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Monte Carlo wave-function description of losses in a one-dimensional Bose gas and cooling
to the ground state by quantum feedback
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The effect of atom losses on a homogeneous one-dimensional Bose gas lying within the quasicondensate
regime is investigated using a Monte Carlo wave-function approach. The evolution of the system is calculated,
conditioned by the loss sequence, namely, the times of individual losses and the position of the removed atoms.
We describe the gas within the linearized Bogoliubov approach. For each mode, we find that, for a given quantum
trajectory, the state of the system converges towards a coherent state, i.e., the ground state, displaced in phase
space. We show that, provided losses are recorded with a temporal and spatially resolved detector, quantum
feedback can be implemented and cooling to the ground state of one or several modes can be realized.
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In [1], the effect of atom losses on a one-dimensional
quasicondensate was investigated. The authors have shown
that, within a linearized approach and for a large enough initial
temperature, one expects the temperature of the low-lying
modes to decrease in time, in agreement with recent experi-
mental results [2]. The fluctuation induced by the loss process
due to the discrete nature of atoms is, however, responsible for a
heating, limiting the temperature which can be achieved. More
precisely, one expects that the temperature asymptotically
converges towards gρ(t) where g is the coupling constant and
ρ is the linear atomic density [1,3]. In particular, excitations
in the phononic regime, i.e., of frequency much smaller
than gρ(t)/h̄, never enter the quantum regime: their mean
occupation number stays very large such that they lie in the
Raighley-Jeans regime. This heating only occurs if one ignores
the results of the losses or, equivalently, if one takes the partial
trace on the state of the reservoir in which losses occur, ending
up with the master equation for the system’s density matrix. If,
on the other hand, one records the losses, more information is
gained on the system and the analysis made in [1] is no longer
sufficient.

In this paper, we assume the losses are monitored with a
spatially and temporally resolved detector and we describe the
evolution of the system using a Monte Carlo wave-function
analysis. The measurement back action leads to an evolution
of the system conditioned by the result of the loss process,
namely, a given history of losses. Averaging over the different
possible histories, the results of [1] are recovered. The
analysis proposed in this paper, however, not only presents
an alternative picture conveying more physical insight but
also opens the road to the realization of measurement based
quantum feedback: controlled dynamics, conditioned on the
monitored losses, allows one to reach lower temperatures. In
this paper, we show that feedback on a given mode of the
system could in principle allow one to cool this mode to the
ground state. In particular we show that phononic excitations
can be brought to the quantum regime. State preparation using
information inferred from losses has already been used to
prepare a well-defined phase between two condensates [4],
with a Monte Carlo wave-function approach providing a very
clear understanding of the mechanism [5]. Manipulation of

cold atomic clouds by quantum feedback has been proposed in
many theoretical papers using dispersive light-atom interaction
[6,7], while feedback has been implemented for internal
degrees of freedom [8–10].

I. DISCRETIZATION OF THE PROBLEM

We consider a one-dimensional Bose gas with contact
repulsive interactions of coupling constant g, such that the
Hamiltonian writes, in second quantization,

H = − h̄2

2m

∫
dxψ+∂2ψ/∂x2

+g

2

∫
dxψ+(x)ψ+(x)ψ(x)ψ(x).

We assume the gas is submitted to atom losses, the loss
mechanism being a single atom process described by a loss
rate �. For instance, magnetically trapped atoms could be
submitted to a radio-frequency field that would transfer atoms
to an untrapped state, as realized experimentally in [2]. Atoms
could also be ionized by laser fields [11], or expelled by
collision with fast electrons [12]. We moreover assume the
lost atoms are detected one by one with position-resolved
detectors, as sketched in Fig. 1. We denote ρ̄ the mean linear
density and we assume the gas lies within the quasicondensate
regime such that the atomic density fluctuations are small and
their characteristic length scale, equal to the healing length
lh = h̄/

√
mgρ̄, is much larger than the mean interparticle

distance [13]. We discretize space in N cells of length δx,
containing a large mean atom number n̄ = δxρ̄ and with small
relative fluctuations. We furthermore assume that δx is large
enough such that the fluctuations are large compared to unity
[14]. The state of the gas may be expanded (as long as one
is not interested in length scales smaller than δx) on the Fock
basis of each cell:

|ψ〉 =
∑

n1,n2,...,nN

cn1,n2,...,nN
|n1,n2, . . . ,nN 〉. (1)

Time is also discretized in intervals �t small compared to
the time scales involved in the longitudinal dynamics of the
gas. This allows one to consider, during �t , the sole effect of
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FIG. 1. A one-dimensional Bose gas with atom losses and a
spatially resolved single atom detectors system. The information on
the atom loss can be used to create a feedback loop on the atoms via
a lattice potential. The amplitude of the lattice potential is controlled
by a processing unit which uses the information gained from the atom
losses.

losses first and then the effect of the free evolution. We will
first concentrate on the effect of losses. Since losses do not
introduce correlations between different cells, it is relevant to
consider the case of a single cell first.

II. MONTE CARLO DESCRIPTION OF LOSSES
IN A SINGLE CELL

Considering a single cell, the initial state writes |ψ(t)〉 =∑
n cn|n〉. Let us split �t in elementary time steps of length

dt , small enough so that the probability to have an atom
lost during dt is small. According to the Monte Carlo wave-
function procedure [15], if no atoms are detected during a
time step dt , then the state of the system evolves according
to the non-Hermitian Hamiltonian Heff = −ih̄�a+a/2, which
ensures the decrease of the probability of highly occupied
states. If on the other hand a lost atom has been detected,
the new state is obtained by the application of the jump
operator â, which annihilates an atom in the cell. Let us now
assume M atoms have been lost from the cell between time t

and time t + �t , at times t1 < t2 < · · · < tM , as sketched in
Fig. 2. By successively applying the procedure described
above, we construct the quantum trajectory followed by the
system and we find

|ψ(t + �t)〉 = e−iHeff (t+�t−tM )/h̄âe−iHeff (tM−tM−1)/h̄

. . . âe−iHeff (t1−t)/h̄|ψ(t)〉. (2)

With the normalization chosen here, the probability of the
loss sequence is (dt�)M〈ψ(t + �t)|ψ(t + �t)〉/〈ψ(t)|ψ(t)〉.
From Eq. (2), we find that the Fock state coefficients

FIG. 2. A typical loss sequence during a time interval �t , for
a single cell. The associated quantum trajectory followed by the
system’s wave function is given by Eq. (2).

cn(t + �t) = 〈n|ψ(t + �t)〉 write

cn(t + �t) = f{ti }(n + M)cn+M (t), (3)

where the function f{ti }(n) depends on the loss sequence.
Assuming �t is small enough so that M is much smaller
than the mean atom number in the cell, itself much larger than
1, f{ti }(n), for a given M , becomes almost independent on the
time sequence {ti} and can be approximated by

f{ti }(n) � fM (n) = nM/2e−�nt/2. (4)

Within this approximation, the probability of the sequence
is

∑
n |cn|2(�ndt)Me−�n�t . Summing over all possible se-

quences with M lost atoms, we find that the probability to
have M lost atoms is P (M) = ∑

n |cn|2(�n�t)Me−�n�t/M!.
For a given initial atom number n, we recover the expected
Poissonian distribution. In the limit n̄��t � 1, the typical
number of losses is much larger than 1 and the function fM (n)
can be approximated by the Gaussian

fM (n) � AMe− [n−M/(��t)]2(��t)2

4M , (5)

where AM is the normalization factor. Using the fact that the
number of lost atoms M is typically equal to n̄��t and presents
small relative fluctuations, Eq. (5) further approximates to

fM (n) � AMe− [n−M/(��t)]2��t

4n̄ . (6)

The same approximations lead to a mean number of lost atoms
〈M〉tr = 〈n〉��t , with a variance 〈M2〉tr − 〈M〉2

tr = ��tn̄,
where the symbol tr indicates that averaging is done here over
many different quantum trajectories.

III. GENERALIZATION TO ALL CELLS
AND BOGOLIUBOV DECOMPOSITION

The results above can immediately be generalized to the
case of several cells. If Mi denotes the number of lost atoms
in the cell i, the probability amplitude of the Fock state
|n1,n2, . . . ,nN 〉 is, up to a global normalization factor,

cn1,n2,...,nN
(t + �t)

= cn1+M1,n2+M2,...,nN +MN
(t)

∏
i

e− [ni−Mi/(��t)]2��t

4n̄ . (7)

Since the atom number per cell is typically very large
and presents fluctuations large compared to unity, one can
approximate discrete sums on ni by continuous integrals and
treat the ni as continuous variables.

Since the gas lies in the quasicondensate regime, its Hamil-
tonian is well approximated by the Bogoliubov Hamiltonian
[13]. For a homogeneous system, the Bogoliubov modes are
obtained from the Fourier decomposition. More precisely, let
us introduce the Fourier quantities

nki ,c =
√

2

N

∑
j

cos(kijδx)nj

nki ,s =
√

2

N

∑
j

sin(kijδx)nj . (8)

Here ki = i2π/L, where i is an integer taking values between 1
and (N − 1)/2. We introduce in the same way the operator n̂ki ,c

and n̂ki ,s . The Bogoliubov Hamiltonian acts independently on
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each Fourier mode and, for a given mode (k,r), where r stands
for c or s, it writes, up to a constant term,

Ĥk,r = Akn̂
2
k,r + Bkθ̂

2
k,r , (9)

where the phase operator θ̂k,r is the operator conjugated to
n̂k [16], Ak = [g/2 + h̄2k2/(8mρ̄)]/δx, Bk = h̄k2ρ̄δx/(2m),
and the mean particle density ρ̄ = n̄/δx. The frequency of the
mode is ωk = 2

√
AkBk/h̄.

Let us now investigate the effect of losses in the Bogoliubov
basis. The state |n1,n2, . . . ,nN 〉 is also an eigenstate of each op-
erator n̂ki ,r , where r stands for c or s, with eigenvalue nki ,r . We
thus use the notation |n1,n2, . . . ,nN 〉 = |{nki ,r}〉, where {nki,r

}
is a short notation for nk1,c,nk1,s ,nk2,c,nk2,s . . . ,nkN ,c,nkN ,s . The
state of the system then writes

|ψ〉 =
∫ ∏

i,r

dnki ,r c̃{nki ,r
}|{nki ,r}〉, (10)

where c̃{nki ,r
} = cn1,n2,...,nN

. The modification of the state of the
system after a time �t due to atom losses is then, according to
Eq. (7),

c̃{nki ,r
}(t + �t)= c̃{nki ,r

+Mki ,r
}(t)

∏
i

e− [nki
−Mki ,r

/(��t)]2��t

4n̄ , (11)

where Mki,c = √
2/N

∑
j Mj cos(kixj ) and Mki,s = √

2/N∑
j Mj sin(kixj ). We used the facts that, here, on one hand

the variances of each Gaussian in Eq. (7) are all equal and
on the other hand the density profiles of Bogoliubov modes
are orthogonal, namely, the transformation between the basis
ni and nk,r is orthogonal. The statistics of the different
quantum trajectories gives a Gaussian distribution for Mki,r

with 〈Mki,r〉tr = ��t〈nk,r〉 and 〈M2
ki ,r

〉tr − 〈Mki,r〉2
tr = ��tn̄.

Equation (11) shows that the losses affect each Fourier
component, i.e., each Bogoliubov mode, independently.

If the initial state is at thermal equilibrium, different
Bogoliubov modes are uncorrelated. The free evolution, under
the Bogoliubov Hamiltonian, as well as the effect of losses, do
not introduce correlations between modes and one can consider
each mode independently. In the following, we consider a
given mode of momentum k and we will omit the subscript c

or s, since the upcoming considerations apply for both.

IV. EVOLUTION OF A GIVEN BOGOLIUBOV MODE:
WIGNER REPRESENTATION

Here we consider a given mode, described by the two
conjugate variables nk and θk . A convenient representation
of the state of the system is its Wigner function W , a
two-dimensional real function, the expression of which, as
a function of the density matrix D of the state, is

W (nk,θk) = 1

2π2

∫
dadbei(ank−bθk )T r(De(−ian̂k+ibθ̂k )). (12)

The effect of losses during �t , in the nk representation, is
given by Eq. (11), and this effect transforms W into the new

Wigner function function W ′ according to

W ′(nk,θk) = ��t

2π3/2n̄

∫
dθ̃W (nk + Mk,θ̃ )

×e− ��t
2n̄

[nk−Mk/(��t)]2
e− 2n̄

��t
(θ̃−θ)2

. (13)

The multiplication by a Gaussian function along the nk axis
shifts the distribution towards Mk/(��t), the value for which
〈Mk〉tr is equal to the recorder value Mk . It also decreases the
width in nk , which reflects the gain of knowledge acquired on
nk by the detection of the number of lost atoms. The associated
convolution along the axis θk increases the width in θk , and
ensures preservation of uncertainty relations.

The thermal state of the Bogoliubov Hamiltonian has a
Gaussian Wigner function. Since the Gaussian character is
preserved by Eq. (13) and by the free evolution, the state of
the system stays Gaussian. W is then completely determined
by its center R = (〈nk〉,〈θk〉) and its covariance matrix:

C =
( 〈

n2
k

〉 − 〈nk〉2 〈nkθk〉 − 〈nk〉〈θk〉
〈nkθk〉 − 〈nk〉〈θk〉

〈
θ2
k

〉 − 〈θk〉2

)
. (14)

As shown in Appendix A, to first order in �t , the transforma-
tion in Eq. (13) changes R and C to R′ and C ′ with

C ′ = C + ��t

n̄

(
−C2

11 −C11C12

−C11C12 −C2
12 + 1

4

)
(15)

and

R′ = R −
(

��t〈nk〉
0

)
− dξ

(
1 − C11/n̄

−C12/n̄

)
. (16)

Here we introduced dξ = Mk − ��t〈nk〉. According to the
statistic of trajectories, dξ is a Gaussian variable centered on
zero and of variance 〈dξ 2〉tr = ��tn̄. The above equations
account for the evolution of the state under the sole effect of
atom losses. One should then implement the evolution under
the Hamiltonian (9), which amounts to a simple rotation of the
Wigner function in phase space and acts independently on C

and R [17]. Finally, one can compute the long term evolution
iteratively following the procedure above, knowing, at each
time interval �t , the number of atoms lost in each cell, Mi ,
from which dξ is computed.

V. EVOLUTION OF THE CORRELATION MATRIX

Equation (15) shows that the evolution of the correlation
matrix is the same for all possible quantum trajectories, and
general statements can be made. Let us first consider a very
slow mode such that one can ignore the free evolution. Then
C12 stays at zero during the evolution and time integration of
Eq. (15) on long times gives

C11�n̄(t)/(1 − e−�t ), C22�(1 − e−�t )/[4n̄(t)] (17)

where n̄(t) = n̄(t = 0)e−�t is the time-dependent mean atom
number per cell. The system thus goes towards a state
of minimal uncertainty, as expected, since more and more
information is acquired on the system. Let us now consider
the other limit of a mode of very high frequency. Then the
free evolution of the system ensures, at any time, C12 � 0
and the equipartition of the energy between the two degrees
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of freedom. Thus AkC11 � BkC22 � 〈Ec〉/2 where 〈Ec〉 =
AkC11 + BkC22 is the contribution of the correlation matrix
to the energy. We then find

d[〈Ec〉/(h̄ωk)]

dt
= �eff{−[〈Ec〉/(h̄ωk)]2 + 1/4}, (18)

where �eff = �/
√

1 + 4mgρ̄/(h̄2k2). �eff depends on time via
the exponential decrease of ρ̄ due to losses. At long times,
〈Ec〉/(h̄ωk) goes to 1/2, such that the state of the system,
as long as only the matrix C is concerned, evolves towards
the ground state. If one assumes the excitation is initially in
the phononic regime, however, we show in Appendix B that
〈Ec〉 approaches h̄ωk only once the decrease of ρ̄ has already
promoted the excitation to the particle regime. Thus phononic
excitations cannot reach the quantum regime. The situation is
different if the decrease of ρ̄ is compensated by the following
time dependence of g:

g(t) = g(t = 0)e�t . (19)

Then �eff and ωk are constant and an excitation lying in the
phononic regime stays in the phononic regime during the whole
loss process and, as long as the C matrix is concerned, is
cooled to the ground state. In the following, we will assume g

is modified according to Eq. (19).

VI. AVERAGING OVER TRAJECTORIES

If the loss events are not recorded, then only the quantities
averaged over all possible trajectories are meaningful. If the
Wigner distribution is initially centered around zero, it will
stay centered at zero. Let us investigate its evolution over a
time �t . For a given quantum trajectory, i.e., a given value dξ ,
the losses modify the correlation matrix according to Eq. (15)
as well as the center R, which acquires the nonzero value
R = −dξ (1 − C11/n̄; −C12/n̄). One then has

〈
n2

k

〉
st(t + �t) = 〈

n2
k

〉
(t) − ��t/n̄C2

11 + dξ 2

(
1 − 〈n2

k〉
n̄

)2

(20)

and〈
θ2
k

〉
st(t+�t) = 〈

θ2
k

〉
(t)+��t/n̄

(
1/4 − C2

12

) + (dξC12/n̄)2,

(21)

where the subscript st specifies that this holds for a single
trajectory. Averaging over all possible trajectories, we then
find, using 〈dξ 2〉tr = ��tn̄, that losses modify the variances
according to〈

n2
k

〉
(t + �t) − 〈

n2
k

〉
(t) = −2��t

〈
n2

k

〉
(t) + ��tn̄(t) (22)

and 〈
θ2
k

〉
(t + �t) − 〈

θ2
k

〉
(t) = ��t/(4n̄). (23)

As expected, Eqs. (22) and (23) are equal to those obtained
using a master equation description of the loss process [1,18].
Due to the diffusive process experienced by R, an increased
rate in both equations limits the decrease of the mode energy.
For phonons, and assuming the loss rate is small compared
to the mode frequency, we show in Appendix C that the
temperature asymptotically goes towards gρ̄(t)/2.

This value of the asymptotic temperature T∞ is particular
to the case of a homogeneous gas with a coupling constant
evolving according to Eq. (19). For constant g the asymptotic
temperature is T∞ = gρ̄ [1,18]. For a gas trapped in a harmonic
potential we expect T∞ to scale as gρp, where ρp is the peak
density. The proportionality factor has not been derived yet,
but since the averaged density is smaller than ρp, one naively
expects that T∞ is smaller than gρp. Experimentally T∞ has
not been identified, while temperatures as low as 0.25 gρp have
been reported for a harmonically confined gas [2].

VII. USING INFORMATION RETRIEVED FROM LOSSES
DETECTION: QUANTUM FEEDBACK

If the losses are recorded, such that at each time interval
�t the values Mj are recorded, the trajectory followed by the
center of the Wigner distribution, R, can be computed exactly,
and the heating associated to the diffusion process seen in
Eqs. (23) and (22) can be compensated for. One strategy
is to perform, during the whole time evolution, a quantum
feedback on the system, based on the knowledge acquired via
the atom losses, in order to prevent the center of the Wigner
distribution from drifting away from the phase-space center.
Let us here, as an illustration, assume one is interested in a
given mode k,c. The most simple back action is to submit
the atomic cloud to a potential V (x) = A(t) cos(kx), where
the computed amplitude A(t) depends on the recorded history
of the losses. Such a potential could be realized, for instance,
using the dipole potential experienced by atoms in a laser field.
The cosine modulation of the laser intensity can be realized
using an optical lattice, or using a spatial light modulator.
The contribution to the Hamiltonian of this potential is
Ĥfb = A(t)

√
N/2n̂k,c. In order to counteract the diffusion

process of R due to the loss process, one could adjust A(t)
such that the feedback Hamiltonian is

Ĥfb = −h̄ν〈θk,c〉n̂k,c (24)

where, at each time interval, 〈θk,c〉 is computed by integrating
the equations of motion including the effect of losses, the free
evolution, and the feedback process. This Hamiltonian acts
as an active damping, the damping rate ν preventing θk from
drifting far from the phase-space center. The free-evolution
Hamiltonian, by coupling the two degrees of freedom, will
ensure that neither θk nor nk drifts away. For a large enough
damping rate ν, the contribution of R to the energy of the
mode is expected to be negligible compared to the contribution
of the covariance matrix C and, according to Eq. (18), one
expects to reach the ground state. We present numerical results
illustrating such a scenario below.

Before presenting numerical results, let us identify the
relevant quantities governing the dynamics. Introducing the
reduced variable ñk = n̄−1/2nk and θ̃k = n̄1/2θk , as shown in
Appendix D, we find as expected that the cell size δx drops
out of the problem and, provided time is rescaled by 1/�,
the dynamics of the mode of wave vector k is solely governed
by the dimensionless parameters ωk/�, h̄2k2/(mgρ̄) and ν/�.
The relevant measurement signal, for the time interval �t , is
then M̃k = √

2/Nat
∫

dxm(x) cos(kx), where Nat is the total
atom number and m(x) is the number of lost atoms per
unit length. Figure 3 shows the phase-space evolution of a
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t =8/Γ

single trajectorysingle trajectory

FIG. 3. Evolution of the phase-space distribution for a single
trajectory from time t = 0 to 8/� in the absence of feedback.
The mode k = 0.1

√
mgρ̄/h̄ is considered, with the initial temperature

Ti = 1.1gρ̄ and a loss rate � = ωk/400. Scattered blue points give
the evolution of the center R. We verified that C12 stays small while,
at any time, AkC11 � BkC22 � Ec/2, as expected for such a large
ωk . The black solid circle, of radius

√
EC , represents the final rms

width of the Wigner function. For comparison, the red dashed circle,
of radius

√
E, where E is the energy obtained after averaging over

100 trajectories, gives the rms width of the averaged phase-space
distribution. The coordinates are given in the frame rotating according
to the free evolution: namely, the plotted quantity is R̄ = (n̄k,θ̄k)
= R−1(ωkt)R [17].

single quantum trajectory, for a mode lying in the phononic
regime, in the absence of quantum feedback. Figure 4 shows
the time evolution of the energy in this mode, averaged over
quantum trajectories, both in the absence and in the presence
of feedback. In the absence of feedback, the energy converges
towards the expected value gρ/2. If the feedback scheme is
implemented, we observe that the energy in the mode reaches
much smaller values. For a large feedback strength ν, the drift
of the center is almost completely prohibited and the mode is
cooled to its ground state.

VIII. DISCUSSION

In conclusion, we proposed a description of the effect of
losses in a many-body system through a Monte Carlo wave-
function approach, and we showed that quantum feedback by
monitoring losses could be used to cool down selected modes
of a quasicondensate to vanishing temperatures. This work
could be extended in many directions. In view of practical
implementation, the sensitivity of the feedback mechanism
on the exact knowledge of the system parameters should be
investigated. Assuming, as is done in this paper, the system

0 10 20 30 40 50 60

Γt

0

2

4

6

8

10

12

E
/(

h̄
ω

k
)

ν/Γ = 0

ν/Γ = 1

ν/Γ = 10

ν/Γ = 400

h̄ωk/2

gρ̄/2

FIG. 4. Simulation of the loss process for different feedback
strengths ν. Plotted is the time evolution of the energy in the mode k,
averaged over 500 quantum trajectories, the parameters being those
of Fig. 3. Without feedback the energy converges to gρ̄/2 (horizontal
dotted line); lower energies are obtained with feedback, and the
ground state, of energy h̄ωk/2 (horizontal dashed line), is reached
for large enough ν.

parameters are known exactly, the larger the feedback strength
the better the cooling. In the presence of uncertainties, a
too large feedback strength will induce heating as it will
not match the exact dynamics. Additionally, in most exper-
imental situations the quasicondensates, trapped in a shallow
longitudinal potential, are nonhomogeneous. Then, the effect
of losses depends on the spatial coordinate. Moreover, the
linearized description should use, instead of the sinusoidal
modes, the spatial density profiles of the Bogoliubov modes,
which are not necessarily orthogonal. These issues complicate
the picture. Losses might then induce correlations between
modes [7]. Another concern is the coupling between modes,
which exists beyond the linearized approach considered here.
Such coupling is present, for instance, in the Gross-Pitaevskii
equation, which is a classical field approximation of the Lieb-
Liniger model. However, long-lived nonthermal states with
different Bogoliubov modes experiencing long lifetimes [19]
have been reported, which indicates small coupling between
modes and the possibility to cool down a particular Bogoliubov
mode. Finally, note that this cooling process is not limited to
one-dimensional systems.
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APPENDIX A: EFFECT OF LOSSES ON
THE WIGNER REPRESENTATION

Here we consider a given mode and we will omit the
subscripts k,r to make our notations lighter. We also introduce
σ 2 = n̄/(��t) and q0 = Mk/(�t). Equation (12) writes, in
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representation n,

W (n,θ ) = 1

π

∫
du〈u + n|D|u − n〉e−2iuθ . (A1)

The effect of losses given by Eq. (11) transforms the Wigner
function of the mode to

W ′(n + Mk,θ ) = 1

2π2σ 2

∫
du〈u + n|D|u − n〉e−2iuθ

× e−(n−q0+u)2/(4σ 2)e−(n−q0−u)2/(4σ 2). (A2)

Injecting 〈u + n|D|u − n〉 = ∫
dθ̃W (n,θ̃ )ei2θ̃u, we then find

Eq. (13).
Let us now consider a Gaussian state. Its Wigner function

writes

W (n,θ ) = 1

2π
√

det(C)
e− 1

2 [(X−R)t B(X−R)] (A3)

where X = ( n

θ
), R is the center of the distribution, C is

the covariant matrix, and B = C−1. The transformation in
Eq. (13) transforms the Gaussian state into a new Gaussian
state centered on R′ and of covariance C ′. The convolution on
the axis θ does not change R and changes C in C̃ according to

C̃ = C +
(

0 0

0 1
4σ 2

)
. (A4)

Let us now consider the effect of the multiplication of W by

e
− 1

2σ2 (n−q0)2

, as well as the shift along n by Mk . From Eq. (A3),
we find

B ′ =
(

1/σ 2 0

0 0

)
+ B̃ (A5)

and

B̃R + q0

σ 2

(
1
0

)
= B ′

[
R′ +

(
Mk

0

)]
(A6)

where B̃ = C̃−1 and B ′ = C ′−1. From Eq. (A5), we obtain

C ′ =
[
Id + C̃

(
1/σ 2 0

0 0

)]−1

C2. (A7)

Injecting σ = √
n̄/(��t) and expanding to first order in �t ,

one gets

C ′ �
[
Id − ��t

n̄

(
C11 0

C12 0

)]
C̃. (A8)

Here we used the fact that C̃11 = C11 and C̃12 = C12. This
equation also takes the form of Eq. (15). Let us now consider
the center of the distribution. Multiplying the left- and

right-hand parts of Eq. (A6) by C ′ and injecting Eq. (A8),
we deduce

R′ =
[
Id − ��t

n̄

(
C11 0
C12 0

)][
R + Mk

n̄

(
C11

C12

)]
−

(
Mk

0

)
.

(A9)

Neglecting terms beyond first order in �t , we obtain

R′ = R +
(

Mk

n̄
− ��t

n̄
〈nk〉

)(
C11

C12

)
−

(
Mk

0

)
. (A10)

Injecting Mk = ��〈nk〉 + dξ , we recover Eq. (16).

APPENDIX B: EVOLUTION OF EC FOR CONSTANT g

We assume ωk � � such that Eq. (18) is valid. Note that the
condition ωk � � also ensures adiabatic following, namely,
the time evolution of the Hamiltonian parameters Ak and Bk

preserves the ratio EC/(h̄ωk), such that Eq. (18) holds both
for a constant g and a time-varying g. Let us introduce the
variable y = 〈Ec〉

gρ̄
and rewrite Eq. (18) in the form

y ′(t) = y�

{
1 − gρ

2gρ̄ + h̄2k2/(2m)
(1 + y)

}
+ �h̄2k2

8mgρ̄
.

(B1)

For y = 1 we see that y ′(t) � 0 and therefore y(t) has to be
an increasing function at y = 1. It follows that for all initial
conditions y(0) � 1 the energy EC stays greater than gρ̄. This
implies in particular that, as long as an excitation stays in
the phononic regime (i.e., its frequency stays much smaller
than gρ̄/h̄), it stays in the high-temperature regime, namely,
EC/(h̄ωk) � 1.

APPENDIX C: ASYMPTOTIC TEMPERATURE
FOR NONRECORDED LOSSES

We consider a mode k (we omit the index r for simplicity)
and we assume averaging is done over trajectories. Then
evolution of the variances of nk and θk due to the loss process
is given in Eqs. (22) and (23). Let us consider the quantity
Ẽ = 〈Hk〉/(h̄ωk). We assume the loss rate is small enough
so that the free evolution under the Hamiltonian (9) ensures
equipartition of the energy between the two quadratures,
namely, at each time Ak〈n2

k〉 = Bk〈θ2
k 〉 = E/2. Note that this

is equivalent to the condition of adiabatic following. Then the
modification of Ẽ under the loss process is

1

�

dẼ

dt
= −Ẽ + (K + 1/K)/4 (C1)

where K = 4n̄Ak/ωk = 2n̄
√

Ak/Bk . The evolution under the
Hamiltonian (9), provided the adiabatic following condition is
satisfied, does not modify Ẽ. Thus Eq. (C1) gives the total time
evolution of Ẽ, and it is valid both when Ak and Bk depend on
time and when they do not depend on time. In this paper, we
consider the situation given by Eq. (19), where the exponential
decrease of ρ̄ is compensated by a time dependence of g such
that K is time independent. Then Eq. (C1) evolves at long
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times to

Ẽ →
t→∞ (K + 1/K)/4. (C2)

For phononic modes, for which k2 
 gρ, one has K �
2
√

gρ/k. Then Ẽ goes to
√

gρ/(2k) at long times, which
gives

E →
t→∞

1

2
gρ. (C3)

This energy is very large compared to ωk . Thus the excitation
lies in the high-temperature limit and its temperature is T �
E � gρ/2. Note that, in the case g is constant, then K depends
on time and solving Eq. (C1) with the time-dependant value of
K gives that E converges to gρ̄ = gρ̄0e

−�t , as derived in [1].

APPENDIX D: EQUATIONS IN REDUCED VARIABLES

Here we derive the evolution equations for the reduced
variables ñk = n

−1/2
0 nk and θ̃k = n

1/2
0 θk . We denote R̃ and C̃

the associated mean vector and covariant matrix. Taking into
account the exponential decrease of n0, Eqs. (15) and (16) give

C̃ ′ = C̃ + ��t

(
−C̃2

11 + C̃11 −C̃11C̃12

−C̃11C̃12 −C̃2
12 + 1

4 − C̃22

)
(D1)

and

R̃′ = R̃ + dξ̃

(
C̃11 − 1

C̃12

)
− 1

2

(
3��t〈ñk〉
−��t〈θ̃k〉

)
. (D2)

Here dξ̃ = M̃k − ��t〈ñk〉 where M̃k = Mk/
√

n0. The statis-
tic of trajectory implies that M̃k follows a Gaussian statistic
with 〈M̃k〉 = ��t〈ñk〉 and VarM̃k = �δt.
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