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New classical modalities of atomic force microscopy continue to emerge to achieve higher spatial, spectral, and
temporal resolution for nanometrology of materials. Here, we introduce the concept of a quantum-mechanical
modality that capitalizes on squeezed states of probe displacement. We show that such squeezing is enabled
nanomechanically when the probe enters the van der Waals regime of interaction with a sample. The effect is
studied in the noncontact mode, where we consider the parameter domains characterizing the attractive regime
of the probe-sample interaction force.
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I. INTRODUCTION

In the realm of advanced measurement science and technol-
ogy, label free and nondestructive nanometrology has gained
considerable attention in part due to progress in nanofabrica-
tion and nanotechnology. The notion of picotechnology has
already been contemplated [1]. Scanning probe microscopy
will undoubtedly continue to play a crucial role at such
length scales. In particular, atomic force microscopy (AFM)
[2], allowing for highly controlled and precise actuation,
excitation, and manipulation of a microcantilever probe and
a given sample region, is known to be minimally invasive and
thus ideal for a variety of applications and material charac-
terization [3]. Such force metrology may involve magnitudes
as small as sub-atto-Newton in the case of AFM [4], or other
approaches [5–7].

Here we propose the notion of a quantum enabled atomic
force microscopy (QAFM), which operates on the premise of
the ability of the probe-sample interaction force to produce a
squeezed quantum state for the cantilever probe. We propose to
read out such a squeezed state by forming a probe-based cavity
[8,9]. Minute lateral displacements of the sample engender a
variation in the tip-sample force and a feedback loop subse-
quently adjusts the separation distance to obtain a displacement
set point. Thus, by default, the readout approach in QAFM
is fundamentally different than standard techniques includ-
ing the highly sensitive interferometric and phase sensitive
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displacement measurements. Through this process, for ex-
ample, topographic maps with extremely high resolution are
envisioned to be obtained. In this paper, we aim to explore the
feasibility of the van der Waals forces (Fig. 1), prevailing
in the nanometers region of the AFM probe tip-sample
surface distance as depicted in Fig. 2, to engender sufficient
quantum squeezing in the deformation state of the probe.
Recent studies have demonstrated mechanical squeezing via
strong optomechanical interactions [10]. Here, we explore
a different nonlinear interaction that results in mechanical
squeezing without strong optical interactions, although optical
interactions are used for the purpose of reading out the
squeezing. The introduced concept of mechanical squeezing
here can potentially lead to force microscopy beyond the
classical boundaries. Within the context of improving the
measurement sensitivity and precision, optical or mechanical
squeezing based on other methods has been proposed or
demonstrated [10–13]. The scanning probe microscopy suite
provides powerful technologies for metrology. Whereas for
each sample one approach may be better than another, the
AFM has proved to be highly inclusive (e.g., not limited to
only electrically or optically conductive materials, etc). Force
microscopy with AFM can yield a lateral resolution of about
1 nm and a depth resolution better than about 0.1 nm.

Our discussion is organized as follows. In Sec. II, we define
the interaction force between the two macroscopic bodies,
the probe and the sample, based on the van der Waals and
Derjaguin, Muller, Toporov (vdw-DMT) force. Employing this
force, in Sec. III, we describe the probe dynamics within the
Euler-Bernuoulli model, and in Sec. IV we obtain the quanti-
zation of the calculated deformation state of the probe and the
degree of squeezing. Conclusions are provided in Sec. V.

II. PROBE-SAMPLE INTERACTION MODEL

With reference to Figs. 1 and 2, denoting the distance
between the probe tip and the sample surface with d,
the interaction force � = �(d) can be formulated under
the assumption of a given contact mechanics for various
operational and environmental conditions including charge
and thermal states, pressure, and humidity. We assume that
the experimental conditions have been properly adjusted to
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FIG. 1. The vdw-DMT force regimes considered in the QAFM.
The nonlinearity in the force is explored for obtaining quantum
squeezing in the deformation state of the probe. At a distance of about
the interatomic separation ∝ a0, that is, about the length of a chemical
bond, atoms are essentially in contact. The discontinuity in the force
transition region may be smoothed by employing polynomial fitting
functions.
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FIG. 2. High-resolution material characterization by use of the
van der Waals force induced quantum squeezed deformation state of
the probe. The probe of length L and a fixed mirror a distance Lc

above it at zm, and an input beam Pi form a cavity with a frequency
ωc. At a sample location xs , within a distance d of the attractive
regime of the tip-sample interaction domain, the probe oscillating
with a frequency � exhibits amplitude squeezing, which is detected
from the outgoing cavity beam Po by homodyne detection. The van
der Waals force acting between the tip apex and a small sample region
centered at xs deforms the probe, which at the tip position is labeled
by w(x,t)|x=L. Outside of the interaction domain (d � a0) the probe
oscillates at its first resonance frequency ω1. The PZT actuating the
probe base at zs0 facilitates the initial probe approach to the surface.

minimize other contributions (e.g., capillary, electrostatic)
to the probe-sample force so that only the van der Waals
interaction is relevant. Then, under the conditions of van der
Waals-DMT approximation, the force is modeled [14,15] as

�(d) = −α ×
{

a−2
0 − 4

3Ef

√
R(a0 − d)3/2 if d � a0,

d−2 if d > a0,
(1)

with α = HR/6, where H is the Hamaker constant (∼10−20 J),
R is the tip radius (∼10 nm), and a0 denotes the distance of
the onset of the repulsive part of the interaction (≈ interatomic
distance ∼0.165 nm), and the Ef is the effective probe tip-
sample stiffness E−1

f = (1 − ν2
t )E−1

t + (1 − ν2
s )E−1

s , where
the subscripts t and s denote the tip and sample, respectively.
Example values of the Poisson ratio ν and Young modulus E

are 0.4 and 150 GPa, respectively. Thus, when d > a0, that
is, when the the separation is greater than the interatomic
equilibrium distance, � is dominated by the long-range
attractive force. Our intent here is not to enter the full
contact regime, although the repulsive force domain can be
treated similarly following the results here. The force �(d) as
given in Eq. (1) describes the probe-sample interaction as a
function of the separation distance d between the population
of the atoms making up the apex of the probe and a number
of atoms making up the sample neighborhood immediately
below the apex. However, the typical AFM experiment (e.g.,
force curve measurement) generates a force as a function of
the probe base zs0, as shown in Fig. 2. An approach to the sam-
ple surface point xs of interest reduces zs0 and when the probe
tip-surface interaction grows beyond a threshold the cantilever
responds by altering its dynamics, balancing the elastic forces
with �, with the former depending on probe deformation w and
the latter on d. Noting the transformation from the probe frame
(oxyz) to the sample frame, r̄s = r̄o + r̄ , ts = t, and defining
the probe base position r̄o = (0,0,zs0(t)), for d > a0 we obtain
d(xs,t) = zs0 + w(x,t)|x=L − ht , where ht is the tip height, L
is the cantilever length, and w(L,t) can be positive or negative.
The tip height ht (∼10 μm), essentially a constant, is for our
purpose of no consequence and can therefore be absorbed into
zs0 by defining z0 = zs0 − ht . Terminating the approach to
surface (fixing zs0), d will only fluctuate with w(L,t). We can
therefore employ the noncontact interaction force:

�0(t) = − α

d(t)2
= − α

[z0 + w(L,t)]2
. (2)

Changes in surface properties entering � through its distance
and material dependence can affect the probe state, both
amplitude and phase (e.g., the Hamaker constant can be
quantitatively determined [16]). We will consider a setup in
which the probe is translated from a distance z∞ � z0 to z0

over a finite time. Thus, instead of Eq. (2), we will use

�(t) = �0(t)

1 + e−t/t0
, (3)

where t0 is the time over which the translation occurs (around
t = 0). As far as the dynamical considerations are concerned,
here one may propose alternative interaction forms �, for
example, the semiempirical force employed in the study of
nanomechanical frequency mixing [17].
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For frequency of oscillation ω1 ∼ 1 MHz and quality factor
Q ∼ 104, the relaxation time of the system is τ = Q/ω1 ∼
10 ms. Damping effects can be safely ignored if t0 � τ .
Therefore, the translation speed (between z∞ ∼ 100nm and
z0 � z∞) ought to be v � 10 μm/s, which is experimentally
feasible. Alternatively, one may choose to translate the sample
to the probe, an often invoked maneuver in AFM. Initial
distance d can be made small enough, so that the transition
time during a state squeezing is also small. The AFM z-piezo
can be set to control d (extend time and velocity). The
travel distance of the z-piezo can typically be set in the wide
nm-μm range and the velocity has a range of ∼ 102–105 nm/s
in ordinary systems, and can be ∼107 nm/s in specialized
systems [18]. Furthermore, the feedback can be engaged or
disengaged so that experiments may proceed with or without
force feedback control allowing for a variety of measurement
flexibilities. When force feedback control is engaged, the
tip motion occurs following a preselected force. Since any
initial experiments intended to implement QAFM will consider
single point measurements rather than raster scanning the
sample surface, one may deactivate the feedback. Typically, in
force spectroscopy (unlike imaging) the cantilever is the force
sensor and the servo feedback loop is deactivated. However,
if needed one may activate the feedback loop and reach a
satisfactory measurement set point using ultrafast controllers
featuring minimum latency. Current controller technology
provides fast feedback (e.g., digital feedback systems [19]),
while ordinarily it is possible to use ∼MHz rates fast force-
distance measurements (for high extend and retract velocities).

III. THE DYNAMICS OF QAFM

Having defined the form of the tip-sample interaction force,
the probe dynamics may be described by Cw(x,t) = �(t) +
FD(t), where FD(t) = aD cos(ωDt + φ) is a harmonic driving
force, and C denotes the operator of the probe dynamics, which
can be imported from the Euler-Bernuoulli theory [20]. We
note that here, in the absence of an applied force, that is,
aD = 0, in our preliminary study, the oscillating tip-sample
distance as given by d(t), except for containing a dc component
(zs0), is a Brownian process. Our aim is to show that � yields
a squeezed quantum state for the probe displacement. We
propose to read out such a squeezed state by incorporating
the probe as one of the mirrors of a cavity. Typically the top
surface of the AFM cantilever probe is vacuum evaporated with
a reflective metal thin film (≈50 nm) for position sensing via
laser reflectometry. Minute lateral displacements of the sample
will induce a variation in � and a feedback loop subsequently
adjusts d to obtain a displacement set point. Through this
process, for example, topographic maps with extremely high
resolution are envisioned to be obtained.

To calculate the normal modes of the AFM probe, we
consider the deformation energy of the microcantilever beam
and write the Lagrangian density:L = μẇ2/2 − u(w,w′,w′′),
where μ is the linear density of the material, and ẇ = ∂w/∂t ,
w′ = ∂w/∂x. Therefore, the potential energy of the probe is

U =
∫ L

0
dxu = EI

2

∫ L

0
dx[w′′(x,t)]2 − α

z0 + w(L,t)
, (4)

FIG. 3. Leading eigenfrequencies of a probe and a probe tip
domain as observed from a coordinate system moving with the
probe. Three deformation eigenstates of a conical Si3N4 tip (apex
radius of curvature ∼2 nm, 12-μm height, 4-μm radius, and 18◦ half
angle) are visualized for comparison. Excitation of higher-frequency
oscillations (higher eigenmode numbers) beyond the first few is less
probable. The spectrum of the tip is found to be approximately two
orders of magnitude higher than those of the probe types with the tip
and without the tip (100-μm length, 20-μm width, 3-μm thickness).

where I is the second moment of inertia. The probe equation
of motion can be written as μẅ + F ′

1 − F ′′
2 = Fint, where

F1 = −δU/δw′, F2 = −δU/δw′′, and Fint = −δU/δw, sub-
ject to the fixed-free boundary conditions w(0,t) = w′(0,t) =
w′′(L,t) = w′′′(L,t) = 0. Therefore, the equation of motion is
obtained as

μẅ + EIw′′′′ = − α

[z0 + w(x,t)]2
δ(x − L). (5)

We note that Eq. (5) describes the transversal dynamics of
a material domain with uniform mass density per unit length
corresponding to a tipless probe, that is, a domain without
the subdomain labeled ht in Fig. 2. This is justified since
the dynamics of the tip domain (with a height ht , Fig. 2) is
activated at frequencies at least two orders of magnitude higher
than those of the probe (with a length L, Fig. 2). Furthermore,
the presence of the tip imposes only negligible shifts in the
frequencies of a tipless type probe. For comparison, we can
computationally solve for the eigenfrequency spectra of a
probe with a tip, a probe without a tip, and the tip domain
without a probe. We here obtained solutions for a silicon nitride
probe with material properties of density 3.1 × 103 kg/m3,
Young’s modulus 2.5 × 1011 Pa, and Poisson’s ratio 0.23, as
shown in Fig. 3. From the computed deformation eigenmodes
(see the insets in Fig. 3), we conclude that while the frequencies
of the longitudinal displacements are significantly higher than
those of the transversal for the tip domain, both deformation
modes are found to exhibit much larger frequencies than those
found for the tip probe beam and the tipless probe beam. Thus,
the dynamics of the tip-type probe is primarily dictated by the
cantilever and for our purpose the tip can be assumed to amount
to an extra mass (as verified computationally by the tip induced
frequency shifts in Fig. 3). With the probe retracted (d → ∞),
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Eq. (5) becomes homogeneous, which can be solved in close
analogy to the previously reported method [20] to obtain the
normalized eigenfunctions Xn, explicitly:

√
LXn(x) = cosh xn − cos xn − γn(sinh xn − sin xn),

where xn = λnx/L, and γn = tanh(λn/2), while λn ∝ ωn is a
discrete set of eigenvalues. Though not of interest in this paper,
we note that for each ωn the sensitivity of the probe’s frequency
shift varies with sample surface stiffness [21,22]. For the
inhomogeneous case, considering the nonlinearity in Eq. (5),
though a general solution may be obtained seminumerically
from an eigenfunction expansion [17], we may formally write

w(x,t) =
∑
nk

Qnk(t)Xn(x)e(ρnk−iωnk)t , (6)

where the amplitude polynomials Qnk(t) must be determined
for each spatial eigenmode n, for which there is an infinite
number of eigenvalues (ρnk,ωnk) due to the nonlinearity [2,17].
Far away from the surface, the probe may be assumed to be
in the lowest mode, where the state of the cantilever beam
is approximately w(x,t) ≈ √

Lq(t)X1(x). When approaching
the surface (sufficiently small d), the attractive force introduces
a nonlinear correction. In this limit, denoting the mass of
the cantilever with m = μL (numerically, m ≈ 30 ng), we
integrate the potential and obtain

U = 1

2
mω2

1q
2 + α

√
LX1(L)

z2
0

q − αLX 2
1 (L)

z3
0

q2 + O(q3),

(7)

from which we obtain the minimum of the potential U ′(q̄) = 0
so that small oscillations around the stable equilibrium point
q = q̄ have frequency �, given by

�2 = ω2
1 − δ2, δ2 = 2αLX 2

1 (L)

mz3
0

= 8α

mz3
0

, (8)

where the last term is obtained by noting Xn(L) = 2L−1/2. For
typical values of relevance to AFM [15,17,23], Fig. 4 displays
the region where � is severely suppressed. Thus, for a probe
oscillating freely (e.g., following an excitation to its dominant
eigenmode), its frequency is reduced when it enters the van der
Waals attractive force regime. We note that ordinarily, while
significant spectral shifts to lower frequencies are observed
in experiments when approaching the surface, the limit of no
oscillation (� = 0) is not reached for all eigenmodes due to
the presence of noise that drives the system and invokes the
first few eigenmodes. Oscillations at the reduced frequencies
� occur with an amplitude proportional to

q̄ = 2αz0

8α − mω2
1z

3
0

. (9)

Considering that the transversal deformations provide the pri-
mary oscillator mode in AFM, assuming a proper calibration
δw ∼ δq ∼ δS, where S is the signal, one may attempt a
sensitivity analysis from the phase and amplitude of w. The
QAFM sensitivity may be expressed as the minimum δq that
yields a signal δS from the cavity readout that is of the same
order of magnitude as that of the noise. A change δq can occur
as a result of a sample translation (δxs in Fig. 2), a change

FIG. 4. Domain of small oscillation frequency � around the
stable equilibrium point q = q̄. For a given unengaged (d → ∞)
probe frequency, say, the first resonance ω1, the oscillation frequency
is severely reduced when the probe approaches the surface (z0 ≈ w).
For a probe with a free frequency of 0.5 MHz, an approach to the
surface leads to squeezing as exemplified by the two values of the
squeezing parameter r .

in sample material response (δα entering �), or a change in
vertical translation (δz0 entering �).

IV. QUANTUM SQUEEZED ATOMIC
FORCE MICROSCOPY

The quantum description of the proposed metrology is
here based on the assumption that at low temperatures the
probe, initially outside of the interaction regime, behaves
approximately as a quantum harmonic oscillator of frequency
ω1 with the Hamiltonian:

H = p2

2m
+ 1

2
mω2

1q
2 = h̄ω1

(
b
†
1b1 + 1

2

)
, (10)

where b1 annihilates the ground state |0〉ω1 . The probe
operators q,p satisfy [q,p] = ih̄ with negligible quantum
fluctuations of the displacement �q ∼ (h̄/mω1)1/2 ∼ 0.1 fm.
Approaching the surface, the probe is translated to a position
z0, such that the stable equilibrium point is shifted to q = q̄,

near which small oscillations occur at frequency �, given
by Eq. (8). With the probe translated to within the attractive
regime of the probe-sample interaction, the Hamiltonian in
the Hilbert space of no excitations of higher flexural modes
becomes

H = p2

2m
+ 1

2
m�2(q − q̄)2 = h̄�

(
a†a + 1

2

)
, (11)

where the annihilation operator a, satisfying [a,a†] = 1, is
now defined by

a = −ζ + 1√
2h̄m�

[m�q + ip], ζ =
√

m�

2h̄
q̄, (12)
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instead of b1 in Eq. (10). With the probe within the interaction
region, its ground state |0〉� is annihilated as a|0〉� = 0, while
when retracted outside of the region the Hamiltonian (11)
reduces to Eq. (10). Entering the deeper part of the attractive
regime of the probe-sample interaction, the quantum fluctua-
tions of the probe displacement �q ∼ 0.1

√
ω1/� fm diverge

when � → 0. From the definitions of the probe operators
(p,q) and Eq. (12), we observe that the operators a and b1

annihilating the ground state of the interacting probe |0〉�, and
the free probe |0〉ω1 , respectively, are related. The modes in the
two cases, that is, the probe near the sample surface and away
from it, are related through the Bogoliubov transformation:

b1 = cosh r(a + ζ ) + sinh r(a† + ζ ), e2r = ω1

�
> 1, (13)

where r is the squeezing parameter. From this result and
Eqs. (9) and (6), assuming α does not change when d is
varied, and denoting r̃ = e4r , one may implicate the role of
the squeezing in a measure of sensitivity of the QAFM from
the following observations:

∂q̄

∂z0

∣∣∣∣
α

= 1

4
(1 − 4r̃ + 3r̃2),

∂q̄

∂α

∣∣∣∣
z0

=
[

r̃(r̃ − 1)2

216mα2ω2

]1/3

, (14)

both of which increase with squeezing. The ground state of
the probe, within the van der Waals regime, |0〉�, is a squeezed
coherent state in the system with the probe away from the
sample surface [24]. When the probe operates near the sample
surface, r is large. Therefore, r can change dramatically, as
the probe retracts from the sample surface. This is evident
from the map showing the probe frequency shift in Fig. 4,
where the arrow depicts the approach to the surface. As can be
seen, for a given unperturbed probe frequency ω1 = 0.5 MHz,
the squeezing effect associated with the nonlinear force, as
exemplified by the two values of the squeezing parameter
r for two probe-sample distances, can be significant. We
will now proceed to obtain the uncertainties associated with
the probe displacement quadratures. In QAFM (Fig. 2),
the output field of the cavity is measured by homodyne
detection from the current output of the photodiode detectors
converted to an output voltage. The detected signal S will be
proportional to the fluctuations of the quadrature component
of the output field in phase with the local oscillator. From
a calibration of S, a conversion to displacement can be
achieved.

Achieving the squeezed state in QAFM, while ideal when
the probe is in its ground state, does not require it. It has
been shown [25] that a micromechanical oscillator can be
prepared in its ground state, although quite often it is prepared
in an initial state which is close to the ground state. Following
cryogenic and optomechanical cooling, this state has been
demonstrated [26–32]. Suppose that initially the probe is
retracted, that is, far away from the sample surface, and the
beam has been cooled down to a temperature T in the mK
range following the quantum state preparation protocol of
pulsed optomechanics [20,33,34]. The initial state prepared via
application of short laser pulses is detected using homodyne
detection in the cavity as depicted in Fig. 2. Here, we note
that other experimentally demonstrated methods including
a combination of precooling, feedback cooling, sideband
cooling, and cryogenic cooling [29,33] may be suitable as

well. Also noteworthy is that the AFM is compatible with such
operational conditions and low-temperature AFM applications
involving operation at T ∼ 1 K, without invoking cavity
cooling, have been reported for a variety of investigations
[35–40].

Having prepared the system in the thermal state with an
average number of phonons 〈n〉 ≈ kBT /h̄ω1 (for ω1/2π =
1 MHz, T = 10 mK, we have 〈n〉 ≈ 220), we will now reduce
d either by the probe approaching the sample surface or by
the sample approaching the probe (both modalities available
in AFM technology) and study the response of the probe.
Thus, defining c1 = (h̄/2mω1)−1/2 and c2 = −i(2/h̄mω1)1/2

we obtain, for the free probe, a state with quadratures and their
respective uncertainties:

X0
1 = b

†
1 + b1 = c1q, �X0

1 =
√

χ2 + β+
2(1 + β+χ2 + χ4)

,

X0
2 = b

†
1 − b1 = c2p, �X0

2 =
√

1 + β−χ2 + χ4

2(χ2 + β−)
, (15)

where χ is a coupling constant, and β± = (1 ± β)/(1 ∓ β),
with β = exp (−h̄ω1/kBT ). Similar to the case of cavity
coupling to an electrostatically actuated microbeam [20],
when the probe is decoupling from the cavity (χ → 0), the
uncertainties match those of the initial thermal state of the
probe: ρ = (1 − β)

∑∞
n=0 βn|n〉〈n|, where the states |n〉 are

created with b
†
1. On the other hand, for strong coupling

(χ → ∞), or even at moderate coupling (χ ∼ 1), the state
approaches a minimum uncertainty wave packet [20].

With the probe prepared in a state close to the ground
state, we suddenly (t0 ∼ τ ) reduce d by translating the probe
(sample surface) close to the sample surface (probe). The initial
state of the probe is built on the ground state |0〉ω1 , which is
not annihilated by a [see Eq. (12)]. Instead, it is a squeezed
state. After the transition, the relevant quadratures and their
respective uncertainties are given by

X1 = 1√
2

(a† + a) = e−rX0
1 ⇒ �X1 = e−r�X0

1 ,

X2 = i√
2

(a† − a) = erX2
2 ⇒ �X2 = er�X0

2. (16)

As the probe approaches the sample surface, we have � → 0,
therefore �X1 can be made very small and �X2 very large,
while the product �X1�X2 remains near minimum uncer-
tainty. The behavior of the uncertainties is studied in Fig. 5
in the cavity coupling strength and probe-sample separation
distance parameter domain. To study this effect in detail, we
can model the time dependence of the external force by Eq. (3).
This can be carried out in a precise manner as for the case of
squeezing near the pull-in instability of an electrostatically
biased beam [20]. Thus, regarding the Heisenberg equations
of motion, we can revisit the development following Eq. (67)
in the recently reported calculation [20].

To estimate the lifetime of the squeezed state τs due
to its interaction (dissipation and thermalization) with the
environment, we first note that the probe frequency and the
decay time of the cavity satisfy ω1τc � 1, and thus the position
of the probe will not change appreciably during τc. While the
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FIG. 5. The parametric behavior of the probe uncertainties. The
gray shaded region represents the free (z0 � a0) cantilever domain
(� ≈ αz−2

0 → 0). For sufficiently small probe-sample distances, the
uncertainties in the quadratures are dictated by the strength of the
coupling to the cavity, starting from the top right of the blue curve for
a weakly coupled probe and tracing the top left segment of the blue
curve for a strong coupling. For smaller probe-sample separation, the
nonlinear force induced squeezing yields a tighter distribution of the
uncertainties, as shown by the inner trace for z0 = 4a0, after which
the force takes the asymptotic form of � ≈ αw−2. A probe oscillation
frequency of 0.5 MHz was assumed (bandwidth ∼102–103 Hz).

majority of experiments within cavity optomechanics employ
continuous monitoring of the mechanical position, the pulsed
protocol assumed in the description of the QAFM, owing to
its pulsed nature and short time scales, is not as susceptible to
the thermal bath, as it can be performed on short time scales
[41]. Considering the long relaxation time of the oscillator
in response to any transient excitation, an estimate may be
obtained for the squeezed state based on the evolution of
the q(t). Furthermore, from the imaginary part of a solution
for q obtained in a similar fashion as for the case of an
electrostatically biased oscillator [20] [see Eq. (70) therein],
we may estimate a decay time for the probe under the influence
of �. For the worst-case scenario of having a prepared
probe in the squeezed state experiencing a sudden loss of
squeezing mechanism, we expect a lifetime τs ∼ τ ∼ ms. This
is consistent with the estimate for the effect of the bath on
the prepared state via pulsed optomechanics [see Eq. (8) in
Vanner et al. [33]]. Using this estimate, for the parameters
assumed in our paper, one observes an initially squeezed
variance will grow to 0.5 on times of ∼ ms. The longer
relaxation time of the oscillator can ensure that measurements
of the squeezing effects can be carried out without instabilities
associated with oscillation distortion or damping effects. The
higher Q may also be preferred in case one chooses to
invoke a feedback loop. Modern ultrafast piezotransducers and
feedback systems can deliver better control when the response
time of the probe is shorter. Probes with stiffness >40 N/m
or <0.01 N/m are typically employed in AFM, yielding a
broad range of Q, which also affects the sensitivity (e.g., a
probe with a stiffness of 28 N/m and ω1 = 318 kHz exhibits

an amplitude spectral density of 342 fm/
√

Hz for the thermal
noise [15]).

To estimate the displacement sensitivity for a given probe,
we first assume a very high finesse cavity and note δS ∝ δq,
a wavelength of λ ∼ μm, and a probe with ω1 = 0.5 MHz,
to obtain (following Hadjar et al. [42]) ∼10−19 m/

√
Hz.

For lower finesse cavities [41] (e.g., ∼103–104), sensitivities
�10−18 m/

√
Hz are expected. Furthermore, with sensitivities

∼fm/
√

Hz already demonstrated by pulsed optomechanics
[41], in light of the described van der Waals force induced
squeezing and Eq. (14), we expect the QAFM to improve
the measurement sensitivity by several orders of magnitude
above ∼fm/

√
Hz.

Finally, we note that the cavity is not essential to achieve
squeezing in QAFM but to measure it, which differentiates
the presented approach from methods such as ponderomotive
squeezing [43] or mechanical squeezing via parametric res-
onance [44], where either the optical field is squeezed or a
modulated input field is essential for the squeezing. However,
a comparison of the presented method with that of Fabre et al.
[43], who explored the optical interaction in a Kerr medium
and the further noise reduction in the optical field near the
bistability turning points, may be interesting. The mechanical
squeezing in our case near the stability region near the pull-
in parameter domain considered in our previously reported
electrostatically biased microbeam [20] as well as in the case
of QAFM could potentially be invoked in a ponderomotive
squeezing. Similarly, the concept of squeezing via periodically
modulated driving field and the parametric resonance by Liao
and Law [44] is of relevance since the underlying dynamics
is directly accessible within the response of cantilevers. In
particular, the assumption of a single cavity mode field, the
modeling of the moving mirror as a harmonic oscillator, and
the inclusion of the damping by coupling the system with an
oscillator bath (yielding the quantum Langevin equation) are
reminiscent of similar assumptions made in our current and
previous work [20]. Further fruitful analogies between these
oscillators may be noted since once they are prepared in an
initial state one experiences an exponential squeezing in time
and the other (our case) undergoes a squeezing with distance
(implicitly with time) but of course due to two different kinds
of forces (van der Waals in our case). However, in both cases
of ponderomotive and parametric resonance the cavity input
field is essential in the observed squeezing: the cavity output
field in one case [43] and the mechanical state in the latter [44].

V. CONCLUSIONS AND OUTLOOK

In summary, we presented a measurement modality suitable
for implementation in scanning probe microscopy and in
sensing where one object interacts nanomechanically with a
second object. The quantum state atomic force microscopy,
constituting a new concept in quantum metrology, was here for-
mulated and explored within the van der Waals force regime.
However, other forces of relevance, such as electrostatic, mag-
netostatic, Casimir, etc., possessing different nonlinearities,
may be modeled in a similar fashion following the presented
results. Here, the proposed nanometrology capitalizes on the
nanomechanical interaction between a probe and a sample
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surface in the quantum regime of the probe deformation state.
While, for the sake of simplicity and without loss of generality,
the feasibility of the quantum enabled force microscopy was
studied only in the attractive regime of the probe-sample
interaction and for the fundamental probe frequency, a similar
treatment can be obtained for the full force regime and
higher mechanical eigenfrequencies following the presented
results. While the QAFM concept certainly warrants further
investigation, within this introductory effort the vdw-DMT
was shown to enable the necessary amplitude squeezing for the
QAFM to be a viable approach to scanning probe microscopy
with potential to deliver a resolving power significantly
beyond pm. The cavity optomechanical readout of QAFM
in conjunction with the capitalization of the interfacial forces
to squeeze the mechanical motion of the probe has potential
to lead to many interesting applications such as parametric
cooling, while being metrologically compatible with other
harnessing mechanisms such as feedback cooling. In addition
to providing a dynamic platform for exploring the effect of
various regimes of the interfacial forces, the key benefits of

the QAFM include applications within force spectroscopy with
significantly improved resolution in measurements of elec-
tronic, spin, and magnetic properties of molecular and atomic
systems, clusters, and quantum dots and their subcomponent
properties. Other force sensing investigations motivated by a
need for ultrasensitive single-molecule force measurements
are underway (e.g., see Doolin et al. [45]).
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