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We report on the stationary and robust propagation of light beams with rather arbitrary and controllable intensity
and dissipation transverse patterns in self-focusing Kerr media with nonlinear absorption. When nonlinear
absorption is due to multiphoton ionization at high beam powers in transparent media such as glasses and air, these
beams can generate multiple plasma channels with tailored geometries. Their nature and spatial characteristics
are discussed in detail, as well as the laws determining their spontaneous formation from coherent superpositions
of Bessel beams of different amplitudes and topological charges.
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I. INTRODUCTION

The achievement of localized, stationary, and stable propa-
gation of multidimensional waves in homogeneous, isotropic
nonlinear media is one of the main problems in nonlinear
optics and constitutes a broad area of research today [1–3].
Many of the elaborated solutions, some of them realized
experimentally, rely on two broad models. The first one
is the conservative model based on nonlinear Schrödinger
equations with dispersive, Kerr-type nonlinearities and others,
describing passive propagation of intense waves in unbounded
transparent media. The second model is the complex Ginzburg-
Landau equation in systems with gain and loss, as laser
cavities [4–6]. More or less broad families of solitons and
dissipative solitons (also called autosolitons or cavity soli-
tons) with a variety of geometries have been reported to
be supported by these models. Given their relation to the
present article, we mention the families of vortex solitons—
solitons with a nested vortex [7], their azimuthally modulated
versions called azimuthons [8,9], and solitons clusters [10]
(see [11] for a review). In conservative models, a stable
balance between diffraction and the dispersive nonlinearities
supports robust stationary propagation. In the dissipative
model, an additional balance is needed between gain and
losses [12–14].

Nonconservative models involving only losses are usually
left aside because they do not support solitons, in the sense of
self-trapped structures. However, the nonlinear Schrödinger
equation with purely loss terms and no gain terms arises
naturally in situations as common as light-beam propaga-
tion in transparent dielectrics media at intensities such that
multiphoton absorption processes are relevant. The existence
of light beams, called nonlinear unbalanced Bessel beams,
with the ability to propagate without any change, including
no attenuation, in media with Kerr-type nonlinearities and
nonlinear absorption, was described in 2004 [15]. They
provided a theoretical basis for interpreting some features
of light filaments generated from intense, ultrashort pulses
[16–18], where nonlinear absorption arises from multiphoton
ionization, particularly the replenishment and self-healing
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mechanisms involved in their robust and quasistationary
propagation [19–25]. Stationarity with nonlinear absorption
is indeed possible for waves less strongly localized than
solitons, as nonlinear versions of Bessel-like and Airy-like
beams [26,27] carrying, ideally, an infinite amount of power
or a power reservoir. In these beams [15,28–31] the power
in the reservoir is permanently flowing towards the central
region of high intensity, where most nonlinear power losses
take place, replenishing it. After the fundamental nonlinear
unbalanced Bessel beam [15], the same mechanism has more
recently been shown to work with high-order (vortex-carrying)
nonlinear Bessel beams [28–30]. Here we refer to all of them
as nonlinear Bessel vortex beams (BVBs), the fundamental
beam being the particular vortexless situation.

Nonlinear BVBs have proven to be particularly fruitful for
explaining the filamentation dynamics seeded by ultrashort
(linear) Bessel beams [29,30,32–39]. Even if the physics of
filamentation involves complex light-matter interactions and
rich spatiotemporal dynamics [16–18], the three key phe-
nomena determining substantially the filamentation dynamics
with conical beams are just those supporting the stationarity
of nonlinear BVBs, namely, diffraction, Kerr self-focusing,
and nonlinear absorption [29,30,32]. The steady and unsteady
regimes of filamentation observed in the filamentation with
the lowest order Bessel beam [32] have been successfully
explained in terms of nonlinear BVB attractors and their
stability properties [40]. More recently, tubular filamenta-
tion from vortex-carrying Bessel beams has been created
[29,30] and has also been interpreted as the formation of a
vortex-carrying nonlinear BVB that is stable against radial
and azimuthal perturbations [41]. The disintegration of the
tubular regime into rotatory or random filaments observed
in related experiments is also explained in terms of the
development of the azimuthal instability of unstable nonlinear
BVBs [41].

The intensity profiles of nonlinear BVBs are all circularly
symmetric, and so are the dissipation channels that they can
generate. The tubular regime is a sophisticated example of a
“tailored” or controlled transversal pattern, which is expected
to open new perspectives in laser-powered material processing
and other applications [30,42–46]. Complex filamentation
patterns other than circular arise naturally in multiple filamen-
tation from small-scale self-focusing of laser beams carrying
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many critical powers [16–18] or from the azimuthal instability
of tubular filaments [29,30,41], but originating from noisy
perturbations, these patterns are largely uncontrollable and far
from being propagation invariant.

In this paper we investigate whether propagation-invariant
light beams with other geometries, preferably with control-
lable intensity and dissipation patterns, are supported by
transparent dielectrics with self-focusing nonlinearities and
nonlinear absorption. We find an affirmative answer when
studying by means of numerical simulations the nonlinear
propagation dynamics seeded by illuminating the medium
with coherent superpositions of Bessel beams of different
topological charges and amplitudes. These (linear) Bessel-
beam superpositions are easily generated using spatial light
modulators [47–49], illuminating an axicon with several
coherent Gaussian beams with embedded vorticities or with
superpositions of Laguerre-Gauss beams [50]. For a range of
the parameters that define the input Bessel-beam superposition
and the material medium, stationary and stable propagation
states constantly dissipating their power along organized and
narrow channels are seen to emerge spontaneously. We confine
ourselves to the superposition of two Bessel beams, where the
channel geometry is primarily controlled by their amplitudes
and topological charges, and the variety of intensity and
dissipation patterns is already very vast.

To clearly distinguish these states from other known
localized structures, first we present the more general states
without any particular symmetry, and then we focus on those
with n-fold rotational symmetry formed from superpositions of
two Bessel beams of opposite topological charges, resembling
azimuthons [8,9,12–14]. These structures are nevertheless
neither conservative nor supported by a gain-loss balance,
and they do not rotate either. Given the distinctive properties
of having arbitrary shapes and of not being supported by
gain, i.e., of being strictly dissipative, we have called them
dissipatons.

Outside their central region, dissipatons are always seen
to have linear conical tails, and therefore a power reservoir,
shaped like a superposition of unbalanced Bessel beams (i.e.,
with unequal inward and outward Hänkel-beam amplitudes),
all of them with the same cone angle but different topological
charges. The excess of the inward Hänkel-beam amplitudes
creates an inward radial current, like that in nonlinear BVBs
but with an azimuthal dependence, and such that the net power
flux coming from the reservoir equals the total power loss
rate in the dissipative core. We find simple rules that describe
the dissipaton formation. Given an input superposition of
Bessel beams, the dissipaton that emerges preserves the
cone angle, the topological charges, and the amplitudes of
the inward Hänkel components of all input Bessel beams.
Although the dissipative center has a more complex structure
of intertwined hot spots and vortices, it reflects to a certain
extent the structure of the linear tails, and therefore that of
the input Bessel-beam superposition, the dissipation pattern
then being quite controllable. Numerical simulations also show
that dissipatons are stable under large perturbations strongly
distorting the dissipative center. In fact, the only condition for
the whole dissipaton structure to emerge spontaneously is the
presence of inward currents carried by its inward Hänkel-beam
components.

II. BASIC RELATIONS

According to the above, we consider the propagation of a
paraxial light beam E = Re{A exp[i(kz − ωt)]}, with carrier
frequency ω, propagation constant k = nω/c (n is the linear
refractive index and c the speed of light in vacuum), and
complex envelope A. We assume that cubic Kerr nonlinearity
and nonlinear absorption are the dominating nonlinearities
of the medium. As with nonlinear BVBs, other dispersive
nonlinearities (quintic, saturable) could be considered as well
without substantial changes in the results. The evolution
of the envelope is then ruled by the nonlinear Schrödinger
equation

∂zA = i

2k
�⊥A + i

kn2

n
|A|2A − β(M)

2
|A|2M−2A, (1)

where �⊥ is the transverse Laplacian given by �⊥ = ∂2
r +

(1/r)∂r + (1/r2)∂2
ϕ in cylindrical coordinates (r,ϕ,z), n2 > 0

is the nonlinear refractive index, and β(M) > 0 is the M-photon
absorption coefficient.

At low enough intensities (neglecting the nonlinear terms),
Eq. (1) is satisfied by the linear (and paraxial) Bessel beams
A(r,ϕ,z) ∝ Js(kθr)eisϕeiδz of cone angle θ , with an axial
wave vector shortened by δ = −kθ2/2 < 0, and carrying
a vortex of topological charge s. To investigate nonlinear
beams characterized also by a cone angle θ but at high
intensities, we find it convenient to use the scaled and
dimensionless radial coordinate, propagation distance, and
envelope,

ρ ≡ kθr =
√

2k|δ|r, ζ ≡ |δ|z, Ã ≡
(

β(M)

2|δ|
) 1

2M−2

A (2)

[in many of the figures, we also use the dimensionless
Cartesian coordinates (ξ,η) ≡ (kθx,kθy)], to rewrite Eq. (1)
as

∂ζ Ã = i�⊥Ã + iα|Ã|2Ã − |Ã|2M−2Ã, (3)

where now �⊥ = ∂2
ρ + (1/ρ)∂ρ + (1/ρ2)∂2

ϕ is the transverse
Laplacian in the dimensionless coordinates, and

α ≡
(

2|δ|
β(M)

)1/(M−1)
kn2

n|δ| . (4)

With these variables, the linear Bessel beams reads Ã ∝
Js(ρ)eisϕe−iζ . Values of |Ã|2 of the order of unity correspond
to the typical values of the intensities involved in filamentation
experiments in solids or gases, e.g., at 800 nm with cone
angle θ = 1◦ in water (n = 1.33, n2 = 2.6 × 10−16 cm2/W,
M = 5, and β(5) = 8.3 × 10−50 cm7/W4 [51]) or θ = 0.1◦
in air (n � 1, n2 = 3.2 × 10−19 cm2/W, M = 8, and β(8) =
1.8 × 10−94 cm13/W7 [51]); |Ã|2 � 1 corresponds to 4 and
20 TW/cm2, respectively. The value of the parameter α is
determined by the cone angle and the medium properties at
the light wavelength. At 800 nm in water, the values of α

range from 0.17 to 5.3 for cone angles θ from 10◦ to 1◦; in air,
α varies between 0.08 and 4.2 for θ varying between 1◦ and
0.1◦.

We further write the complex envelope as Ã = ãei�, where
ã > 0 and � are its real amplitude and phase. The nonlinear
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Schrödinger equation, (3), is then seen to be equivalent to the
energy transport and eikonal equations

1
2∂ζ ã

2 + ∇⊥ · j = −ã2M, (5)

∂ζ� = �⊥ã

ã
− |∇⊥�|2 + αã2, (6)

where ∇⊥ = uρ∂ρ + uϕ(1/ρ)∂ϕ , uρ and uϕ are unit radial
and azimuthal vectors, and j = ã2∇⊥� = Im{Ã�∇⊥Ã} is the
current of the intensity ã2 in the transversal plane. Nonlinear
BVBs were described as particular solutions to Eq. (5) and
Eq. (6) that generalize Bessel beams to nonlinear media, whose
intensity profiles are propagation invariant and circularly
symmetric [15,28–30]. Here we search for conical beams of the
most general form, Ã = ã(ρ,ϕ)eiφ(ρ,ϕ)e−iζ , whose intensity
profiles ã2(ρ,ϕ) are also localized but may not have any
particular symmetry. According to Eqs. (5) and (6), their
amplitude and phase patterns, a(ρ,ϕ) and φ(ρ,ϕ), must satisfy

∇⊥ · j = −ã2M, (7)

�⊥ã − |∇⊥φ|2ã + ã + αã3 = 0 , (8)

where j = ã2∇⊥φ is the ζ -independent intensity current.
Equation (7) expresses the general condition for a conical beam
to propagate without any change in a medium with absorption.
Integrating over an arbitrary area S in the transversal plane and
using the divergence theorem, this condition is readily seen to
be equivalent to

−
∮

C

j · n dl =
∫

S

ã2Mds, (9)

or −FC = NS for short, where dl is a differential element of
the contour C of S, n is the outward normal unit vector, and
ds an elemental area of S. This condition thus establishes that
the power loss rate NS in any region S of the transversal plane
is offset by an inward power flux −FC though its contour for
stationary propagation to be possible. In particular, applying
Eq. (9) to a circle of large enough radius ρ for the total
nonlinear power losses to occur inside it (assuming that they
are finite), this condition requires

F∞ ≡ −
∫ 2π

0
jρ(ρ,ϕ)ρdϕ = N∞ (10)

for ρ → ∞, i.e., an inward power flux from the power reservoir
of the conical beam that is independent of the large radius ρ

and that replenishes the power losses,

N∞ ≡
∫
R2

ã2Mds, (11)

in the entire transversal section.
A direct search of solutions of the nonlinear partial differ-

ential equations, (7) and (8), without simplifying assumptions,
such as circular symmetry, separability of the intensity and
phase patterns in ρ and ϕ, and particular boundary conditions,
is complicated. An alternate procedure is suggested by a
well-established connection between linear Bessel beams
and nonlinear BVBs in the circularly symmetric case, as
summarized below.

III. CIRCULARLY SYMMETRIC CASE: NONLINEAR
BESSEL VORTEX BEAMS

If a powerful Bessel beam is introduced into the medium,
its nonlinear dynamics is determined by the existence and
properties of an attracting nonlinear BVB [40,41]. Given the
input Bessel beam Ã(ρ,ϕ,ζ = 0) = bLJs(ρ)eisϕ , or equiv-
alently Ã(ρ,ϕ,ζ = 0) = 1

2 [bLH (1)
s (ρ) + bLH (2)

s (ρ)]eisϕ , the
attracting nonlinear BVB, ã(ρ)eiφ(ρ)eisϕe−iζ , has the same
cone angle and topological charge as the linear Bessel
beam and behaves asymptotically at a large radius ρ,
where it remains linear, as the unbalanced Bessel beam
Ã � 1

2 [boutH
(1)
s (ρ) + binH

(2)
s (ρ)]eisϕe−iζ , with the property

that |bin| = bL [28,40,41]. The conservation of the cone
angle, the topological charge, and the amplitude of the
inward Hänkel-beam component specifies unambiguously an
attracting nonlinear BVB for any input Bessel beam. Using
the equivalent expressions

H (1,2)
s (ρ) �

√
2

πρ
e±i(ρ−π/4−πs/2), (12)

of the Hänkel functions at large ρ, the outward Hänkel
beam, (bout/2)H (1)

s (ρ)eisϕe−iζ , is seen to carry the current
j = (|bout|2/2πρ)[uρ + (s/ρ)uϕ] spirally outwards, while the
inward Hänkel beam, binH

(2)
s (ρ)eisϕe−iζ , carries the current

j = (|bin|2/2πρ)[−uρ + (s/ρ)uϕ] spirally inwards. From the
asymptotic form of nonlinear BVBs and Eq. (10), one then
gets the relation −F∞ = |bin|2 − |bout|2 = N∞ for the inward
power flux restoring the total power losses in the nonlinear
BVB.

The particular Bessel-beam dynamics depends on the
stability properties of the attracting nonlinear BVB. According
to the linear-stability analysis in Refs. [40] and [41], there exist
nonlinear BVBs that are stable against radial and azimuthal
perturbations. In the case of stability, the Bessel-beam dynam-
ics ends in the complete formation of the nonlinear BVB.
The example in Fig. 1 summarizes these previous results.
The input Bessel beam represented by the light-gray curve
in Fig. 1(a) transforms into the nonlinear BVB represented
by the black curve, having a radial inward component of the
intensity current that sustains the stationarity, as shown in
Fig. 1(b). After a transient, the peak intensity and nonlinear
power losses N∞ reach constant values corresponding to the
attracting nonlinear BVB [light-gray curves in Fig. 1(c)].

The fact that the linearly stable nonlinear BVB is formed
starting from so distant an initial condition as the linear Bessel
suggests stability under large perturbations within a certain
attraction basin. Additional numerical simulations indicate
that the same final nonlinear BVB is formed when the input
beam carries at large radius only the inward Hänkel-beam
component that is preserved in the propagation. The attraction
basin of the nonlinear BVB then includes all beams of the
type Ã = 1

2bLH (2)
s (ρ)eisϕ + f (ρ,ϕ), where f (ρ,ϕ) does not

carry any additional inward radial current at large radius.
The dark-gray curves in Figs. 1(a) and 1(c) show the radial
intensity profile of an input beam with these characteristics
that transforms into the same nonlinear BVB, and the peak
intensity and power losses reach the same constant values as
with the input Bessel beam.
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FIG. 1. (a) Intensity of the initial Bessel beam, Ã(ρ,ϕ,ζ = 0) =
bLJs(ρ)eisϕ , bL = 4, s = 2 (light-gray curve), of the initial “holed”
Hänkel beam, Ã(ρ,ϕ,ζ = 0) = 1

2 bLH (2)
s (ρ)eisϕ(1 − e−ρ2/ρ2

0 ), bL =
4, s = 2, hole radius ρ0 = 6, with the same asymptotic inward
intensity current (dark-gray curve), and the stationary intensity
profile of the attracting nonlinear BVB formed at ζ = 20 (black
curve) in a medium and with a cone angle such that M = 5 and
α = 0.5. (b) Intensity current in the transversal plane of the attracting
nonlinear BVB. (c) Peak intensity and nonlinear power losses versus
propagation distance for the input Bessel beam (light-gray curves)
and for the holed Hänkel beam (dark-gray curves). All quantities are
normalized as explained in the text. Normalized Cartesian coordinates
are (ξ,η) = (kθx,kθy).

On the opposite side, if the attracting nonlinear BVB
determined by the conservation of the cone angle, the topo-
logical charge, and the amplitude of the inward Hänkel-beam
component turns out to be unstable (according to the linear-
stability analysis), the Bessel-beam dynamics consists in the
growth of its unstable modes, developing into large, periodic
or chaotic oscillations around the nonlinear BVB if radial
instability is dominant [40] or leading to circular symmetry
breaking and a complex dynamics of rotatory or random spots
if azimuthal instabilities dominate [41].

IV. DISSIPATONS

With the above in mind, we investigate the beam
propagation dynamics that results from illuminating the
medium with the coherent superposition Ã(ρ,ϕ,ζ = 0) =∑

j bL,j Jsj
(ρ)eisj ϕ of several Bessel beams with the same cone

angle but different topological charges sj and amplitudes bL,j .
A large variety of input-beam profiles can be obtained with
different choices of the parameters of these superpositions,
which are easily generated in laboratories [47–49]. In this
section we consider the most general situation where this input
beam does not have any particular symmetry in its transversal
sections. As above, we will also consider illuminating the
medium with other beams carrying the same inward intensity
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FIG. 2. Intensity of the input superposition of (a) two Bessel
beams, with s1 = 2, bL,1 = 2 and s2 = 1, bL,2 = 1, and (b) two inward
Hänkel beams with the same parameters multiplied by (1 − e−ρ2/ρ2

0 ),
ρ0 = 4, to eliminate the Hänkel singularities at the origin without
modifying the inward current at a large radius. (c) In a medium and
for a cone angle such that M = 5 and α = 0.5, normalized peak
intensity and nonlinear power losses versus propagation distance for
the input Bessel superposition (light-gray curves) and for the input
Hänkel superposition (dark-gray curves). (d, e) The propagation-
invariant intensity and current patterns at a large propagation distance
(ζ = 30). All quantities are dimensionless, as explained in the text.
Dimensionless Cartesian coordinates are (ξ,η) = (kθx,kθy).

currents, as Ã(ρ,ϕ,ζ = 0) = ∑
j

1
2bL,jH

(2)
sj

(ρ)eisj ϕ + f (ρ,ϕ)
at large radius.

In Fig. 2 we have chosen two superposed beams with
s1 = 2, bL,1 = 2 and s2 = 1, bL,2 = 1 in a medium and with
cone angle such that M = 5 and α = 0.5. The intensity
patterns of the input Bessel-beam superposition [Fig. 2(a)]
and of the input Hänkel-beam superposition [Fig. 2(b)] differ
substantially; so also does their propagation in the medium.
The input Bessel superposition is strongly absorbed at first,
while the input Hänkel superposition builds up [Fig. 2(c)].
Regardless of whether the Bessel superposition or the Hänkel
superposition is launched, the peak intensity and total power
losses reach the same positive constant values at long distances.
These values correspond to the same final, nonlinear stationary
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state that attracts the two beams, whose intensity and intensity
current patterns in a transversal plane are shown in Figs. 2(d)
and 2(e).

These numerical simulations, and others below, show that
the Kerr medium with nonlinear losses supports stationary
propagation of beams that do not have any specific symmetry,
to which we refer as “dissipatons.” In the example in Fig. 2,
the final state has even lost the bilateral symmetry of the input
beam. The two vortices of unit charge in the final state are
slightly displaced in the dissipaton from those in the input
Bessel-beam superposition.

In Figs. 3(a)–3(d) we have plotted the peak intensity and
nonlinear power losses as functions of the propagation distance
for the same couple of input Bessel and Hänkel superpositions
as above but several increasing values of α (e.g., increasing
n2 or diminishing cone angle). Above a certain threshold,
say αmax (αmax � 1.5 in this example), which depends on the
particular input superposition and M , the dynamics does not
lead to a stationary propagation regime, regardless of whether
Bessel or Hänkel superpositions are introduced in the medium.
The propagation-invariant intensity profiles of the dissipatons
from α � 0 (large enough cone angle or negligible Kerr
nonlinearity) and to the maximum value αmax � 1.5 [Figs. 3(e)
and 3(f)] feature increasing compression and irregularity of the
nonlinear core.

Similar results are seen to hold for other input beams. In the
example in Fig. 4 we wanted to produce a triangular dissipaton
with a fourth hot spot at its center. For this we chose Bessel
or Hänkel superpositions with topological charges s1 = 3 and
s2 = 0. All intensity patterns in Fig. 4 correspond to the same
cone angle and the same medium (α = 0.5 and M = 5) but
increasing intensities (bL,1 = bL,2 ≡ bL = 0.5, 1.5, and 3). As
above, these patterns become increasingly irregular, and no
stationary state is reached above a certain value of bL that
depends on the values of other parameters (above bL = 3
in this example). Figure 4 also shows the respective current
patterns j and their associated sinks equal to the dissipation
patterns |Ã|2M . An input power such that bL = 1.5 produces
four approximately equal dissipative spots. These examples,
and others considered in Sec. V, illustrate that dissipation
occurs only in strongly localized spots, and not in the outer
rings of the intensity pattern, and that these dissipative spots
can be organized almost arbitrarily with an adequate choice
of the topological charges and intensities of the input-beam
superposition.

Asymptotic structure of dissipatons

The structure of the nondissipative outer part of dissipatons
is found to be simpler than that of the dissipative spots. At
fixed azimuthal angle ϕ and increasing radius the intensity is
always seen to decay as ρ−1 while oscillating harmonically.
The same happens with the circularly symmetric nonlinear
BVBs [15,28], but now the decay rate and the oscillation
contrast depend on the specific azimuthal angle. This leads
us to conjecture a linear conical structure for these tails of the
form

Ã �
∑

j

1

2

[
bout,jH

(1)
sj

(ρ) + bin,jH
(2)
sj

(ρ)
]
eisj ϕe−iζ , (13)

FIG. 3. (a–d) For the same input Bessel and Hänkel superposi-
tions as in Fig. 2, peak intensity and nonlinear power losses versus
propagation distance for M = 5 and increasing values of α. For the
larger values of α these quantities do not reach constant values,
indicating that a propagation-invariant state is not formed. (e, f)
Intensity profiles of the final propagation-invariant states for α � 0.0
and the maximum value α = αmax � 1.5 leading to the formation of a
propagation-invariant beam. Their intensity profiles are increasingly
compressed with increasing strength of the Kerr nonlinearity.

i.e., a linear superposition of unbalanced Bessel beams. Using
Eq. (12) for Hänkel beams at a large radius, Eq. (13) can also
be written as

Ã � 1√
2πρ

[bout(ϕ)ei(ρ−π/4) + bin(ϕ)e−i(ρ−π/4)]e−iζ , (14)
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FIG. 4. (a, c, e) Intensity patterns |Ã|2 and (b, d, f) corresponding
dissipation |Ã|2M and intensity current j patterns of the dissipatons
formed with cone angles and media such that α = 0.5 and M = 5
starting from two conical beam superpositions, with s1 = 3 and s2 =
0, and increasing amplitudes, bL,1 = bL,2 = bL = 0.5, 1.5, and 3.

where we have defined

bout(ϕ) ≡
∑

j

bout,j e
isj (ϕ−π/2), (15)

bin(ϕ) ≡
∑

j

bin,j e
isj (ϕ+π/2) . (16)

Equation (14) then yields an intensity profile at a large radius
given by

2πρ|Ã|2 � |bout(ϕ)|2+|bin(ϕ)|2+2|bout(ϕ)||bin(ϕ)|
× cos [2(ρ − π/4)+ κ(ϕ)], (17)

where κ(ϕ) = argbout(ϕ) − argbin(ϕ). As a function of ρ,
Eq. (17) represents harmonic oscillations of ϕ-dependent

contrast,

C(ϕ) = 2|bout(ϕ)||bin(ϕ)|
|bout(ϕ)|2 + |bin(ϕ)|2 , (18)

about the ϕ-dependent mean value

R(ϕ) = |bout(ϕ)|2 + |bin(ϕ)|2 . (19)

The linearity of these tails allows us to generalize the result
in the circularly symmetric case [28] where the cone angle and
all topological charges sj and amplitudes of the inward Hänkel
beams in the asymptotic expression, (13), of a dissipaton are
the same as those of the input beam; i.e.,

|bin,j | = |bL,j | for all j . (20)

Also, the asymptotic expression for the radial component of
the intensity current can be evaluated to be jρ � Im{Ã�∂ρÃ} =
[|bout(ϕ)|2 − |bin(ϕ)|2]/(2πρ). From Eq. (10), we obtain a
constant inward radial flux at a large radius offsetting the total
power losses as

−F∞ = −
∫ 2π

0

|bout(ϕ)|2 − |bin(ϕ)|2
2π

dϕ = N∞, (21)

and upon integration, the relation∑
j

|bin,j |2 −
∑

j

|bout,j |2 = N∞ (22)

between the amplitude of the inward and that of the outward
Hänkel-beam components.

The validity of all previous relations is supported by
the numerical analysis. As an example, Figs. 5(a) and 5(b)
show the intensity profile of a dissipaton [the same as in
Figs. 3(a) and 3(e)] and the fitted intensity profile (for ρ > 5)
using Eq. (13) with bin,j and bout,j satisfying Eqs. (20) and
(22) (see caption for detailed values). The radial profiles of
the dissipaton and of the asymptotic form at two particular
azimuthal angles are more clearly shown to match better and
better with increasing radius in Fig. 5(c). With the values
of bin,j and bout,j , one can evaluate bin(ϕ) and bout(ϕ) from
Eqs. (15) and the contrast C(ϕ) and average oscillation value
R(ϕ) of the radial oscillations at each azimuthal direction from
Eqs. (18) and (19). These are plotted in Figs. 5(d) and 5(e) in
the above example. Compared to the same quantities for the
input Bessel-beam superposition (dashed curves), the average
value of the oscillations is significantly smaller due to the
initial stage of strong absorption. It is also characteristic of
dissipatons that the contrast of the oscillations is significantly
diminished along the azimuthal directions of high intensity,
i.e., high R(ϕ), as for the angle ϕ = 3π/2 in this example.

Additional confirmation of the generality of the above
description is given in Sec. V for dissipatons with n-fold
rotational symmetry. By analogy with nonlinear BVBs, each
dissipaton is determined by the set of parameters M , α, sj , and
bL,j . We can conjecture, following the same analogy, that there
exist dissipatons with any value of these parameters, as for
nonlinear BVBs [28], and that they may be stable or unstable
for different choices of the parameters, e.g., unstable above
αmax once the other parameters are fixed. This hypothesis is
suggested by the fact that when the propagation does not lead
to a stationary state, as in Fig. 3(d), the beam is not completely
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FIG. 5. (a) Intensity distribution of the dissipaton formed in
media with M = 5 and α � 0 starting with the Bessel-beam su-
perposition with s1 = 2, bL,1 = 2 and s2 = 1, bL,2 = 1. (b) Intensity
distribution (for ρ > 5) of the asymptotic form in Eq. (13) with bin,1 =
bL,1 = 2, bin,2 = bL,2 = 1, bout,1 � 1.11, and bout,2 = 0.64 ei0.70, ver-
ifying that |bin,1|2 + |bin,2|2 − |bout,1|2 − |bout,2|2 = N∞ = 3.35 [see
Fig. 3(e)]. (c) Radial amplitude distributions (solid black curves) and
their asymptotic fitting with the above values (dashed gray curves)
for the azimuthal angles ϕ = 0 and ϕ = π/4, featuring decaying
oscillations of different contrasts about different mean values. The
amplitude instead of the intensity is shown for clarity. (d, e) Contrast
and average value of the radial oscillations in each azimuthal direction
obtained from the above values of the Hänkel-beam amplitudes and
Eqs. (18) and (19). Dashed curves are the same quantities for the
input Bessel-beam superposition.

dissipated or dispersed, but its peak intensity, its power losses,
and the entire beam profile oscillate more or less randomly
about constant values, as in the circularly symmetric case [41].

V. DISSIPATONS WITH 2s-FOLD
ROTATIONAL SYMMETRY

Of particular interest are the dissipatons with 2s-fold
rotational symmetry formed from two Bessel beams,

Ã(ρ,ϕ,0) = bL,sJs(ρ)eisϕ + bL,−sJ−s(ρ)e−isϕ, (23)

of opposite topological charges ±s. Without loss of generality,
we can choose real and positive bL,s and bL,−s , since the only
effect of a phase shift between them is a rigid-beam rotation.
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FIG. 6. (a) Intensity, (b) phase, and (c) intensity current of the
initial superposition of two Bessel beams of opposite charges, s = 2
and −s = −2, average amplitude bL = 3, and azimuthal contrast
CL = 0.3 (bL,s = 2.965 and bL,−s = 0.455). (d) Intensity, (e) phase,
and (f) intensity current of the final stationary state in the form of a
dissipaton formed in a medium with M = 5 and α � 0. Inset in (d):
Dissipation pattern ã2M .

It is also convenient to fix their values as b2
L,s = b2

L[1 +√
1 − C2

L]/2 and b2
L,−s = b2

L[1 −
√

1 − C2
L]/2, with 0 �

CL � 1, yielding the circularly symmetric case bLJs(ρ)eisϕ for
CL = 0 (bL,s = bL, bL,−s = 0). The choice CL > 0 (bL,s >

bL−s) introduces an azimuthal modulation of period π/s and
depth CL in the intensity pattern, but it continues to have
a vortex of charge s in the origin. In the limit case with
CL = 1 (bL,s = bL,−s), the intensity vanishes at 2s azimuthal
directions.

Two examples of these input beams with respective
low and high azimuthal modulation depths (CL = 0.3 and
CL = 0.98) are shown in Figs. 6(a)–6(c) and 7(a)–7(c) for
s = 2. With increasing CL, the azimuthal total change of
the phase in 2πs about the vortex approaches a steplike
variation, reaching 2s discontinuous jumps of π in the limit
CL = 1, the intensity current j = (s/ρ)(b2

L,s − b2
L,−s)J

2
s (ρ)uϕ

is always purely azimuthal but increasingly weaker, and
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FIG. 7. (a) Intensity, (b) phase, and (c) intensity current of the
initial superposition of two Bessel beams of opposite charges, s = 2
and −s = −2, average amplitude bL = 3, and azimuthal contrast
CL = 0.98 (bL,s = 2.323 and bL,−s = 1.899). (d) Intensity, (e) phase,
and (f) intensity current of the final stationary state in the form of a
dissipaton formed in a medium with M = 5 and α � 0. Inset in (d):
Dissipation pattern ã2M .

the associated angular momentum density L = ã2∂�/∂ϕ =
Im{Ã�∂Ã/∂ϕ} = s(b2

L,s − b2
L,−s)J

2
s (ρ) diminishes, vanishing

in the limit CL = 1. We focus on these linear Bessel su-
perpositions as input beams because the formed dissipatons
share with them a number of their properties, but we stress
that the same dissipatons are formed from other beams
that do not have any of these properties around the beam
center but have equivalent asymptotic inward currents, that
is, from Ã(ρ,ϕ,0) = bL,sH

(2)
s (ρ)eisϕ + bL,−sH

(2)
−s (ρ)e−isϕ +

f (ρ,ϕ), where f (ρ,ϕ) does not carry any additional inward
radial current at a large radius. There may not even be light in
the central region of the input beam.

The intensity, phase, and current patterns of the respective
dissipatons formed after a transient propagation stage are
depicted in Figs. 6(d)–6(f) and Figs. 7(d)–7(f). The corre-
sponding dissipation patterns, with four localized dissipative
spots forming a square, are shown in the insets in Figs. 6(d) and
7(d). The dissipatons always preserve the 2s-fold rotational

symmetry of the input Bessel-beam superposition, a vortex of
the same charge s at ρ = 0, and an azimuthal modulation
of the intensity profile of a depth similar to that of the
input beam. We stress that symmetrization into a circularly
symmetric nonlinear BVB is never observed, irrespective of
the smallness of the CL of the input beam. As shown below,
this is a consequence of the conservation of the inward Hänkel
amplitudes. The steplike azimuthal variation of the phase
profiles also preserves approximately the same sharpness as
that of the input beam, although it changes slightly with the
radial distance ρ. In the limit of an input beam with CL = 1,
the formed dissipaton continues to have 2s null directions,
and the azimuthal variation of the phase retains the 2s

discontinuous jumps. In all cases, a substantial difference from
the input beam is that the azimuthal variation of the phase is
accompanied by a pronounced radial variation, associated with
the permanently converging wave fronts and the permanent
radial inward component of the intensity current sustaining the
stationarity. For increasing azimuthal input contrast, the radial
inward component is accompanied by a decreasing azimuthal
component and angular momentum, which vanish in the limit
CL = 1.

In the above examples, we chose α � 0 for simplicity, but
similar properties hold for 0 � α � αmax, where αmax depends
now on s, bL, CL, and M . For ±s = ±1 and ±s = ±3,
the intensity patterns of dissipatons with twofold and sixfold
rotational symmetry formed in a medium with M = 5 and cone
angles and Kerr nonlinearities such that α � 0 and αmax are
depicted in Fig. 8. The insets show the corresponding two-spot
and six-spot dissipation patterns. We note that even if the
intensity profile is weakly localized and becomes increasingly
irregular with increasing α, the dissipation patterns continue
to be extremely localized and ordered.

Asymptotic radial and azimuthal structure of dissipatons
with 2s-fold rotational symmetry

The above structure of these dissipatons is reflected in the
structure beyond the dissipative region, which admits a more
detailed analytical description than for general dissipatons.
The asymptotic form in Eq. (13) for these dissipatons reads

Ã � 1
2

{[
bout,sH

(1)
s (ρ) + bin,sH

(2)
s (ρ)

]
eisϕ

+ [
bout,−sH

(1)
−s (ρ)+bin,−sH

(2)
−s (ρ)

]
e−isϕ

}
e−iζ . (24)

Equivalently, Eq. (14) also holds, where now

bout(ϕ) = bout,se
is(ϕ− π

2 ) + bout,−se
−is(ϕ− π

2 ), (25)

bin(ϕ) = bin,se
is(ϕ+ π

2 ) + bin,−se
−is(ϕ+ π

2 ) (26)

represent harmonic azimuthal oscillations of period 2π/s.
Consequently, the contrast C(ϕ) of the radial oscillations in
the intensity profile along each azimuthal angle ϕ and its
average value R(ϕ) repeat themselves each period π/s, as
expected. For the dissipatons in Figs. 6 and 7, Figs. 9(a)
and 9(b) and 10(a) and 10(b) depict their intensity profiles
and their asymptotic forms satisfying the conservation of the
inward Hänkel amplitudes, |bin,s| = bL,s , |bin,−s| = bL,−s , and
the replenishment condition, |bin,s|2 + |bin,−s|2 − |bout,s|2 −
|bout,−s|2 = N∞. From these values, the contrasts of the radial
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FIG. 8. (a, b) Intensity and dissipation patterns (insets) of the
dissipatons formed starting from two conical beam superpositions
with average amplitude bL = 3, contrast C = 0.8 (bL,s = 2.683 and
bL,−s = 1.342), and s = 1 in media with M = 5 and cone angles and
Kerr nonlinearity such that α � 0 and α = αmax. (c, d) The same,
except that s = 3.

oscillations in each azimuthal direction, C(ϕ), are evaluated
from Eqs. (25) and (18) and are plotted as solid gray curves
in Figs. 9(c) and 10(c). As for nonlinear BVBs, dissipation
manifests in a loss of radial oscillation contrast (from unity for
the input beam), with the peculiarity that the decrease depends
on the azimuthal direction and is more pronounced along the
directions with a higher intensity (e. g., at ϕ = 0).

For dissipatons with 2s-fold rotational symmetry, using the
asymptotic forms of the Hänkel functions in Eq. (12) again, but
now grouping the terms with the same azimuthal dependence,
Eq. (24) can alternatively be written as

Ã = 1√
2πρ

[bs(ρ)eisϕ + b−s(ρ)e−isϕ]e−iζ , (27)

where we have defined

bs(ρ) = bout,se
i(ρ− π

4 − πs
2 ) + bin,se

−i(ρ− π
4 − πs

2 ), (28)

b−s(ρ) = bout,−se
i(ρ− π

4 + πs
2 )+bin,−se

−i(ρ− π
4 + πs

2 ) . (29)

In this form, the intensity profile at a large radius is also given
by

2πρ|Ã|2 � |bs(ρ)|2+|b−s(ρ)|2+2|bs(ρ)||b−s(ρ)|
× cos[2sϕ + arg bs(ρ) − arg b−s(ρ)] . (30)

FIG. 9. (a, b) The intensity profile and its asymptotic form from
Eq. (24) (for ρ > 5) of the dissipaton in Fig. 6 formed from the input
Bessel-beam superposition with s = 2 and −s = −2, bL = 3, and
CL = 0.3. For the asymptotic form in Eq. (24), bin,s = bL,s = 2.965,
bin,−s = bL,−s = 0.455, bout,s = 0.811, bout,−s = −0.153, satisfying
|bin,s |2 + |bin,−s |2 − |bout,s |2 − |bout,−s |2 = N∞ = 8.34. (c) Dashed
and solid gray curves: Contrast of the radial oscillations in each
azimuthal direction, evaluated from the above Hänkel amplitudes and
Eqs. (25) and (18) for the input Bessel-beam superposition and for the
dissipaton. Dashed and solid black curves: Contrast of the azimuthal
oscillations at each radius, obtained from the Hänkel amplitudes and
Eqs. (28) and (31) for the input Bessel-beam superposition (equal
to CL = 0.3) and for the dissipaton. (d) Azimuthal variation of the
phase at the indicated radius, obtained from the Hänkel amplitudes,
and Eqs. (28) and (34). The dashed curve represents the same quantity
for the input beam with CL = 0.3, and dotted curves the azimuthal
variation of the phase in the limit cases of input beams with CL = 0
and CL = 1, in which case the discontinuous jumps of the phase are
preserved.

As a function of ϕ, these are harmonic oscillations of period
π/s of ρ-dependent contrast

C(ρ) = 2|bs(ρ)||b−s(ρ)|
|bs(ρ)|2 + |b−s(ρ)|2 (31)

about a ρ-dependent average value R(ρ) = |bs(ρ)|2 +
|b−s(ρ)|2. The azimuthal contrast as a function of the radial
distance for dissipatons in Figs. 9(a) and 10(a) are plotted
as black curves in Figs. 9(c) and 10(c). As shown, the
azimuthal contrast, which was independent of ρ and equal
to CL for the input Bessel-beam superposition, oscillates with
the radial distance, remaining, however, of the same order
as for the input beam, CL, as observed from the numerical
simulations. In the particular dissipatons formed from CL = 1
(bL,s = b−L,s = bL/

√
2), symmetry considerations (bin,s =

bin,−s and b,out,s = bout,−s) imply that b−s(ρ) = (−1)sbs(ρ),
and therefore C(ρ) = 1 too; i.e., the dissipaton preserves
the 2s directions of zero intensity of the input Bessel-beam
superposition, as described from the numerical simulations.
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FIG. 10. (a, b) Intensity profile and its asymptotic form from
Eq. (24) (for ρ > 5) of the dissipaton in Fig. 7 formed from the input
Bessel-beam superposition with s = 2 and −s = −2, bL = 3, and
CL = 0.98. For the asymptotic form in Eq. (24), bin,s = bL,s = 2.323,
bin,−s = bL,−s = 1.899, bout,s = 0.367, bout,−s = 0.057, satisfying
|bin,s |2 + |bin,−s |2 − |bout,s |2 − |bout,−s |2 = N∞ = 8.76. (c) Dashed
and solid gray curves: Contrast of the radial oscillations in each
azimuthal direction, evaluated from the above Hänkel amplitudes and
Eqs. (25) and (18) for the input Bessel-beam superposition and for the
dissipaton. Dashed and solid black curves: Contrast of the azimuthal
oscillations at each radius, obtained from the Hänkel amplitudes and
Eqs. (28) and (31) for the input Bessel-beam superposition (equal
to CL = 0.98) and for the dissipaton. (d) Azimuthal variation of the
phase at the indicated radius, obtained from the Hänkel amplitudes
and Eqs. (28) and (34). The dashed curve represents the same quantity
for the input beam with CL = 0.98. Dotted curves are as in Fig. 9.

In addition to the inward radial component of the intensity
flux, these dissipatons with 2s-fold symmetry carry the
azimuthal component jϕ � (s/2πρ)[|bs(ρ)|2 − |b−s(ρ)|2]/ρ
at a large radius. Interestingly, while the intensity and
phase profiles exhibit pronounced azimuthal variations, the
azimuthal flux remains circularly symmetric. Thus, the vector
expression of the intensity current is

j � [|bout(ϕ)|2−|bin(ϕ)|2]

2πρ
uρ + s

ρ

[|bs(ρ)|2−|b−s(ρ)|2]

2πρ
uϕ.

(32)

Accordingly, the angular momentum density is given by

L = Im

{
Ã� ∂Ã

∂ϕ

}
� s

2πρ
[|bs(ρ)|2 − |b−s(ρ)|2] (33)

and is also circularly symmetric. These properties are also
of interest in order to evaluate the azimuthal derivative of
the phase as ∂�/∂ϕ = L/|Ã|2. Upon integration with the
above asymptotic expressions of L and |Ã|2, the phase is
asymptotically given by

� � tan−1

{ |bs(ρ)| − |b−s(ρ)|
|bs(ρ)| + |b−s(ρ)| tan[sϕ + κ(ρ)]

}
, (34)

with κ(ρ) = [arg bs(ρ) − arg b−s(ρ)]/2 (the term −ζ on prop-
agation is omitted). From Eqs. (28) and (31), the above relation
can also be expressed as

� � tan−1

{√
1 − C(ρ)

1 + C(ρ)
tan[sϕ + κ(ρ)]

}
, (35)

relating the azimuthal variation of the phase to that of the
intensity. The azimuthal phase variation of the dissipatons
in Figs. 9(a) and 10(a) are plotted in Figs. 9(d) and 10(d),
respectively, at a particular radius. These explain the increasing
sharpness of the azimuthal phase variation with increasing
azimuthal contrast of the intensity C(ρ) and the fact that in
the limit C(ρ) = 1 (obtained from CL = 1), the phase of the
azimuthons continues to display 2s discontinuous π jumps of
the input Bessel-beam superposition.

Dissipatons with 2s-fold rotational symmetry share with
azimuthons, and their limiting cases of vortex solitons and
soliton clusters, similar azimuthal modulation of the intensity
patterns and similar stairlike azimuthal variation of the phase
[8,9], but as pointed out in Sec. I, they are supported
by completely different mechanisms. Also, azimuthons are
generally rotating, and the number of azimuthal maxima and
vortex charge at their center are independent properties, while
these dissipatons are static, and the number of maxima is 2s if
the charge is s.

VI. CONCLUSIONS

In conclusion, we have described a broad family of
propagation-invariant and robust conical beams in media with
Kerr-type nonlinearities and nonlinear absorption, with the
property of continuously dissipating power along narrow and
ordered channels, whose number and geometrical disposition
can be easily controlled. We have described their spatial
structure semianalytically and found the laws that govern
their formation from superpositions of Bessel beams. The
structure of the power reservoir that supports the stationarity
is described by a superposition of unbalanced Bessel beams
preserving the cone angle, topological charges, and inward
Hänkel amplitudes of each of the input Bessel beams forming
the superposition, and with outward Hänkel-beam amplitudes
such that the net inward power flux replenishes the nonlinear
power losses.

We have limited our considerations to “ideal” dissipatons
with an unlimited amount of power in their reservoir formed
from similar ideal Bessel beams or equivalent inward intensity
currents. In real settings, Bessel beams are formed only up to a
maximum radial distance, say rmax, and therefore the reservoir
is of limited capacity. As previously described for other conical
beams [26,35,40,41], the reservoir will be depleted and the
dissipaton will therefore decay, at a distance of the order of
the diffraction-free distance zfree � rmax/θ (or ζfree � ρmax/2
with our dimensionless axial and radial distances).

In filamentation experiments, the new degrees of control of-
fered by these beams with regard to the number and disposition
of plasma channels may open new possibilities in short-range
applications such as material laser ablation and waveguide
writing and in long-range applications such as filamentation
guiding of weak waves in the atmosphere [42–46]. Also for
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these applications, it may also be of interest to investigate
the existence of dissipative general azimuthons having, like
azimuthons in conservative models, intensity patterns with an
independent number of azimuthal maxima and vortex charge
at their center and rotating at arbitrary angular velocities.
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