ω
. (22)

A similar algebraic equation will emerge in the Euler-
Heisenberg theory when we make the traveling-wave
ansatz.

The right-hand sides of Eqs. (21) and (22) are constants.
Therefore the only way these equations do not lead to trivial
constant solutions is to have the well-known dispersion relation
for the classical traveling wave k = ω. In this way Eqs. (21)
and (22) become algebraic equations that relate the constants
which appear in the problem, namely,

dB = CB

ω2
k − k × dE

ω
, (23)

dE = CE

ω2
k + k × dB

ω
. (24)

Note that if dB = dE = 0, Eqs. (15) and (17) reduce to

B = k × E, (25)

E = −k × B, (26)

which is the well-known result that k and the undulatory parts
of E and B form a right-handed triplet of orthogonal vectors.
This fact together with the dispersion relations are the main
results for the classical waves.

Finally, we want to find expressions for the quantities
E · B and B2 − E2, which are of great importance for the
generalizations of classical electrodynamics. The first one can
be obtained by direct computation. Multiplying Eq. (13) by E
or Eq. (15) by B we get

E · B = E·dB = dE · B. (27)
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For B2 − E2 we can start by squaring Eq. (15):

B2 =
(

k × E
ω

+ dB

)2

= E2 − CE

ω2
+ d2

B − 2E · (̂k × dB)

= E2 + CE

ω2
+ d2

B − E · dE, (28)

or we can square Eq. (17) to have

E2 = B2 − C2
B

ω2
+ dE + 2B · (̂k × dE)

= B2 + C2
B

ω2
+ d2

E − B · dB. (29)

With this at hand we can write B2 − E2 in a few different
ways:

B2 − E2 = CE

ω2
− d2

B + 2E · (̂k × dB)

= −CE

ω2
− d2

B + E · dE

= −C2
B

ω2
+ dE + 2B · (̂k × dE)

= C2
B

ω2
+ d2

E − B · dB. (30)

As we will encounter a similar situation in the
Euler-Heisenberg case, a comment on the integration
constants dE and dB is in order. First, we mention that
due to the superposition principle in the linear Maxwell
equations we can interpret these constants as part of constant
fields which then enter the full solutions. The fact that,
e.g., dE is part of a constant field can be seen by writing
B = B0(ξ ) + dB

′ and E = E0(ξ ) + dE
′. Using Faraday’s law

we obtain B = k × E0 + dB + k × dE
′ where dB + k × dE

′

is the constant magnetic field (a similar consideration can be
done for the electric field). Therefore, even if k × dE

′ is zero,
we are left with a constant magnetic contribution. Thus we can
interpret the integration constants as parts of constant fields
in which the electromagnetic wave propagates. Secondly, we
recall that the photon represented by A = εeikx with k · ε = 0
has two degrees of freedom with respect to k (two independent
polarization vectors ε). Classically this is in correspondence
with the number of parameters required to specify a plane
wave in classical electrodynamics. Keeping the constant fields
increases the number of parameters required to specify the
classical field since every constant arbitrary vector has three
free directions. This, however, does not imply that the degrees
of freedom for the photon have changed as a photon which
moves in a classical electromagnetic field (and every constant
electromagnetic field can be considered as classical; see page
15 of [34]) still has only two polarization modes [7].

There might exist yet another interpretation regarding the
integration constants which introduce additional degrees of
freedom if we drop our previous interpretation of a wave
in constant fields. One such degree of freedom could be
accounted for by the breaking of the conformal symmetry at
quantum level [35]. A detailed examination of this possibility
will be attempted elsewhere.

III. EULER-HEISENBERG ELECTRODYNAMICS

As in the classical electrodynamics, the Euler-Heisenberg
theory consists of four equations that determine the evolution
of the electric and the magnetic fields. The magnetic Gauss and
Faraday laws remain the same as in the classical case, namely,

∇ · B = 0, (31)

∇ × E = −∂B
∂t

. (32)

These equations serve to define the electromagnetic potentials
and are independent of any Lagrangian. The second set of
equations, ones that replace the classical electric Gauss and
the Ampere-Maxwell laws, are derived after a variation of
the Lagrangian [34]. They can be written, in the absence of
electric charges and currents, as

∇ · D = 0, (33)

∇ × H = ∂D
∂t

, (34)

where the auxiliary fields D and H are given by

D = E + 4π
∂LEH

∂E

= E + η[2E(E2 − B2) + 7B(E · B)], (35)

H = B − 4π
∂LEH

∂B

= B + η[2B(E2 − B2) − 7E(E · B)], (36)

with

η = e4

45πm4
e

. (37)

As is customary in classical electrodynamics, the four
first-order differential equations can be combined to create
two second-order wave equations [25]. In this paper we will
not use the wave equations; we will focus on the first-order
Eqs. (31)–(34).

The symmetric gauge invariant energy-momentum tensor
of this theory [36,37] is

Tμν = HμνFα
ν − Lgμν, (38)

where the dielectric tensor Hμν is given by

Hμν = ∂L
∂Fμν

, (39)

and can be obtained in a simple way from Fμν by the
replacement Ei → Di and Bi → Hi .

We follow [38] and write the energy and momentum
components of the energy-momentum tensor as

T 00 = A

(
E2 + B2

8π

)
+ τ

4
, (40)

T 0i = A
(E × B)i

4π
, (41)
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where, for the weak-field Euler-Heisenberg Lagrangian, the
dielectric function A and the trace τ are

A ≡ 1 + 2η(E2 − B2), (42)

τ ≡ a[(E2 − B2)2 + 7(E · B)2]. (43)

IV. TRAVELING WAVES IN EULER-HEISENBERG
THEORY

Our procedure is again a straightforward one, i.e., trying
the ansatz E = E(ξ ) and B = B(ξ ) into the differential Euler-
Heisenberg equations. Since the classical dispersion relation
is not a priori guaranteed to be obeyed, we look for what
conditions k and ω must satisfy. We can integrate the Euler-
Heisenberg equations in the same way as we did for the
Maxwell equations in Sec. I. We obtain

k · B = CB, (44)

B = k × E
ω

+ dB, (45)

k · D = CD, (46)

D = −k × H
ω

+ dD, (47)

where CB , CD , dD, and dB are constants related by taking the
scalar product of Eqs. (45) and (47) with k:

CB = k · dB, (48)

CD = k · dD. (49)

We look for the Euler-Heisenberg equivalent of Eq. (22).
Let us start by noticing that the auxiliary fields can be written as

D = AE + 7η(E · dB)B, (50)

H = AB − 7η(E · dB)E, (51)

where A is the dielectric function defined in Eq. (42). With
Eqs. (50) and (51) Eq. (47) can be written as

AE + 7η(E · dB)dB = −A
k
ω

× B + dD, (52)

where we have used Eq. (45) to transform the terms
7η(E · dB)B and 7η(E · dB) k

ω
× E into 7η(E · dB)dB.

Replacing B using Eq. (45) we arrive at an algebraic equation
in which only the electric field appears:

A

(
1 − k2

ω2

)
E = dD − A

{
(k · E)

ω2
k + k × dB

ω

}
− 7ηdB(E · dB). (53)

The dielectric function can also be put solely in terms of E as

A = 1 + 2η

[
E2

(
1 − k2

ω2

)
+ (k · E)2

ω2

+ 2E · (k × dB)

ω
− d2

B

]
. (54)

Let us note that Eq. (53) reduces to Eq. (22) in the limit
η → 0, as it should be.

V. MAXWELLIAN CASE (k = ω) IN
EULER-HEISENBERG THEORY

It is well known that some solutions of the Maxwell equa-
tions are also solutions of the Euler-Heisenberg equations [6].
The simplest examples are waves with E2 − B2 = E · B = 0,
where the Euler-Heisenberg equations trivially reduce to
the classical Maxwell ones (physically this corresponds to
the fact that in QED a single free photon can propagate
undisturbed [41]). We shall now see that this fact can be
obtained directly from Eq. (53). Looking for Maxwellian
solutions we put k = ω into Eq. (53) to obtain

0 = dD − A(̂k · E)̂k − Ak̂ × dB − 7ηdB(E · dB). (55)

Let us first assume that dB is not parallel to k̂, then we can take
the scalar product of Eq. (55) with k̂, dB, and k̂ × dB (which
we take as basis) to obtain the following three equations:

0 = dD · k̂ − A(̂k · E) − 7η(̂k · dB)(E · dB), (56)

0 = dD · dB − A(̂k · E)(̂k · dB) − 7ηd2
B(E · dB), (57)

0 = dD · k̂ × dB − A
[
d2

B − (̂k · dB)2
]
. (58)

From Eq. (58) it follows that A = const. Meanwhile, Eqs. (56)
and (57) have k̂ · E and E · dB as unknowns. Since Eqs. (56)
and (57) are algebraically independent (due to our choice
k̂ × dB �= 0), we can solve k̂ · E and E · dB in terms of
constants. Finally, from Eq. (54) E · (k × dB) is also a constant.
We have a case where there is no undulatory solution at all.

If, on the other hand, k and dB are parallel then Eq. (55)
reduces to

0 = dD − (
A − 7ηd2

B

)
(̂k · E)̂k. (59)

Equation (59) tells us that dD has to be parallel to k̂.
Furthermore, using Eq. (54) we can write for A

A = 1 + 2η
[
(̂k · E)2 − d2

B

]
. (60)

Then Eq. (59) together with Eq. (60) implies that k̂ · E and
A are constants. This still leaves us with enough freedom
for the components of E orthogonal to k̂. Since k̂ · E and
A are constants, it can be checked that the Euler-Heisenberg
equations reduce to the Maxwell equations. For example, the
following set,

E = E0(ξ ) + dE k̂, (61)

B = B0(ξ ) + dB k̂, (62)

with k̂ · E0 = k̂ · B0 = 0 and B0 = k̂ × E0, is a solution of
both the Maxwell and Euler-Heisenberg equations. Notice,
however, a subtle difference. Whereas dB was an arbitrary
constant, in the Euler-Heisenberg theory its direction is fixed
by dB ∝ k̂.

At the end of Sec. II we have commented on the inter-
pretation of integration constants in the Maxwell case. In the
Euler-Heisenberg theory constant fields are also solutions of
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the corresponding equations. What we do not have here is a
general superposition principle due to the nonlinearities of the
equations. Interpreting the constants in Eqs. (61) and (62) as
constant fields, we could say that these equations represent a
restricted superposition principle where a traveling wave and
constant field can be added together to form a new solution
if and only if the direction of the constant field is parallel
to k. An analogous situation exists for two or more waves,
in the sense that they can be added together to form a new
solution to the Euler-Heisenberg equations only if they travel
in the same direction [41]. The physical interpretation given
to this last effect is that the photons which travel in the same
direction do not scatter from each other. We can then interpret
Eqs. (61) and (62) as a photon propagating undisturbed through
a constant electromagnetic field if and only if the photon’s
motion is parallel to the direction of the background field.

Although waves of Eqs. (61) and (62) are also present in
the classical theory, their energy and momentum content are
different in the Euler-Heisenberg theory. For example, using
Eq. (41) we can write their momentum components as

T 0i = [
1 + 2η

(
d2

E − d2
B

)] (E × B)i
4π

. (63)

We can see from Eq. (63) that the photon-photon interaction
codified in the Euler-Heisenberg Lagrangian implies that the
wave’s momentum density is slightly bigger when compared to
the classical Poynting vector T 0i

Maxwell = (E×B)i
4π

, if d2
E is bigger

than d2
B and vice versa.

The energy density is also changed from the classical
T 00

Maxwell = E2+B2

8π
to

T 00 = [
1 + 2η

(
d2

E − d2
B

)](E2 + B2

8π

)
+ a

4

[(
d2

E − d2
B

)2 + 7(dEdB)2
]
. (64)

The new terms in the energy density and the Poynting vector
proportional to η and a are quantum mechanical in origin.
They are small unless the fields become very strong, but that
takes us outside the weak-field limit of the Euler-Heisenberg
Lagrangian.

In the Appendix we examine all cases with ω �= k and
A �= 0 and show that they lead to trivial constant field solutions.
The proof makes use of the fact that we can use the integration
constant vectors and k (or some other combinations involving
cross products) as basis and decompose the electric and
magnetic fields in terms of projections in this basis.

VI. OFF LIGHT CONE WAVES (A = 0)

There is a formal way to invalidate the proof presented in
the Appendix (this proof demonstrates that no traveling-wave
solutions with ω �= k exist in the Euler-Heisenberg theory).
Indeed it suffices to set the dielectric function A to zero.
However, it is important to bring to attention that A = 0 is
physically not viable. Indeed, such an equation would result
in strong fields violating the restriction on the theory. On the
other hand, if the weak-field restriction is the only obstacle to
obtain physically valid solutions, it makes sense to generalize
the A = 0 condition to more general Lagrangians where the

weak-field restriction is not implemented. This seems, in
principle, possible as the Euler-Heisenberg Lagrangian (1)
is a weak-field version of a more general one. As shown
below, A = 0 goes hand in hand with ω �= k, i.e., we have
traveling-wave solutions off the light cone.

For these reasons it is illustrative to consider here the A = 0
case as in the more general Lagrangian the steps would be
similar. Taking A = 0 in the algebraic Eq. (53) gives us the
conditions

1 + 2η(E2 − B2) = 0, (65)

E · B = E · dB = β = const. (66)

We will call “off light cone waves” the waves that obey
conditions (65) and (66).

It is easy to check that conditions (65) and (66) give us a
solution to the full set of Euler-Heisenberg equations. Using
Eqs. (65) and (66) the auxiliary fields become

D = 7ηβB, (67)

H = −7ηβE, (68)

and we have the strange case where the vector D is associated
with the magnetic field while the vector H is associated with
the electric field, the opposite of what one would usually expect
in electrodynamics (see, however, [39]).

With the vectors (67) and (68), the modified electric Gauss
law (33) and the Ampere-Maxwell law (34) become the
classical magnetic Gauss and Faraday laws:

7ηβ∇ · B = 0, (69)

7ηβ∇ × E = −7ηβ
∂B
∂t

. (70)

Notice that choosing β = 0 we end up with D = H = 0. Pro-
vided A = 0, this configuration is mathematically a solution
of the Euler-Heisenberg equations.

Finally, the condition (65) gives us an intensity dependent
dispersion relation. Indeed, using Eq. (54) we can write

0 = 1 + 2η

[
E2

(
1 − k2

ω2

)
+ (k · E)2

ω2

+ 2E · (k × dB)

ω
− d2

B

]
. (71)

As an example, consider the fields

E = E0[cos(ξ )̂x + sin(ξ )̂y], (72)

B = kE0

ω
[− sin(ξ )̂x + cos(ξ )]̂y, (73)

with k = ẑ. The fields form an off light cone wave solution
to the Euler-Heisenberg equations as long as Eq. (71) is true.
Since for this example d2

B = k · E = 0, we can calculate a
dispersion relation of the form

k2

ω2
= 1 + 1

2ηE2
0

. (74)
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Though unusual, the relevant energy-momentum compo-
nents would simply read

T 00 = τ

4
, (75)

T 0i = 0. (76)

However, as previously stated, the off light cone waves are not
well-defined physical solutions. The vanishing of the dielectric
function (65) implies fields stronger than allowed by the weak-
field approximation of the Euler-Heisenberg Lagrangian, i.e.,

B2

η
> 1, (77)

whereas physically acceptable fields should range below the

critical limit Bc = m2
e

e
.

However, a more general Lagrangian, like the full Euler-
Heisenberg case, can lift this restriction.

VII. MORE GENERAL LAGRANGIAN

The Euler-Heisenberg Lagrangian (1) is not the only
proposed modification to the laws of classical electrody-
namics. Indeed, we could consider the full version of the
nonlinear electrodynamics arising from quantum corrections.
To avoid the problem of pair production in such a case we
could hypothetically consider an electric field below the pair
production threshold and a strong magnetic field.

Let the correction to the Maxwell Lagrangian be given by
the nonlinear Lagrangian:

LNL = LNL(F ,G2), (78)

where the electromagnetic invariants are given by

F = B2 − E2

2
, (79)

G = E · B. (80)

The pseudoscalar G always appears squared in the Lagrangian
to preserve the parity invariance of the theory.

In a generic form, the auxiliary fields are

D = E + 4π
∂LNL

∂E

= E + 4π
∂LNL

∂F
∂F
∂E

+ 4π
∂LNL

∂G2

∂G2

∂E

= E
(

1 − 4π
∂LNL

∂F

)
+ 8π

∂LNL

∂G2
B(E · B), (81)

H = B
(

1 − 4π
∂LNL

∂F

)
− 8π

∂LNL

∂G2
E(E · B). (82)

We can again make the traveling-wave ansatz and look for
solutions of the modified Maxwell equations (31)–(34).

Let us define A ≡ 1 − 4π ∂LNL
∂F . Remembering that for trav-

eling wavesG = E · B = E · dB, we can see that the conditions
A = 0 and E · dB = 0 guarantee vanishing auxiliary fields

D = H = 0, (83)

and this is an immediate solution to the modified Maxwell
equations. This generalizes the situation discussed in the last
section without violating the weak-field restriction. Since the
full Lagrangian is given in terms of an integral, it is difficult
to derive analytical expressions. Moreover, we speculate that
as in Sec. VI this solution would lead to physically realizable
waves with a new dispersion relation. We leave the details to
a future investigation.

We mention here that in [38] the dielectric function has
been calculated to all orders for strong fields analytically up
to an integral for E = 0, B �= 0 and vice versa for E �= 0 and
B = 0. However, if in the Maxwell Lagrangian we also set,
e.g., E = 0 we would not obtain traveling-wave solutions and
end up with static cases. A generalization of the results in [38]
would be required.
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APPENDIX

In this Appendix we investigate all cases of different choices
of the integration constants and k assuming always ω �= k. We
rely on the following equations derived in the main text:

A

(
1 − k2

ω2

)
E = dD − A

{
(k · E)

ω2
k + k × dB

ω

}
− 7ηdB(E · dB), (A1)

A = 1+η

[
E2

(
1 − k2

ω2

)
+ (k · E)2

ω2
+ 2E · (k × dB)

ω
− d2

B

]
.

(A2)

Case 1: dD · dB = k · dB = k · dD = 0. We first analyze the
case where k, dB, and dD form an orthogonal basis. Multiplying
Eq. (A1) by k, dB, and dD we get, respectively,

A(k · E) = 0, (A3)

A

(
1 − k2

ω2

)
= −7ηd2

B, (A4)

A

(
1 − k2

ω2

)
(E · dD) = d2

D − AdD ·
(

k × dB

ω

)
. (A5)

We see from Eq. (A4) that A is given by a constant, hence
we infer from Eq. (A3) that k · E = 0 and from Eq. (A5) we
get that E · dD is given in terms of constants. As k, dB, and dD
form an orthogonal basis, E2 can be written as

E2 = (E · d̂B)2 + (E · d̂D)2. (A6)

Since E · dD and A are constants, when we insert Eq. (A6)
into Eq. (A5) we find that E · dB is a constant. This case allows
only trivial constants solutions.
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Case 2: k · dB = k · dD = 0 and dD · dB �= 0. Taking the
scalar product of Eq. (A1) with k, dB, dD, E, and k × dB we
obtain, respectively,

A(k · E) = 0, (A7)

A

(
1 − k2

ω2

)
E · dB = dD · dB − 7ηd2

B, (A8)

A

(
1 − k2

ω2

)
(E · dD) = d2

D − AdD ·
(

k × dB

ω

)
− 7ηdD · dB(E · dB), (A9)

A

(
1 − k2

ω2

)
E · (k × dB) = dD · (k × dB) − A(k × dB)2.

(A10)

Now we take a look at the projection. First, if A �= 0 then
from Eq. (A7) k · E = 0. Since dD is orthogonal to k, we can
write

dD = adB + b(k × dB), (A11)

for some constant numbers a and b. Then,

E · dD = aE · dB + bE · (k × dB). (A12)

We can insert Eq. (A12) into Eq. (A9) to obtain

A

(
1 − k2

ω2

)
aE · dB + bA

(
1 − k2

ω2

)
E · (k × dB)

= d2
D − AdD ·

(
k × dB

ω

)
− 7ηdD · dB(E · dB). (A13)

We can use now Eqs. (A8) and (A10) in Eq. (A13) to transform
its left-hand side and obtain

a
(
dD · dB − 7ηd2

B

) + b[dD · (k × dB) − A(k × dB)2]

= d2
D − AdD ·

(
k × dB

ω

)
− 7ηdD · dB(E · dB). (A14)

Our next step consists in using Eq. (A8) to write Eq. (A4)
only in terms of dB · E. The final equations read

(E · dB)
(
dD · dB − 7ηd2

B

) + b

[
(E · dB)dD · (k × dB) −

(
dD · dB − 7ηd2

B

)
1 − k2

ω2

(k × dB)2

]

= (E · dB)d2
D −

(
dD · dB − 7ηd2

B

)
1 − k2

ω2

dD ·
(

k × dB

ω

)
− 7ηdD · dB(E · dB)2. (A15)

Equation (A15) is a polynomial equation with constant
coefficients. Its solution gives E · dB in terms of constants.
The only way to avoid this conclusion is to have all the
coefficients of each power in E · dB to be zero individually.
But it is impossible for the coefficient of the (E · dB)2 to be
zero by the very same assumption we used at the beginning of
this case.

Case 3: dD · dB = k · dB = 0 and k · dD �= 0. Multiplying
Eq. (A1) by k, dB, and dD we get, respectively,

A(E · k) = dD · k, (A16)

A

(
1 − k2

ω2

)
= −7ηd2

B, (A17)

A

(
1 − k2

ω2

)
(E · dD)

= d2
D − A

{
(E · k)

ω2
k · dD − dD · (k × dB)

ω

}
. (A18)

We immediately obtain from Eq. (A17) that A is a constant
and we can use this fact in Eq. (A16) to find that (E · k) is a
constant. These two results together with Eq. (A18) tell us that
E · dD is a constant.

As dB is orthogonal to k and dD we can write

E2 = (E · dB)2 + F ((E · k),(E · dD)) (A19)

where F ((E · k), (E · dD)) is just a constant. We now insert
Eq. (A19) into Eq. (A2) to arrive at an expression for A:

A = 1 + η

{
[(E · dB)2 + F ]

(
1 − k2

ω2

)
+ (k · E)2

ω2

+ 2E · (k × dB)

ω
− d2

B

}
. (A20)

The expression E · (k × dB)2 is a constant since it can
be written in terms of (E · k) and E · dD. Therefore using
Eq. (A20) we reach the conclusion that E · dB is also a constant.

Case 4: dD · dB = k · dD = 0 and k · dB �= 0. First note that
k × dB is proportional to dD. Hence we will write k × dB =
adD.

The scalar product of Eq. (A1) with k, dB, and dD gives,
respectively,

A(E · k) = −7η(k · dB)(E · dB), (A21)

A

(
1 − k2

ω2

)
(E · dB) = −A

(k · E)

ω2
(k · dB) − 7ηd2

B(E · dB),

(A22)

A

(
1 − k2

ω2

)
(E · dD) = d2

D − A

ω
ad2

D, (A23)

A

(
1 − k2

ω2

)
E2 = E · dD − A

{
(k · E)2

ω2
k + a

ω
E · dD

}
− 7η(E · dB)2. (A24)
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Inserting Eq. (A21) into Eq. (A22) leads to

A

(
1 − k2

ω2

)
= 7η

ω2
(k · dB)2 − 7ηd2

B, (A25)

and it follows that A is a constant. By virtue of Eq. (A23) this
implies that E · dD is a constant.

By using Eq. (A2) to write(
1 − k2

ω2

)
E2 = A − 1

η
− (k · E)2

ω2
− 2

a

ω
E · dD + d2

B.

(A26)

and inserting Eq. (A26) into Eq. (A24),

A

(
A − 1

η
+ d2

B − a

ω
E · dD

)
= E · dD − 7η(E · dB)2,

(A27)

we conclude that E · dB is a constant.
Case 5: dD = 0 but dB �= 0. The scalar product of Eq. (A1)

with k and dB · (k × dB) results in the following equations:

0 = A(k · E) + 7η(k · dB)(E · dB), (A28)

A

(
1 − k2

ω2

)
(E · dB) = A

(E · k)

ω2
k · dB − 7ηd2

B(E · dB),

(A29)(
1 − k2

ω2

)
E · (k × dB) = 1

ω
(k × dB)2, (A30)

A

(
1 − k2

ω2

)
E2 = −A

{
(k · E)2

ω2
− E · (k × dB)

ω

}
− 7η(E · dB)2. (A31)

We can solve for A(k · E) in Eq. (A28) and insert it into
Eq. (A29) to obtain

A

(
1 − k2

ω2

)
= 7η

ω2
(k · dB)k · dB − 7ηd2

B. (A32)

Again we arrive at the conclusion that A has to be a
constant. Moreover, we can read directly from Eq. (A30) that
E · (k × dB) is a constant. From Eq. (A2) we can write(

1 − k2

ω2

)
E2 = A − 1

η
− (k · E)2

ω2
− 2

1

ω
E · (k × dB)+d2

B,

(A33)

and inserting Eq. (A32) into Eq. (A31)

−7η(E · dB)2 = A

[(
A − 1

η

)
− 1

ω
E · (k × dB) + d2

B

]
.

(A34)

Independent of the numerical value of the right-hand side, we
easily see that E · dB is a constant.

Case 6: dB = dBk and dD �= 0. In this case Eq. (A1) reduces
to

A

(
1 − k2

ω2

)
E = dD −

{
A

ω2
− 7ηd2

B

}
(k · E)k. (A35)

We can choose k, k × dD, and k × (k × dD) as a basis.
To make the notation more concise, let us define k⊥ =
k × (k × dD). It is clear from Eq. (A35) that E does not
have components in the k × dD direction, and hence E can
be written in the following form:

E = (̂k · E)̂k + (̂k⊥ · E)̂k⊥. (A36)

By the same token we have

dD = ak̂ + bk̂⊥ (A37)

for some numbers a and b.
Equation (A36) allows us to write

E2 = (̂k · E)2 + (̂k⊥ · E)2, (A38)

and therefore

A = 1 + η

{
[(̂k · E)2 + (̂k⊥ · E)2]

(
1 − k2

ω2

)
+ (k · E)2

ω2
− d2

B

}
. (A39)

The scalar product of Eq. (A35) with k̂ and k̂⊥ leads to the
following set of equations:

(
1 + η

{
[(̂k · E)2 + (̂k⊥ · E)2]

(
1 − k2

ω2

)
+ (k · E)2

ω2
− d2

B

})
(̂k · E) = a − 7ηd2

B (̂k · E)k2, (A40)(
1 + η

{
[(̂k · E)2 + (̂k⊥ · E)2]

(
1 − k2

ω2

)
+ (k · E)2

ω2
− d2

B

})(
1 − k2

ω2

)
(̂k⊥ · E) = b. (A41)

Equations (A40) and (A41) are algebraic independent
polynomials for any (nonzero) value of the constants. This
means that we cannot choose any relation among k, dB, a,
and b to make Eq. (A40) proportional to Eq. (A41).
By Bézout’s theorem [40] the systems (A40) and (A41)
have a finite number of solutions. These solutions will be
functions of the coefficients of the polynomials, i.e., of
constants. Therefore we have trivial constant solutions at
hand.

On the other hand, if dB is parallel to k, then Eq. (A33)
reduces further to

A

(
1 − k2

ω2

)
E = −

{
A

ω2
(k · E) − 7ηd2

B(k · E) − dD

}
k.

(A42)

There are two ways to solve Eq. (A42). The first is letting
k = ω, which leads to the condition k · E = const, which is
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identical to the classical Gauss law and also leads to a classical
solution to the Maxwell equations. The other solution is to set
A = 0, which also leads to k · E = const, but we know from
Sec. VI that this kind of wave is not a viable solution.

Case 7: dD = dDk and dB �= 0. For this case, Eq. (A1)
reduces to

A

(
1 − k2

ω2

)
E = dDk − A

{
(k · E)

ω2
k + k × dB

ω

}
− 7ηdB(E · dB). (A43)

By taking the dot product with k × dB we get

E · (k × dB) = C = const. (A44)

Similar to the previous case, if dB is not parallel to k, then we
can choose as a basis the vectors k, k × dB, and, k̂⊥ where
k̂⊥ = k × (k × dB). In this way we can write E = (E · k̂)̂k +
(E · k̂⊥ )̂k⊥, and therefore

E2 = (̂k · E)2 + (̂k⊥ · E)2 + C, (A45)

A = 1 + η

[
((̂k · E)2 + (̂k⊥ · E)2 + C) (A46)

×
((

1 − k2

ω2

)
+ (k · E)2

ω2
− d2

B

)]
, (A47)

E · dB = (E · k̂)̂k · dB + (E · k̂⊥ )̂k⊥ · dB. (A48)

We can then write the equations for the projections in k̂ and
k̂⊥ to get

(
1 + η

{
[(̂k · E)2 + (̂k⊥ · E)2 + C2]

(
1 − k2

ω2

)
+ (k · E)2

ω2
− d2

B

})
(̂k · E)

= dDk − 7η(̂k · dB)[(E · k̂)̂k · dB + (E · k̂⊥ )̂k⊥ · dB], (A49)(
1 + η

{
[(̂k · E)2 + (̂k⊥ · E)2 + C2]

(
1 − k2

ω2

)
+ (k · E)2

ω2
− d2

B

})(
1 − k2

ω2

)
(̂k⊥ · E)

= 7η(̂k⊥ · dB)[(E · k̂)̂k · dB + (E · k̂⊥ )̂k⊥ · dB]. (A50)

As in the previous case, Eqs. (A49) and (A50) are algebraically
independent, and therefore only admit a finite number of
constant solutions.

For dB parallel to k we can write Eq. (A43) as

A

(
1 − k2

ω2

)
E = dDk − A

(k · E)

ω2
k − 7ηd2

B (E · k)k, (A51)

but E = (k·E)
k2 k and A = 1 + η[E2(1 − k2

ω2 ) + (k·E)2

ω2 − d2
B] =

1 + η( (k·E)2

k2 − d2
B) and therefore we can write{

1 + η

[
(k · E)2

k2
− d2

B

]}
(k · E)

k
= dDk − 7ηd2

Bk(E · k),

(A52)

which is an algebraic equation for (k · E) in terms of constant
coefficients and therefore we again have a trivial constant
solution for the fields.

Case 8: k, dB, and dD are parallel. This case is trivial.
When k, dB, and dD are parallel and neither A nor 1 − k2

ω2

vanish, then we can write Eq. (A1) as

A

(
1 − k2

ω2

)
E = dDk − A

(k · E)

ω2
k − 7ηd2

B (E · k)k. (A53)

But E = (k·E)
k2 k and A = 1 + η[E2(1 − k2

ω2 ) + (k·E)2

ω2 − d2
B] =

1 + η( (k·E)2

k2 − d2
B) and therefore we can write{

1 + η

[
(k · E)2

k2
− d2

B

]}
(k · E)

k
= dDk − 7ηd2

Bk(E · k),

(A54)

which is an algebraic equation for (k · E) in terms of constant
coefficients and therefore we again have a trivial constant
solution for the fields.

Case 9: None of k, dB, and dD are parallel or orthogonal
to any of the others. Taking the scalar product of Eq. (A1) with
k, dB, k × dB, and E we get, respectively,

A(E · k) = dD · k − 7η(k · dB)(E · dB), (A55)

A

(
1 − k2

ω2

)
(E · dB) = dD · dB + A

(E · k)

ω2
k · dB

− 7ηd2
B (E · dB), (A56)

A

(
1 − k2

ω2

)
E · (k × dB) = dD · k × dB + A

ω
(k × dB)2.

(A57)

As k, dB, and k × dB are not parallel they form a basis
and we can write any other vector, like E and dD, as a linear
combination of them. This means that E2 (and therefore A) can
be written in terms of E · k, E · dB, and E · (k × dB). Moreover,

E2 (and therefore A) will contain a term [E · ̂(k × dB)]
2
, and

therefore Eq. (A57) will have a term [E · ̂(k × dB)]
3
. This cubic

term cannot be eliminated by any choice of the constants,
and therefore Eq. (A57) cannot be reduced to Eq. (A55) or
Eq. (A56). Using the same argument, Eq. (A56) will have a
cubic term of the form (E · dB)3 that cannot be eliminated and
therefore Eq. (A56) cannot be reduced to Eq. (A55). We have
then a system of three algebraically independent equations for
the three unknowns. We can use Bézout’s theorem to say that
the system allows only for a finite number of solutions that
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will be given in terms of constants. Therefore, this case also
leads to a trivial constant solution.

This completes our proof that all ω �= k cases lead to trivial
constant solutions assuming A �= 0.
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