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Generation of dark solitons and their instability dynamics in two-dimensional condensates
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We analyze numerically the formation and the subsequent dynamics of two-dimensional matter wave dark
solitons in a Thomas-Fermi rubidium condensate using various techniques. An initially imprinted sharp phase
gradient leads to the dynamical formation of a stationary soliton as well as very shallow gray solitons, whereas
a smooth gradient only creates gray solitons. The depth and hence, the velocity of the soliton is provided by
the spatial width of the phase gradient, and it also strongly influences the snake-instability dynamics of the
two-dimensional solitons. The vortex dipoles stemming from the unstable soliton exhibit rich dynamics. Notably,
the annihilation of a vortex dipole via a transient dark lump or a vortexonium state, the exchange of vortices
between either a pair of vortex dipoles or a vortex dipole and a single vortex, and so on. For sufficiently large
width of the initial phase gradient, the solitons may decay directly into vortexoniums instead of vortex pairs,
and also the decay rate is augmented. Later, we discuss alternative techniques to generate dark solitons, which
involve a Gaussian potential barrier and time-dependent interactions, both linear and periodic. The properties of
the solitons can be controlled by tuning the amplitude or the width of the potential barrier. In the linear case,
the number of solitons and their depths are determined by the quench time of the interactions. For the periodic
modulation, a transient soliton lattice emerges with its periodicity depending on the modulation frequency,
through a wave number selection governed by the local Bogoliubov spectrum. Interestingly, for sufficiently low
barrier potential, both Faraday pattern and soliton lattice coexist. The snake instability dynamics of the soliton
lattice is characteristically modified if the Faraday pattern is present.
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I. INTRODUCTION

Dark solitons (DSs) are fundamental, localized nonlinear
excitations appearing in various systems [1-7], including
Bose-Einstein condensates (BECs) [8—10], with defocusing
nonlinearity and they are characterized by a localized dip in the
background density. Various techniques have been employed
to generate matter wave DSs, for instance, phase imprinting
[11-14], density engineering [15—17], and a combination of
both, so-called the quantum state engineering [18-21]. In addi-
tion, the formation of DSs has been reported for experiments,
in which a condensate is flowing past an obstacle realized
via laser-induced dipole potential [22,23], as well as during
the interference of condensates initially prepared in multiwell
potentials [24,25]. DSs may also appear spontaneously in
condensates, if the Bose gas is quenched across the BEC phase
transition via Kibble-Zureck mechanism [26-28]. Besides
the experimental investigations, there have been numerous
theoretical studies [29—-34] discussing novel ways to generate
and study solitons, including their unique properties.

At zero temperatures, the stability of a DS demands a quasi-
one-dimensional condensate, i.e., the transverse extension
of the condensate is required to be less than or of the
order of the healing length [35-38]. Otherwise, the soliton
becomes dynamically unstable against transverse excitations,
so called the snake instability (SI). SI leads to the bending
of the nodal stripe (plane) in a two-dimensional [39,40]
(three-dimensional) background, which eventually breaks up
into vortices and sound excitations [41]. It has been observed
experimentally in both matter wave [20] and optical DSs
[42,43]. At finite temperatures, thermodynamic instability
may lead to the decay of dynamically stable DSs [44]. In
the trapped case, even at zero temperature, DSs may exhibit

2469-9926/2017/95(4)/043618(10)

043618-1

dissipative losses due to the emission of sound waves and
its repeated collisions with the latter [11,45-47]. In general,
the sound waves mediated dissipation of DS may occur if
it encounters an inhomogeneity in the background density
[48]. Nonconventional and exotic DS-like excitations are also
predicted to exhibit in two-dimensional (2D) condensates
[40,49-51].

A dark stripe undergoing SI decays into a chain of vortices
with opposite topological charges or the so-called vortex
dipoles (VDs), a problem which has been addressed in the
context of both nonlinear optics [42,43,52—-54] and in atomic
condensates [40,55-57], including fermionic superfluids [58].
If the transverse extension of the condensate is not large
enough, the formed VD recombines back to form the dark
stripe and will undergo SI again. This process keeps repeating
in time [23,55]. As the transverse size increases, more vortices
are formed along the nodal stripe. Complementary to SI
dynamics, it has also been shown that the various vortex
configurations can be seen as the bifurcating states from a
DS stripe [59]. The complex dynamics of vortices [60—62]
including that of VDs [61,63—75] in an inhomogeneous
interacting condensate is a subject of its own merit. The motion
of a vortex is strongly affected by the interaction with other
vortices and the geometrical confinement. For instance, two
vortices with the same topological charge precess around each
other, whereas with opposite charges move together with a
linear velocity along the direction of flow between them. A
VD may annihilate [67,73,76-79], upon collision with other
vortices or by emitting sound waves [80], a process that might
play a big role in realizing the Onsager vortex states [81,82].

In the first part of the paper, we numerically study the
long-time dynamics of a 2D matter wave DS in a rubidium
Thomas-Fermi (TF) condensate, subjected to SI. In particular,
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we look at the long-time dynamics of the VDs created. The
DS is developed by imprinting a phase gradient at the start of
the time evolution. The soliton properties, as well as the nature
of SI and post instability dynamics, depend crucially on the
spatial width of the phase gradient. A sharp phase variation
at the center of the condensate creates a stationary DS along
with very shallow gray solitons, and the former eventually
undergoes SI, resulting in a transient VD stripe. The stripe then
breaks up into an interacting gas of VDs and lone vortices. The
dynamics of vortices provides us very interesting scenarios:
the annihilation of a VD via an intermediate dark lump or
vortexonium state, the collisional dynamics resulting in the
exchange of vortices between either two VDs or a VD and a
single vortex, etc. Interestingly, for the sufficiently large width
of the initial phase gradient, the solitons may decay directly
into vortexoniums instead of vortex pairs. In the final part,
we discuss alternative techniques to generate DSs in atomic
condensates and the emerging instability dynamics. Especially,
we focus on methods involving a Gaussian potential barrier and
time-dependent interactions, both periodic and a linear quench.
The properties of the solitons can be controlled by tuning the
amplitude or width of the potential barrier. In the linear case,
the number of solitons and their depths depend on the quench
time of the interactions. Interestingly, for the periodic case,
a transient DS lattice emerges and depending on the strength
of the potential barrier it may coexist with Faraday patterns
(FPs). The periodicity of the soliton lattice can be tuned
easily by the modulation frequency, through a wave number
selection governed by the local Bogoliubov excitations. The
characteristics of the lattice instability dynamics depend
crucially on whether there is a FP or not.

The paper is structured as follows. In Sec. II we analyze
numerically the SI dynamics of DSs in 2D TF condensates,
in particular, the dependence of the spatial extension of the
phase gradient. In Sec. III, we discuss the post-SI dynamics
including that of the emanated VDs and vortexoniums. We
discuss alternative techniques for generating DSs and the
corresponding instability dynamics in Sec. IV, including
how to control the soliton properties by tuning the system
parameters. Finally, we conclude in Sec. V.

II. SNAKE INSTABILITY

DSs can appear as defects in the background density if we
drive the initial state of the condensate into a dynamically
unstable configuration. A simple way to achieve this is by
imprinting a phase gradient in the condensate wave function,
and in Sec. IV we discuss alternative techniques to achieve
it. In this section, we focus mainly on the real-time dynamics
of a 2D TF condensate with a phase gradient imprinted on
it. We consider a BEC of N atoms confined in a harmonic
trap: V,(r) = m(w;x* + wy* + w?z”)/2 where w, is the trap
frequency along the o axis. To simplify, we take w, > wy ,
such that the dynamics of the condensate along the z axis is
frozen and the system can be effectively described by a 2D
Gross-Pitaevski equation (GPE):

Y Gy.t) [ RV
YYD + Vi(x.y) + g ¥ (x,y.0)
ot 2m

X Y(x,y,1), (D
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where V¥ (x,y,t) describes the condensate wave function in
the xy plane, V;(x,y) is the radial part of the harmonic
confinement, and g»p = g/(v/27l,) is the effective coupling
constant in 2D with g = 4w/i%aN/m. The validity of Eq. (1)
demands I, < & where [, = \/li/mw, and & is the healing
length [83]. We solve Eq. (1) inreal time starting with the initial
solution ¥ (x,y,t = 0) = Yo(x,y) explif(x)], where ¥o(x,y)
is the ground-state solution of Eq. (1) obtained via imaginary
time evolution and 6(x) is the x-dependent initial phase. By
introducing a phase gradient along the x axis, the dark solitons
are generated with nodal lines parallel to the y axis [11,84].
First we take 6(x) = /2 for x <0 and 0(x) = —m/2 for
x > 0, which introduces a sharp gradient at x = 0 with a phase
difference of m. The resulting dynamics of the condensate is
shown in Figs. 1(a)-1(f). In the initial stage, a nodal stripe
is developed [see Fig. 1(a)] which eventually turns into a
stationary DS at the center of the BEC, accompanied by
sound waves and very shallow gray solitons. The former then
undergoes SI [see Fig. 1(b)], which leads to the formation
of a transient stripe of VDs [see Fig. 1(c)] and additional
sound excitations [20,41]. The SI has been attributed to the
appearance of imaginary [36] or complex modes [41] in the
Bogoliubov spectrum of a DS. Note that the emanated sound
waves during the phase imprinting feed up the unstable modes
and enhance the SI. In addition, we observe the formation of a
large number of gray secondary solitons. There are other ways
of creating shallow solitons in condensates, for instance, by
generating shock waves, which shed DSs or by perturbing a
stationary DS [85]. Typically, very shallow DSs disintegrate
quickly after hitting the boundary.

Since the size of the condensate is much larger than the
width (I;) of the DS, we can describe the stationary soliton us-
ing the local density approximation (LDA) [86,87]. The width
[, of a stationary DS in a homogeneous background is provided
by the healing length & and is o< 1/,/ny,, where n, is the uniform
density of the condensate. Using the LDA, we can approximate
the y-dependent width of DS as [,(y) = ii//mgopno(y)
[88] calculated at x = 0, where ny(y) = |Wo(x = 0,y)|>. If
we assume a Thomas-Fermi (TF) profile, the condensate
density becomes ng(x,y) = /gl — x*/R} — y*/R3] for
{x <R, and y < R,}, otherwise ng(x,y) =0 with Riy =
2u/ (ma))zc’ ,)- As we move away from the center toward the
edge of the condensate, /; increases as a function of y since
the density decreases. In Fig. 2, we compare the numerical
results for /; with that of LDA using the TF profile. They are
found to be in excellent agreement. For the numerical result,
the / is calculated at an instant of time at which the nodal stripe
has completely developed into a stationary soliton, and after
which the width of the DS hardly changes before undergoing
SI. At this instant of time, the envelope of the condensate is
almost identical to that of the initial TF profile. To extract the
soliton width, we crop the density profile around the DS, and
then renormalize with the maximum density, which gives us
a scenario identical to a stationary soliton in a homogeneous
background. Then, the DS width is defined as the distance over
which the density grows from 0 to 0.58 times the maximum.

Further, we have noticed that the SI of DS develops first at
the center of the condensate [see Fig. 1(b)] and later it spreads
across the entire soliton. We explain this behavior using LDA
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FIG. 1. The time evolution of the condensate density n(x,y,t) =
2y (x,y,0)]* of a rubidium BEC with N = 100k, a = 109ay,
w, = wy, =21 x 10 Hz, and w, =27 x 700 Hz, with an initial
phase: 6(x) = /2 for x < 0 and 6(x) = —m/2 for x > 0. (a) The
condensate density at # = 22 us shows the formation a nodal stripe
which eventually transforms into a stationary DS. (b) The SI first
develops at the center of the condensate. (c) A transient stripe of VDs
emerge, and in (d) we show the VDs at the center of the condensate.
The phase and velocity fields corresponding to (d) are shown in (e)
and (f), respectively.
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FIG. 2. (a) The TF density profile at + = 0 (dashed line) and
the emerged solitons at r = 6.75 ms (solid line). All plots are
renormalized with its corresponding maximum density. (b) The
numerical results (filled circles) for the width /;(y) of the stationary
DS as a function of y is compared with that of LDA with a TF profile
(filled squares). The BEC setup is same as that of Fig. 1.
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as follows. The SI in a homogeneous background is attributed
to the imaginary low-momentum transverse excitations [36]
as stated above. They appear for momenta 0 < g& < 1 with
a maximum value of u,/4 at g& = 1/+/2, where q is the
quasimomentum and u, = gopny, is the chemical potential
of the homogeneous density. The maximum imaginary mode
provides us with the growth rate and hence determines the
time scale at which the SI develops, which is 7 =44 /uy,.
Using LDA for the inhomogeneous case, we get t(y) =
45 /[g2pno(y)], which indicates that the instability grows faster
at the center compared to that in the edge.

Smooth phase gradient. At this point, we replace the sharp
phase gradient with a smooth one, 68(x) = (r/2) tanh(x /b),
which varies over a width b [29]. Interestingly, the characteris-
tics, SI and post-SI dynamics of the DS depend crucially on the
parameter b. Note that b = 0 corresponds to the sharp gradient
scenario discussed above and in that case, a stationary DS is
created at the center of the condensate. When b is nonzero, the
phase becomes continuous at x = 0 and as expected, instead
of a stationary soliton, a primary DS with a nonzero subsonic
y-dependent velocity vs(y) & c[1 — ngy/ng(y)]'/? along the x

gng’IAX /m is the speed of sound

calculated at the maximum density n}*X and n is the density

depth of the DS. Since n; decreases with an increase in b, the
velocity v, increases, as shown in Fig. 3. At large values of b,
the velocity v, saturates to ¢ [11]. The density dependence of
the soliton velocity results in the bending of the nodal stripe
during time evolution (see Fig. 4), which is unrelated to the SI
dynamics.

The SI dynamics is also strongly modified by the parame-
ter b. For small b, the instability process is analogous to that of
the stationary case discussed above, in a way that the instability
grows first at the center of the soliton stripe [see Fig. 4(a)], then
progresses to the rest of the stripe. In contrast, as b increases,
the instability appears simultaneously at the center as well as at
the edges, leaving an intermediate fragment of DS unaffected.
Hence, by the time SI develops in the intermediate region, the
vortex dipoles are already created at the center and the edges
[see Fig. 4(b)]. If b is further augmented, the instability occurs

axis is created, where ¢ =
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FIG. 3. The subsonic local velocity v, along the x axis of the dark
soliton as a function of b at different locations along the y axis. For
both curves, we calculated the velocity at x = 1.5/,. At large values
of b, v, saturates to the speed of sound ¢, and also the center of the
soliton moves faster compared to the edges. The setup is the same as
that in Fig. 1.
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FIG. 4. The SI dynamics for different b is depicted through the condensate density n(x,y,t). (a) The SI develops first at the center for
b = 0.05[,. (b) The SI develops both at the center and the edges simultaneously for intermediate value of b = 0.2/;. (c) For sufficiently large
values of b = 0.75/; the instability occurs first at the edges. In the later stage the whole DS breaks up into vortex dipoles. Note that, the larger
the b, the shallower the soliton, hence the faster it propagates. The setup is the same as that in Fig. 1.

first at the edges as shown in Fig. 4(c), then propagates toward
the center. Later, the entire soliton breaks up into VDs. Note
that for sufficiently large values of b, very shallow solitons are
formed with v; ~ ¢ which dissipate before the ST develops.

III. VORTEX DYNAMICS

The extended time evolution of the phase imprinted con-
densate reveals very rich and interesting scenarios in the vortex
dynamics, especially of VDs. A stationary DS breaks up into
an unstable configuration of a stripe of VDs, which eventually
disperses into a gas of interacting vortices and VDs. A fraction
of vortices breaks up from the center of the VD stripe and
disperses toward the trap boundary (low-density region). Then,
they precess along the trap boundary with either clockwise
or anticlockwise rotation depending on their vorticity, but a
complete orbital motion [73] is prevented by the presence of
other vortices. In the course of time, we observe the following
frequent events:

(1) Vortex pair annihilation, where two vortices of opposite
charge approach each other, then coalesce into a neutral dark
lump [40,89] (the same is termed as vortexonium [82]) which
subsequently decay into sound excitations. Vortexonium is a
spatially localized state, characterized by a phase step identical
to that of a gray soliton, and it may revert to vortex dipole by
hitting the boundary. VD annihilation has been reported in a
BEC experiment [73], including in the context of superfluid
turbulence [77]. The vortexonium may annihilate or decay to
a smaller one, in the course of collision with a vortex or a VD.
Those vortexoniums which form at the trap boundary may
propagate toward the center of the condensate and decay into
density excitations.

(2) Among vortexoniums we found two scattering events:
In one case two of them collide with each other, then emerge
out intact and move away [40]. In the second case, after the
collision one decays while the other breaks up into a VD. It is
difficult to pinpoint on what condition each of these processes
occurs independently and may depend on the kinetic energy
of the vortexoniums at the instance of collision.

(3) A VD, after colliding with a lone vortex, forms a new
VD and a new single vortex [89,90]. Two such processes
happening simultaneously are shown in Fig. 5. The nature

of dynamics, either flyby or exchange processes, depends
on the relative velocity and the impact distance between the
VD and the single vortex [89]. While approaching the single
vortex, the VD slows down (also the energy of VD increases)
hence, undergoing structural modifications, in particular, the
vortex-antivortex separation increases. Finally the antivortex
of the original VD merges with the single vortex forming a new
VD, accompanied by radiative losses as sound excitations. The
new VD propagates in a direction opposite to that of the initial
one resulting in a backscattering.

(4) A pair of VDs upon head-to-head collision, break up
and exchange their partners, leading to the formation of a new
pair of VDs (see Fig. 6). The new ones move perpendicular to
the initial direction of propagation, as well as opposite to each
other.

(5) Two VDs approaching each other would either convert
into two vortexoniums or annihilate one among them upon
collision.

The parameter b indirectly influences the vortex dynamics.
In particular, for sufficiently large b, the solitons first break
from the edges into VDs, as mentioned above, then they
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FIG. 5. (a) Two lone vortices are approached by two vortex
dipoles and (b) when they reach close to each other. In (c), an exchange
of vortices has taken place and a new pair of vortex dipoles is created.
The setup is the same as that in Fig. 1 with an initially imprinted sharp
phase gradient. The initial and final VDs are indicated by ellipses and
the directions of propagation of VDs are shown by arrows.
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FIG. 6. (a) Collision of two counterpropagating VDs. (b) Upon
collision they exchange vortices and form a new pair of VDs. The new
pairs propagate opposite to each other in a direction perpendicular to
the axis of collision, as shown in (c). The initial and final VDs are
indicated by ellipses and the directions of propagation of VDs are
shown by arrows.

quickly coalesce into vortexoniums. Finally, two adjacent
vortexoniums collide, and one of them gets annihilated. This
process repeats, resulting in the decline of the number of
vortices as time progresses. We observed that as b increases
the annihilation process is more frequent causing a faster
decrement in vortex number (see Fig. 7). The oscillations
in the vortex decay curve are due to the transitions between
vortexoniums and VDs. The effective decay in the number of
vortices, N,, is well captured by the phenomenological rate
equation [77],

dN,
dt

where the decay coefficient I'(b) depends on b. The results
according to the rate equation are shown as solid lines in Fig. 7.
Another interesting feature we noticed is that, at sufficiently

= -T®)N,, )
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FIG. 7. The number of vortices as a function of time for two
different b. The larger the value of b, the faster the decay of vortices.
The filled circles and squares are obtained by starting from a TF
solution with an imprinted phase, whereas the empty circles and
squares are for the cases in which time evolution starts with the dark
solitons in a clean background (CB). The solid lines are calculated
using the rate equation given in Eq. (2) with I'(0) = 0.053 s~! and
I'(0.741.) = 0.22 s~!. The oscillations in the vortex decay curve are
due to the transitions between vortexoniums to VDs and vice versa.
The setup is same as that in Fig. 1. The origin of the time is taken at
the point at which the DS completely breaks up into VDs, which is
of the order of milliseconds.
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large b, DS travels faster, and breaks directly into vortexoniums
at the boundary. This indicates that VDs are not necessarily
the direct consequence of SI in 2D; depending on the nature
of DS and its background density, it may break directly into
vortexoniums.

Note that sound excitations are generated during the
nucleation of DSs, after the phase imprinting. To understand
their role in the dynamics discussed above, we numerically
look at the real-time evolution starting from the stationary DS
solution of the GPE. The SI is then triggered by a very small
initial random noise, which is negligibly small compared to
the sound excitations emerging from the phase imprinting.
Contrary to the dynamics of the phase-imprinted condensates,
here we observe two effects: (i) the SI has slow down, since
in the phase-imprinted case the presence of sound excitations
enhanced the SI, and (ii) the vortex-antivortex annihilation
process is faster, which is evident from the initial stages of the
dynamics, as shown in Fig. 7, which also supports the results
that the presence of density perturbations may suppress the
annihilation processes [76].

IV. ALTERNATIVE TECHNIQUES FOR
SOLITON GENERATION

In this section, we discuss alternative techniques for the
generation of DSs in BECs and the corresponding dynamics in
a 2D condensate. The methods involve the use of an external
potential barrier and time-dependent interactions, gp(¢). A
potential barrier can be induced by an optical dipole potential
or a far-detuned laser field. The generation of 1D solitons due
to the sudden removal of the potential barrier is theoretically
studied in [19,91], and is also experimentally demonstrated
[16,22,23]. It has been shown that the creation of DSs requires
the system to be in a nonlinear regime where the interaction
energy dominates the kinetic part [23,92]. The characteristics
of the solitons also depend crucially on the initial phase
difference between the disconnected condensates; for instance,

a b
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0.75¢ : i 055_ \ Ai[ =
s 0060 H-V- il " 1
& 0.50F 1t 045 e
= ! Jo.0af PeCo, .
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FIG. 8. (a) The density profiles for the ground state (GS) (thin
solid line) and the emerged solitons for different ramp times, 7 =
1/a = 0.45 ms (thick solid line) and T =3 ms (dashed line) are
shown. All plots are renormalized with its corresponding maximum
density and the snapshots are taken at different instants of time for
different 7. (b) Relative soliton depth (filled circles) for the width
d = 1/, and d = 2/, (filled squares) as a function 7 is plotted. The
soliton depths are calculated at the same location [x = 46.5,, shown
with a box in (a)] in the condensate, shown by a dashed vertical line
in (a). The definition of Afi is schematically shown in the inset of (b),
which corresponds to the box in (a). The BEC setup is same as that
of the Fig. 1, and for both (a) and (b) we take §g = —gop/2.
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FIG. 9. DS lattice periodicity vs modulation frequency, w,, for
Vo =1 hw, (squares) and for Vy = 3hw, (circles) with y = 0.2
and b = 0.86/,. The two insets show the density snapshots for
Vo = 3hw, at w,, = 0.25w, and w,, = 0.6w,. The dashed line shows
1/k = 1/ (w,,), the wave number corresponding to the Bogoliubov
frequency w,,. The BEC setup is same as that of Fig. 1.

a phase difference of 7 may lead to the formation of a
stationary soliton [92] accompanied by very shallow solitons,
similar to that discussed in Sec. II. The number of solitons can
also be controlled by fine tuning the initial separation between
the condensates.

A. Gaussian barrier and time-dependent interaction

We consider the same setup of BEC as in Sec. II with an
additional Gaussian x-dependent potential barrier: Vg (x) =
Vo exp(—x2 / 2d?) of width d and height Vj, at the center of the
trap. Hence, effectively we have a double-well potential along
the x axis. Now, introducing the time-dependent interaction
leads to the dynamical formation of solitons. In other words,
the nodal stripe which is not a DS created by the potential
barrier acts as a source of DSs in the presence of gop(#). Below,
we consider both linear and periodic variation of g in time [93].
Note that any nonzero V|, breaks the radial symmetry of the
condensate, and for sufficiently large V; and d, the condensate
splits symmetrically into two disconnected BECs along the
X axis.

PHYSICAL REVIEW A 95, 043618 (2017)

1. Linear variation of g in time

Here, we consider the linear variation of scattering length
a in time t, such that

<
2 (t) = {g2D +dgat, O<oat <1 3)
g +4g, at > 1,

where 8g is the difference and « is the rate at which g is
varied over a time 7 = 1/«. In the presence of the Gaussian
barrier, g(¢) leads to the formation of DSs in the condensate
[see Fig. 8(a)]. The properties of the soliton depend on Vj, d,
o, and 8g. Hence, by controlling these parameters, the DSs
can be generated in a more controlled way. As we have found,
both increment and decrement in g lead to the formation of
solitons. If the ramping of g(¢) fulfills the adiabatic criteria
[94,95], the condensate adiabatically follows the instantaneous
ground state, and as a result, no solitons are generated. This
has two immediate consequences on the properties of DSs; as
o decreases, for a fixed §g (i) the number of solitons decreases
and (ii) they get shallower and shallower [see Fig. 8(b)]. On
a similar note, for a fixed «, the soliton depth and also the
number of solitons increases with an increase in 6g.

Note that, even for sufficiently short ramping time t with
|6g| = g/2, the solitons are very shallow [see Fig. 8(b)]. That
means the formed solitons travel close to the speed of sound,
which may cause difficulty in tracking them in the experiments.
In the particular example shown in Fig. 8 with t = 0.4 ms, the
lifetime of the solitons is about 15-20 ms. In general, the
lifetime depends on the quenching time as well as the trap
geometry. Below, we consider the periodic modulation of in-
teractions; there the soliton depths are augmented significantly,
with qualitatively new features emerging.

2. g periodic in time

In this section, we take gop(t) = gopll + 2y sinQw,, )],
where y and w,, are, respectively, the amplitude and frequency
of the modulation. As we show below, the numerical results
for the dynamics of the system depend crucially on whether
the initial state has a noise or not. In experimental setups
always, there exists noise in the form of thermal or quantum
fluctuations. They play an important role in, for instance,
spontaneous symmetry breaking (SSB). A prime example for
SSB is the formation of FPs in condensates by the parametric
modulation of interactions [96,97], in which the noise triggers

(c) x 1075
t=39.22 ms

]

=59.11 ms

z/l,

FIG. 10. (a) Faraday patterns for V, = 0. (b) Coexistence of Faraday patterns and 2D DS lattice for Vy = 0.003%w,. (c) Formation of
pattern-free, transient DS lattice for V) = 0.1%w,. For all plots « = 0.2 and w,, = 0.6w,. The BEC setup is same as that of Fig. 1. The extended

time evolutions of (b) and (c) are shown in Fig. 12.
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FIG. 11. The lifetime of the lattice (Tj,qce) as a function of Vj
for two different w,, for the condensate confined with frequencies:
oy = w, = 2w x 10 Hz and w, = 27 x 700 Hz. The lifetime 7 =
7, — 11, where 1| is the time at which the lattice is stabilized to a
time-independent periodicity, and 1, is the time at which the outer
DSs are unstable. The setup is the same as that for Fig. 10.

the population of Bogoliubov modes according to the wave
number selection or parametric resonance condition: €(k) =
fiw,,. The Bogoliubov spectrum of a 2D homogeneous con-
densate is €(k) = / Ei(Ey + 2gpng), where E; = h2k2/2m
with k being the quasimomentum. For sufficiently small values
of V, and large values of d we can still fairly approximate the
spectrum of the trapped case with that of the homogeneous
case within LDA for k > 27 /R, . This low momenta cutoff
introduces a low-frequency limit for the modulation frequency
to observe pattern formation. Also, it has to be less than w, to
preserve the 2D nature of the condensate.

Noise free. Without noise, the FPs are not observed with the
periodic modulation of the g,p. Even for small V) we observe
the formation of 2D DSs. Contrary to the linear quench, for
the periodic case the depth of the gray soliton increases as a
function of time and also the DSs are created continuously
from the center of the condensate. As a result, a transient 1D

H"n“l”

2.8 \
l Ht-”‘m”
.
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lattice of 2D DSs is formed after sufficiently long time, with
the lattice periodicity depending crucially on the modulation
frequency w,,. Later, the lattice melts due to the SI and results
in a denser gas of vortices compared to the previous cases.
The periodic modulation eventually results in heating and the
destruction of the condensate. Hence the formed vortices may
decay thermally as well. The rate of heating depends on both
the amplitude and the frequency of modulation.

Note that, due to the inhomogeneity in the density, the
periodicity at the center is different from that of the edges
of the condensate. The lattice periodicity, provided by the
wavelength §A, calculated at the center, as a function of w,, for
different V is shown in Fig. 9. Interestingly, the behavior of
8 is found to be very close to the wave number corresponding
to the Bogoliubov frequency w,, (dashed lines in Fig. 9) of the
condensate at V;; = 0. This indicates that, identical to the case
of FPs, there is a wave-number selection for DS lattice, closely
connected to the Bogoliubov spectrum of the unmodulated
condensate. Itis also evident from Fig. 9 that 1 hardly changes
with V; for sufficiently large Vj.

With noise. The presence of noise leads to an interesting
scenario where the soliton formation and FPs coexist, depend-
ing on the strength of Vj. In the absence of the potential
barrier (VO = 0) the FPs emerge as a result of parametric
modulation of g,p [see Fig. 10(a)], with the wave number
selection governed by the Bogoliubov modes as discussed
above. For small and nonzero Vj, the pattern and DS lattice
coexist as shown in Fig. 10(b). Due to the presence of DSs,
the FP exhibits a 1D character with density modulations along
the y axis, and has the same periodicity as that of the DS
lattice. Note that the presence of pattern reduces the darkness
of the DSs. For large V) we see the formation of a pattern-free
DS lattice [see Fig. 10(c)], which eventually undergoes snake
instability and breaks up into a gas of VDs. With large Vj, the
soliton formation is enhanced, resulting in the fast formation

FIG. 12. (a) and (b) show the extended time evolution of the state shown in Fig. 10(b). The phase plots corresponding to (a) and (b) are
shown in (e) and (f), respectively. (c) and (d) show the extended time evolution of the state shown in Fig. 10(c), with corresponding phase plots
in (g) and (h). (a) and (b) are for V; = 0.003/w,, whereas (c) and (d) are for V = 0.1/iw,. All other details of the setup are same as that of

Fig. 10.
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of the lattice, which suppresses the pattern formation in the
condensate. The lifetime of the lattice (Tjauice) as a function
of Vy is shown in Fig. 11 for two different modulation
frequencies. At small values of barrier height, Tj,ice depends
strongly on Vjp, and it saturates for sufficiently large values
of Vo.

The instability dynamics crucially depends on the strength
of Vj. For any V), the instability emerges first at the solitons
near the boundary, since they are created before those at
the center of the condensate. Interestingly, for low V| the
presence of Faraday patterns gives rise to a characteristically
different instability dynamics for the DSs at the center of the
condensate. The DS stripes embedded with FP break up into
vortexoniums through a transient square pattern of density
peaks [see Figs. 12(a) and 12(b)]. In contrast, for large V;
when there is no FP, they directly break up into VDs [see
Figs. 12(c)-12(d)]. The corresponding phase plots are also
shown in Figs. 12(e)-12(h).

Finally, we want to comment that similar results can be
obtained by making either the potential barrier or the trapping
frequency become time dependent instead of interactions.

V. CONCLUSION

In conclusion, we numerically analyzed the long-time dy-
namics of SI of 2D DSs in a TF condensate of rubidium atoms,
with contact interactions. The DS is dynamically generated

PHYSICAL REVIEW A 95, 043618 (2017)

in the BEC by an initially imprinted phase gradient. The
soliton properties as well as the nature of SI and postinstability
dynamics depend substantially on the spatial width of the phase
gradient. The VDs emerging from the unstable DS exhibit
interesting dynamics such as the formation of vortexoniums,
vortex annihilation, and exchange processes. The effective
decay in the number of vortices is indirectly influenced
by the spatial extension of the phase gradient. Alternative
techniques for the DS generation, based on time-dependent
interactions and an external Gaussian barrier are discussed.
For the linear variation of interactions, the properties of the
DS can be controlled by quench time. A transient DS lattice
emerged in the condensate for the parametric modulation
of interactions, with lattice periodicity depending on the
frequency of modulation. Interestingly, the scenario is richer
by the coexistence of Faraday patterns and the transient DS
lattice together. The SI dynamics of the soliton lattice is
significantly modified if a FP is present. We also provide
other techniques to generate DSs, which would provide
similar results.
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