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Charged particles in an external field: A QED analog with Bose-Einstein condensates
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We propose a method for using ultracold atomic Bose-Einstein condensates to form an analog model of a
relativistic massive field that carries charge and interacts with an external nondynamical gauge field. Such a
scalar QED analog model may be useful for simulating various effects of quantum field theory involving charged
particles, such as the Schwinger pair creation of charged phonons in a constant external field, and vacuum
instability.
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I. INTRODUCTION

The origins of the idea that nature manifests close analogies
between phenomena at very different scales can be traced back
to the dawn of science. Analogous arguments have been used,
for example, to motivate the first atomistic theory of nature
as beautifully described by Lucretius [1]. In contemporary
physics it turns out that the idea of nature analogies is
reflected more concisely in the mathematical resemblance of
phenomena at very different length and time scales, from the
high-energy scales of particle physics that are described by
high-energy physics (HEP) to nonrelativistic atomic many-
body systems and further up to the large cosmological scales
and black holes in general relativity [2–4].

One research field that has particularly benefited by em-
ploying analogies has emerged from Hawking’s discovery that
quantum mechanical effects cause black holes to emit radiation
and gradually evaporate [5,6]. In the absence of a complete
theory of quantum gravity, the black-hole evaporation effect
is unfortunately still only partially understood even at the
fundamental level [7]. A “fluid model” of a black hole proposed
by Unruh [8] provided an analog framework for studying
Hawking radiation and inspired theoretical [9–14] and ex-
perimental ideas [15–24]. Remarkably, several experiments,
notably with ultracold atomic condensates that mimic a black
hole, provided confirmations of the Hawking effect [25–28].

While atomic condensates turned helpful in gravitational
scenarios, they have been somewhat more restrictive in
connection with HEP problems and so far mostly used to mimic
free relativistic fields. The building blocks of the standard
model of high-energy physics are gauge field theories (Abelian
and non-Abelian). They are essential for understanding effects
such as quark confinement in QCD. Recently, it was proposed
that such models, when formulated on a lattice, can be naturally
simulated using discrete setups involving ultracold atoms
trapped in optical lattices [29–34].

In this article we shall suggest, however, that the analogy
between atomic condensates and quantum field theory can
be extended and mimic charged massive relativistic fields
under the influence of an external electromagnetic gauge field.
We will show that a QED analog model can be constructed
using several Bose-Einstein condensates (BECs), with suitably
chosen interactions.

The article proceeds as follows. In Sec. II we discuss the
basic features of quantum field theory coupled to an external
gauge field. We introduce the dynamical degrees of freedom

of the theory, complex scalar fields, and introduce their
interaction with the gauge field. In Sec. III we show, following
[14] (using the Bogoliubov Hamiltonian), that a coupled
two-mode condensate gives rise to a massive phonon mode
that is analogous to a massive Klein-Gordon field. In Sec. IV
we construct a real scalar field and its conjugate momenta
using massive excitations. We then discuss the emergence of
Lorentz invariance and locality. In Sec. V we further extend the
condensate system and build an analog complex scalar field.
We identify the charge operator, associated with global phase
invariance, and identify positive and negative phonon charge
carriers. In Sec. VI we construct the interaction between a
charged field and an external gauge field.

II. LOCAL GAUGE INVARIANCE: SCALAR QED

We begin by briefly discussing the basic key features of
quantum field theory that involve matter interacting with gauge
fields. Generally speaking, we consider the simplest example
of a relativistic quantum field theory for dynamical charged
matter that is coupled to a gauge field, which manifests the
following two fundamental key features: invariance under
space-time Lorentz transformations and local gauge symmetry.
As opposed to the global nature of the “external” space-
time Lorentz transformations, the gauge symmetry represents
the invariance of the theory under local transformation of
“internal” degrees of freedom. The first property is essential
to any relativistic field theory. The second property is modeled
with dynamically locally conserved charge. It is well known
from Noether’s theorem that local (as opposed to global) gauge
invariance gives rise to a dynamically conserved quantity,
which in this case physically corresponds to a charge that
is carried by the matter field.

We will consider a theory that has a U(1) gauge symmetry.
Matter will be represented by a complex scalar field �(x) and
the external gauge field by Aμ(x). Such a theory should then
remain invariant under the transformations

�(x) → eiθ(x)�(x), �†(x) → e−iθ(x)�†(x),

and

Aμ(x) → Aμ(x) − ∂θ (x)

∂xμ
,

where θ (x) is an arbitrary real function.
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A simple example of such a theory can be described by the
Lagrangian density

L = [Dμ�(x)]†Dμ�(x) − m2�(x)†�(x), (1)

where Dμ = ∂μ + ieAμ. It can be readily seen that indeed
the theory respects both space-time and internal gauge sym-
metries. In particular, it gives rise to a conserved (Abelian)
charge Q = ∫

J0dx, where Jμ = i(�†Dμ� − H.c.).
We will establish an analogy between the field theory

described by Eq. (1) and a system involving ultracold nonrela-
tivistic atomic condensates. Since the latter is usually described
by a nonrelativistic Hamiltonian, it will be helpful to recast
our quantum field theory (QFT) model in the Hamiltonian
framework as well.

The corresponding Hamiltonian densityH can be expressed
in terms of the field � and the canonically conjugate mo-
mentum �(x), obeying a commutation relation [�(x),�(y)] =
iδ(x − y). We have H = H0 + UE + UB , where H0 is the free
noninteracting part

H0 = �†� + (∇�)†(∇�) + m2�†�, (2)

the term UE describes the electric interaction with an external
scalar field A0(x),

UE = ieA0(�†�† − ��) + e2A0A
0�†�, (3)

and UB is the magnetic interaction with an external vector field
�A(x),

UB = ieAi�†←→∂ i� + e2AiA
i�†�. (4)

Since we consider a particular case of static external fields, the
terms referred to above as scalar and vector interactions indeed
correspond to electric and magnetic interactions. Furthermore,
Eqs. (3) and (4) have simple physical meanings. The first term
on the right-hand side of (3) (which henceforth will be denoted
by U (1)

E ) describes the interaction of the charged field with the
electric potential A0J0, where

J0 = ie[�†(x)�†(x) − �(x)�(x)]. (5)

The second term on the right-hand side of (3) (henceforth
denoted by U (2)

E ) is quadratic in A0. In strong electric fields,
it gives rise to quantum relativistic effects such as pair
creation and instability of the vacuum. The first term on the
right-hand side of (4) (henceforth denoted by U (1)

B ) is the well
known �A · �J interaction. Finally, the last term, proportional
to �A2 (henceforth denoted by U (2)

B ), becomes important at
strong magnetic fields. For example, in the nonrelativistic
case, it produces the Landau energy-level structure in two-
dimensional electronic systems.

In the following, it will be useful to recast the above
Hamiltonian in terms of real scalar fields. It can be readily seen
that the free Hamiltonian part (2) can be reexpressed in terms of
two scalar fields φi i = 1,2 and their conjugate momenta. The
fields are given by the real and imaginary parts of the original
complex field φ1 = √

2 Re� and φ2 = √
2 Im�, respectively.

Similarly, their conjugate fields are obtained from �(x). The
free Hamiltonian in this representation is then given by the
linear combination H0 = H0(φ1,π1) + H0(φ2,π2). We should
notice, however, that in this bifield representation, the electric

and magnetic interactions (3) and (4) contain quadratic mixed
terms proportional to φiφj .

III. MASSIVE PHONONS IN A BEC

The Bogoliubov spectrum of phonon excitations in a BEC
is linear at small momenta and hence analogous to a single
massless scalar field. An elegant method that gives rise to a
spectrum of massive relativistic particles, that is, to “massive
phonons” in a BEC, has been suggested [14]. The scheme starts
with a two-mode condensate system and introduces a Raman
coupling between the condensates. The resulting normal
modes of the uncoupled condensates are deformed by the
coupling; one of the two dispersion branches remains massless
and the second acquires effective mass. In the hydrodynamical
approximation, the latter corresponds to a relativistic massive
particle with a Klein-Gordon energy-momentum relation
E =

√
m2c4 + c2p4.

In the following we consider a Hamiltonian density of two
condensates

H = HGP + HL, (6)

where

HGP =
2∑

i,j=1

δij

2m
|∇ψi(x)|2 + Uij |ψ†

i (x)ψj (x)|2 (7)

and

HL = 
M (ψ†
2(x)ψ1(x) + H.c.) (8)

are the free Gross-Pitaevskii Hamiltonian density and laser-
(or microwave-) induced interaction, respectively, with m

the mass of the condensate atoms, Uij the scattering coeffi-
cients, and 
M the Rabi frequency. The total Hamiltonian is
H = ∫

d3xH.
By expanding the condensates’ fields ψi around their

mean field ψ̄i as ψi(x) = ψ̄i + δψi(x), where δψi(x) are
small enough perturbations, and furthermore assuming that
the condensates are uniform and ψ̄1 = ψ̄2 = √

n, we can
approximate H by a quadratic Hamiltonian in terms of δψi(x).
The latter can be diagonalized by expanding

δψi(x) =
∫

d3p ai,pe
ip·x (9)

and then performing a Bogoliubov transformation (see Ap-
pendix A). For the following it will be convenient to redefine
the integration on the momentum space as∫

ddp ≡
∫

ddp
(2π )d/2

. (10)

The Bogoliubov transformation leads to

ai,p = 1√
2

∑
J=(0,M)

[ui,J (p)bJ,p + vi,J (−p)b†J,−p]. (11)

The first normal mode J = 0 turns out gapless. The second
normal mode J = M is gapped with E = Mc2

s at p = 0, as
illustrated in Fig. 1.
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FIG. 1. Gapped dispersion relation. The dotted line denotes an
ideal Klein-Gordon energy. The solid line corresponds to the mode
J = M . Beyond the cutoff energy scale Ecutoff ∼ mc2

s , the two
energies begin to deviate.

The Bogoliubov amplitudes are given by

ui,0(p),vi,0(−p) = ±
√

mc2
s0 + εp

2E0(p)
± 1

2
(12)

and

ui,M (p),vi,M (−p) = ±(−1)i

√
mc2

sM + εp

2EM (p)
± 1

2
, (13)

where εp = p2/2m. The complete expressions for the massless
and massive dispersion branches are given in Appendix A.
(They may be of much interest, for example, close to sonic
black-hole horizons, which mix low and high frequencies
[9–11,13,17].) For small energies, the gapped mode agrees
with the dispersion relation

E(p) =
√

M2c4
s + c2

s p
2 (14)

of a massive relativistic particle of rest mass energy Mc2
s ,

M2

m2
= −4
M [n(U − U ′) − 
M ]

[n(U − U ′) − 2
M ]2
, (15)

where the upper limit on the speed of (massive) sound waves
csM ≡ cs is define by

mc2
s = n(U − U ′) − 2
M. (16)

We observe that the effective mass is imaginary and may lead
to dynamical instability of the system [35]. In order to avoid it,
we set 
M to be negative. Since the expression for E(p) above
holds only below the cutoff energy scale E(p) 	 mc2

s , it also
follows that the rest mass M of the massive phonon is smaller
than the mass m of the particles that form the condensates:
M 	 m. If we demand that the dispersion relation remains
valid in the ultrarelativistic regime E(p) = √

c2
s p

2 + M2c4
s ≈

csp, we must further require Mcs 	 p 	 mcs . Using (15),
we can see that this bounds the Rabi frequency of the coupling
laser

(2mL2)−1 < |
M | � εn(U − U ′)/2, (17)

where ε is the ratio of the masses M/m and L is the typical
length of the system. Therefore, setting the effective mass to
be one order of magnitude less than the atomic mass leads to
the bound |
M | � 0.05n(U − U ′).

Having identified the massive and massless normal modes,
we return to the discussion of the spatial structure of the field
operators δψi(x). Using Eqs. (9) and (11), we can rewrite
δψi(x) as

δψi(x) = 1√
2

[ϕ0(x) + (−1)iϕM (x)], (18)

where ϕM (x) and ϕ0(x) are complex massive and massless
condensate field operators, respectively. They satisfy the
commutation relations

[ϕJ (x),ϕ†
J ′ (x′)] = δJ,J ′δ(x − x′). (19)

We see that the massive spatial field is given by the relative
field ϕM = [δψ2(x) − δψ1(x)]/

√
2, while the massless field

corresponds to the collective combination ϕ0 = [δψ1(x) +
δψ2(x)]/

√
2. In the following we omit the index J and use

ϕ(x) to denote a massive field.
The complex field ϕ(x) can now be used to construct a

single massive scalar field φ(x) and a corresponding conjugate
momentum π (x) as follows:

φ(x) = i√
2

[ϕ(x) − ϕ†(x)], (20)

π (x) = 1√
2

[ϕ(x) + ϕ†(x)]. (21)

Equations (20) and (21) satisfy the canonical commutation
relation

[φ(x),π (x′)] = iδ(x − x′). (22)

The above conjugate real fields can be expressed in terms of
the Bogoliubov modes as

φ(x) = i√
2

∫
dp[u(p) − v(p)](b̂pe

ip·x − b̂†pe
−ip·x), (23)

π (x) = 1√
2

∫
dp[u(p) + v(p)](b̂pe

ip·x + b̂†pe
−ip·x). (24)

When considering the relevant regime E(p) 	 Ecutoff = mc2
s ,

we can use the relation

[u(p) + v(p)]2 = [u(p) − v(p)]−2 ≈ E(p)

mc2
s

(25)

and readily obtain

φ(x) = i√
2

∫
dp

√
mc2

s

E(p)
(b̂pe

ip·x − b̂†pe
−ip·x), (26)

π (x) = 1√
2

∫
dp

√
E(p)

mc2
s

(b̂pe
ip·x + b̂†pe

−ip·x). (27)

This coincides with the normal mode expansion for a scalar
field, up to a trivial redefinition: b̂p → ib̂p. Since the E(p)
above is given by the Klein-Gordon dispersion relation, it
is straightforward to verify that the fields satisfy the Klein-
Gordon equation.
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IV. EMERGENCE OF LORENTZ INVARIANCE

Although previous sections show that the Klein-Gordon
Hamiltonian is obtained in the low-energy limit, it is
constructive to derive it starting from more general
assumptions. Let us consider the excitation field ϕ(x)
expansion in terms of the creation operators b̂p. The scalar
field and conjugate momenta satisfy

1√
2

[π (x) − iφ(x)] = ϕ(x) =
∫

dp(upb̂pe
ip·x + vpb̂†pe

−ip·x).

(28)

We invert this equation and express the creation operators b̂
†
p in

terms of the field and its conjugate momentum. Then, by sub-
stituting in the Hamiltonian H = ∫

dp E(p)b̂†pb̂p, we obtain

H = 1

2

∫
dp E(p)

∫
dx dy eip·(x−y)[(u − v)2π (x)π (y)

+ (u + v)2φ(x)φ(y)]. (29)

Due to the dependence of the latter on the momentum, the
resulting Hamiltonian has a nonlocal structure. It does not
correspond to a local and Lorentz invariant QFT. However,
when considering the low-energy limit (25), the Hamiltonian
reduces to

H ≈ 1

2

∫
dp

∫
dx dy eip·(x−y)[π (x)π (y) + E2(p)φ(x)φ(y)]

= 1

2

∫
dx

[
π2(x) + c2

s |∇φ(x)|2 + M2c4
s φ

2(x)
]
. (30)

Here we have redefined φ(x) ≡ φ(x)/
√

mc2 and π (x) ≡√
mc2π (x) to emphasize the resemblance between the latter

Hamiltonian and the one of a free scalar field. From Eq. (30)
we conclude that locality and Lorentz invariance both emerge
in the low-energy limit. The effective low-energy theory
corresponds, as expected, to a massive free QFT.

V. “CHARGED” EXCITATIONS

Charged particles can be described by a single complex field
that satisfies the Klein-Gordon equation. Alternatively, we can
represent the charged field in terms of a pair of massive real
scalar fields of the same mass. In the case of a free charged
field, the fields remain decoupled and hence can be easily
constructed using the method described in Sec. III.

We will therefore consider a four-level condensate ψi with
i = 1, . . . ,4. The Raman interaction term (8) involves two
pairs of (laser) coupled condensates: HL = [ψ†

2(x)ψ1(x) +
ψ

†
4(x)ψ3(x) + H.c.]. Clearly, the relative complex fields

δψ2k − δψ2k−1, k = (1,2), correspond to two massive complex
condensate field operators, and following the same construc-
tion as in Eqs. (20) and (21), we obtain a pair of real massive
scalar fields that satisfies the commutation relations

[φi(x),πj (x′)] = iδij δ(x − x′), (31)

with i,j = (1,2).

Finally, we can build out of the latter a single complex field
�(x) and conjugate momentum �(x) as

�(x) = φ1(x) + iφ2(x)√
2

, (32)

�(x) = π1(x) − iπ2(x)√
2

(33)

such that

[�(x),�(x′)] = iδ(x − x′). (34)

The complex field can be decomposed in terms of orthogonal
field operators ĉp and d̂p as

�(x) =
∫

dp

√
mc2

s

2E
(ĉpe

ip·x − d̂†
pe

−ip·x), (35)

where

[ĉp,ĉ
†
p′ ] = [d̂p,d̂

†
p′ ] = δp,p′ . (36)

Comparing Eqs. (31), (26), and (27), we find that in terms of
condensate excitations, the charged excitations are created by

ĉp = 1√
2

(ib̂1,p − b̂2,p),

d̂p = 1√
2

(−ib̂1,p − b̂2,p). (37)

So far, our system is invariant only under global U(1)
(phase) transformations. In the following sections, once the
external gauge field will be included, the U(1) symmetry will
become local and through Noether’s theorem the charge will be
guaranteed to be locally conserved. We can however identify
already the operator that corresponds to the global charge

Q = ie

∫
dx[�†(x)�†(x) − �(x)�(x)], (38)

where e, the unit charge, has no physical significance in the
absence of interaction. Substitution of the complex field and
its conjugate momentum in terms of ĉp and d̂p yields

Q = e

∫
dp(ĉ†pĉp − d̂†

pd̂p). (39)

We observe that excitations of type c and type d carry opposite
“charges”: Type c carries positive charge and type d carries
negative charge. They can be regarded as antiparticles of each
other. In terms of the condensates’ degrees of freedom this
gives

Q = ie

∫
dp(b̂†1,pb̂2,p − b̂

†
2,pb̂1,p). (40)

Charge conservation can be seen here as due to the commuta-
tivity of the latter with the number operator and thus with the
free Hamiltonian

[Q,H ] = 0. (41)

(For a free field, it is conserved for each p separately.)
Finally, we note that, due to gauge invariance, the Hilbert

space of our system can be written as the direct sum of different
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(total) charge sectors

H =
⊕
Q

HQ. (42)

Charge conservation forbids transitions between the sectors;
hence charge-conserving operators must have a block-diagonal
form with respect to the latter decomposition to charge sectors.

The inclusion of an external gauge field term, while
promoting the symmetry to a local U(1) gauge symmetry,
leaves the essential features we discussed intact. However,
charge conservation gives rise to a meaningful notion of a
local conservation of charge; for instance, the external gauge
field may produce charge, but only pairs of opposite sign.

VI. EXTERNAL GAUGE FIELD

As we have seen, the interaction with the external gauge
field involves an electric (scalar) interaction (3) and a magnetic
(vector) interaction (4). We next propose methods for realizing
the above interactions. The realization of the electric part
is more straightforward and involves only additional laser-
induced interaction coupling terms between the condensates.
The magnetic termU (1)

B involves spatial derivatives and is more
challenging. We show in Sec. VI B that U (1)

B can be obtained
with the help of an ancillary system.

A. Electric interactions

The scalar potential interaction contains, to first order in
the charge e, quadratic products of the field and its conjugate
momentum

U (1)
E = ieA0(�†�† − ��). (43)

In terms of the condensates’ fields this gives

U (1)
E ∝ (ψ†

1ψ3 − ψ
†
1ψ4 − ψ

†
2ψ3 + ψ

†
2ψ4) − H.c. (44)

From Eq. (44) we see that the interaction can be realized
by adding laser Raman couplings, depicted schematically in
Fig. 2. We can then deduce the relation


1 = 2eA0. (45)

FIG. 2. Interaction of the complex field and the electric potential
(U (1)

E ), in terms of the analog condensates and the laser’s Rabi
frequency.

Moving on to consider the second-order electric interaction
term, we have

U (2)
E = e2A0A0�

†� = e2A0A0
φ2

1 + φ2
2

2
. (46)

This has the form of a mass term, as it is proportional to the
square of the fields φi . Since the interaction does not couple the
components of the complex field, one can build it separately
for each field component.

To construct terms of the form φ2
i , let us examine first the

effect of laser-induced self-interaction of a field excitation ϕi

on itself:


2ϕ
†ϕ = 
2

π2 + φ2

2
. (47)

Here 
2 is the magnitude of the effective Raman frequency of
the driving laser. The interaction strength will be determined
by the magnitude of the Rabi frequency 
2 and the magnitudes
of φ2 and π2. From Eqs. (23) and (24) we see that the latter
depend in turn on the amplitudes u(p) ± v(p). Using Eq. (25),
the interaction strength for an excitation with momentum p in
the phonon regime can be approximated by

〈
2ϕ
†ϕ〉p ≈ |
2|

(
E

mc2
s

+ mc2
s

E

)
. (48)

Restricting the Raman frequency 
2 to be of the same order
of magnitude as that of the phonons energy, the interaction’s
strength becomes

〈
2ϕ
†ϕ〉p ≈ E2

mc2
s

(
E

mc2
s

+ mc2
s

E

)
= E

[(
E

mc2
s

)2

+ 1

]
.

(49)

We observe that in the phonon regime, the first term does
not contribute in the leading order and can be neglected in
the three-level Hamiltonian. Namely, if the strength of the
Raman frequency is on the order of the phonon’s energy, then
ϕ ≈ −ϕ†.

We therefore conclude that if the Raman frequency is
bounded as described above, the self-interaction term (47)
gives rise to

2
2ϕ
†ϕ ≈ 
2φ

2. (50)

Using Eq. (18), we find that the required interaction is

U (2)
E = 
2(ψ†

1ψ1 + ψ
†
2ψ2 − ψ

†
2ψ1 − ψ

†
1ψ2 + ψ

†
3ψ3

+ψ
†
4ψ4 − ψ

†
4ψ3 − ψ

†
3ψ4). (51)

We can now identify the relation between the Raman frequency

2 and the square of the external electric potential eA0:


2 = (eA0)2

mc2
s

. (52)

The construction of U (2)
scalar in terms of the required laser

couplings is depicted schematically in Fig. 3. In order to match
correctly the relative strength of the electric interactions (43)
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FIG. 3. Interaction of the squared gauge field and the charged
scalar field (U (2)

E or U (2)
B ), given in terms of the analog condensates

and the laser’s Rabi frequency.

and (46), we need to tune the ratio of 
1 and 
2 such that


2


1
= eA0

2mc2
. (53)

B. Magnetic interactions

The interaction of the charged field with the vector potential
(4) contains two terms. The second-order (Landau) interaction
term has a structure similar to the second-order (Schwinger)
electric term (46). Therefore, it can be also realized in the
same manner. We can include the second-order magnetic
contribution simply by redefining 
2 as


2 = e2AμAμ

mc2
s

. (54)

We note that 
2 also controls the strength of the vector
potential interaction and thus the coupling strength of the laser
that gives rise to U (1)

B needs to be tuned as well.
The first term in Eq. (4), U (1)

B , involves spatial derivatives of
the complex field. In terms of the complex field components

U (1)
B = ieAi�†←→∇ i�

= ieAi(φ1
←→∇ iφ1 − i2φ1

←→∇ iφ2 + φ2
←→∇ iφ2). (55)

To construct an interaction of this sort, we now include
supplementary ancillary condensates, which will be referred
to as the virtual system, and use the subscript V to denote
them. The condensates that describe the physical (interacting)
system will be denoted by a subscript I .

The key idea will then be to use the ancillary condensates
as intermediate virtual levels and to obtain the derivative terms
from second-order Raman transitions. Due to the continuous
spectrum of the Bogoliubov Hamiltonian and the collective
nature of its excitations, a virtual transition of atoms between
the two systems may excite collective excitations in the virtual
system. This can also produce undesired correlations and
transfer energy between I and V .

To avoid this, we will introduce a gap in the virtual
condensate by using a massive eigenmode. Therefore, our
ancillary system is built of two coupled condensates. Only the
massive mode of V will be coupled to the interacting system.

FIG. 4. Interaction between massive modes in the simulating (ϕI )
and ancillary (ϕV ) systems.

To avoid the undesired correlations, we set the excitations’
effective mass of the virtual condensate MV to be less than but
of the order of mI . Assuming that the excitations ϕI are in the
long-wavelength regime (pI 	 mIcsI ), their energy scale is
then much smaller than the one of ϕMV

. As a result, transitions
of atoms between the virtual and interacting systems cannot
produce excitations in the ancillary system due to energy
conservation. Furthermore, we wish to prevent excitations in
the interacting system due to transitions from the virtual one.
In order to do so, we should reduce the temperature of the
virtual system below the effective rest energy of the massive
excitations, i.e.,

kBT 	 MV c2
sV . (56)

These energy constraints produce an additional energy gap
between the interacting and virtual subsystems (as depicted in
Fig. 4), where the difference in the two speeds of sounds yields
a gap between the two chemical potentials.

Let us now construct a self-interaction of a massive exci-
tation that contains a first-order derivative. Having discussed
the properties of the ancillary system V , let us proceed to
study the effect of (virtual) second-order transitions that arise
from the laser-induced interaction between the virtual and
interacting systems:

Hint =
∫

dx 
3(x)[ϕ†
V (x)ϕI (x) + H.c.], (57)

depicted in Fig. 4.
Using the method of adiabatic elimination [36], we expand

the interaction to second order in the small parameter 
3/δ
2.

The resulting effective self-interaction of ϕI is then given by

H
(2)
int =

∫
dx dy 
∗(x)
(y)ϕ†

I (x)ϕI (y)I(x − y). (58)

Here the function I(x − y) is the result of integrating out
the intermediate virtual states

I(x − y) = 〈ϕ†
V (x)ϕV (y)〉

δ

=
∫

dp
|v(p)|2

δ
e−ip·(x−y), (59)

where δ = �μ + ωMV
− (ωL + ωMI

) ≡ �μ + ωMV
− �.

The function I(x − y) is numerically evaluated in Appendix B.
Revising the energetic constraints on the interacting and the

virtual systems yields further relations between the length scale

043611-6



CHARGED PARTICLES IN AN EXTERNAL FIELD: A QED . . . PHYSICAL REVIEW A 95, 043611 (2017)

of the interacting and virtual systems. Since mIc
2
sI � MV c2

sV

and x − y ∼ (MV csV )−1 (as is shown in Appendix B), the
interaction length scale is comparable to the healing length of
the interacting condensate x − y � (mIcsI )−1. Thus, in terms
of a new set of coordinates

x = 1
2 (X+ + X−),

(60)
y = 1

2 (X+ − X−),

the effective interaction (58) can be expanded in terms of
X− around X+. Since (58) is rotationally symmetric, this
expansion contains only derivatives of even order and thus
the first-order derivative terms that we seek are excluded.
Nevertheless, giving the Rabi frequency a harmonic profile

3(x) → exp{ik · x}
3(x) breaks the rotational symmetry and
defines the derivative’s orientation. Expanding the effective
interaction to first order in X− yields two terms. The first
(proportional to X0

−) has the form of a second-order Raman
transition and thus can be compensated (see Appendix B).
The second term (proportional to X−) contains first-order
derivatives oriented in the direction of k and is given by

Heff = i

∫
dX+
2

3(X+)Gϕ
†
I (X+)

←→∇ kϕI (X+), (61)

where G = G(k,m,csI
,csV

) is a real function (see Appendix B).
Substituting the massive excitation in terms of the scalar

field and its conjugate momentum (20,21) in Eq. (61) leads
to terms that breaks the local U(1) invariance of the theory.
In order to avoid them, the effective Rabi frequency |
3|2G
should be bounded, following similar arguments used in the
construction of (46). Assuming that the energy scale of the
massive excitations is much smaller than the cutoff energy and

FIG. 5. Complete interaction between the simulating
{ψ1, . . . ,ψ4} and ancillary {ψ5,ψ6} systems, given in terms of
the analog condensates and the driving laser’s Rabi frequency.
According to (63), the coupling terms of ψ1 and ψ2 with the ancillary
system are multiplied by a real Rabi frequency and the coupling
terms of ψ3 and ψ4 with the ancillary system are multiplied by an
imaginary Rabi frequency. This construction leads to the effective
interaction, which in turn yields the interaction of the charged field
with the vector potential.

FIG. 6. Effective interaction between the modes in the interacting
system.

that |
3|2G � Mc2
sI , we obtain

2ϕ
†
I

←→∇ kϕI ≈ φ
←→∇ kφ. (62)

Finally, in order to construct the full interaction (55), we
need

Hint =
∫

dx 
3(x)[ϕ†
I1(x) + iϕ

†
I2(x)]ϕV (x) + H.c. (63)

In Fig. 5 we describe the required interactions between BEC
components. The resulting effective interaction is schemati-
cally depicted in Fig. 6. We note that the resulting effective
Rabi frequency relates to the external vector potential accord-
ing to

eAi = 
eff
i ≡ 
2

3i(x)G(mcsV ,ki)mcsI . (64)

VII. CONCLUSION

In this article we proposed a method for simulating a
QFT system of a charged scalar field coupled to an external
electromagnetic field. Unlike previously studied analogs of
fields in curved space-time, which require accelerating the
atomic condensate, in the present method the effect of
the electromagnetic field is generated in a static condensate.
The interaction here was introduced by means of external lasers
that couple the internal atomic levels in a certain manner.
Therefore, we expect that such a system will be more stable;
there are no special requirements or special limitations on the
mean-field properties. Furthermore, this provides a wider and
more flexible range of applicability in controlling the various
electromagnetic external fields that one may wish to apply on
the charged phonons. In particular, it may enable the study of
the Sauter potential and its impact on the charged field and
especially on its two asymptotic limits, which yields the Klein
paradox and the Schwinger effect. In addition to the scattering
properties that can be experimentally measured in this sort of
simulation, it may be even more intriguing to observe and
study the process of pair creation and vacuum instability
due to an electric field. Moreover, an electric potential of
this type may also be employed as a source of particles or
antiparticles for other quantum simulations that involve bulk
excitations, such as gravitational analogies and QFT in curved
space-time.
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APPENDIX A: DIAGONALIZATION OF THE
BOGOLIUBOV HAMILTONIAN FOR TWO-MODE BECS

In order to find the full dispersion relation and normal
modes of a coupled two-mode BEC (6), we will derive the
Bogoliubov Hamiltonian. Substitution of the mean-field
expansion into the GP Hamiltonian (6) yields a Hamiltonian
of the form H0 + Hp, where H0 is the ground-state energy
(zero momentum) and Hp is the quadratic part that describes
the excitations from the condensate. Next, in order to constrain
conservation of particles number, we plug

N0 = Ni −
∑
p �=0

â
†
i,pâi,p (A1)

into H0, keeping only quadratic terms of the form â
†
i,pâi,p

[35]. Equivalently, we can use the operator K̂ = Ĥ − μN̂ ,
where the last term acts as a Lagrange multiplier [37]. The
resulting Bogoliubov Hamiltonian is

Hp =
∑
j,p �=0

(
p2

2m
+ nU − 


)
â
†
j,pâj,p

+ 1

2
nU (â†

j,pâ
†
j,−p + âj,pâj,−p)

+ nU ′(â†
2,pâ

†
1,−p + â1,pâ2,−p)

+ (nU ′ + 
)(â†
2,pâ1,p + â

†
1,pâ2,p). (A2)

Since Hp is quadratic in terms of the field operators âj,p and
â
†
j,p, it can be diagonalized by a linear transformation, leading

to a new set of field operators. In order to find the appropriate
transformation, we adopt the diagonalization method in [38].
We begin by introducing the vector

η† = (â†
1,p,â

†
2,p,â1,−p,â2,−p). (A3)

Now Hp can be written as

Hp = η†Hη. (A4)

We then define the transformation

ξ † = η†T , ξ = T †η, (A5)

where T is a 4 × 4 matrix and ξ is composed of the free field
operators b̂j,p. The bosonic commutation relation of the new
field operators b̂i,p implies a constraint on the transformation
matrix T , by which the inverse of T is defined. Finally,
plugging the transformation (A5) into the Hamiltonian (A4)
yields the eigenvalue equation

T −1HJT = HDJ =
(

E 0
0 −E

)
, (A6)

where E is a 2 × 2 diagonal matrix of the eigenenergies
Ej . The matrix J = diag{IN, − IN } is closely related
to the symplectic matrix, which is widely used in the
diagonalization process of a quadratic Hamiltonian given in
canonical coordinates {pn,qn}.

The resulting dispersion relations of the two eigenmodes
are

E2
1 = 2(nU + nU ′)εp + ε2

p

= 2mc2
s1εp + ε2

p, (A7)

E2
2 = (nU − nU ′ − 2
)2 − (nU − nU ′)2

+ 2(nU − nU ′ − 2
)εp + ε2
p

= E2
r + 2mc2

s2εp + ε2
p. (A8)

As one can see, the energies differ from the well-known
phonon energy of a one-component BEC. In this setup one
of the modes acquires an effective mass, a momentum free
term, which depends only on the coupling constants of the
system. In addition, the speed of sound, which can be identified
as the factor of the kinetic energy (proportional to εp), is
different for every mode. Hence the massive and massless
eigenmodes exhibit two different sound cones and thus have
different causal structures. On the other hand, the elements of
the transformation matrix T −1 have the generic form [35]

uJ (p),vJ (−p) ∝ ±
√

mc2
sJ + εp

2EJ

± 1

2
, (A9)

where J refers to the two eigenmodes above.

APPENDIX B: THE EFFECTIVE INTERACTION

In order to derive Eq. (61), we begin with the evaluation
of I(X−). We will find an analytic function that optimally
describes the behavior ofI(X−). Then we will use the resulting
function to find G and obtain the effective Rabi frequency 
eff

i .
The function I(X−) is given by

I(X−) = 〈ϕ†
V (x)ϕV (y)〉

δ

=
∫

dp
|v(p)|2

δ
e−ip·X− , (B1)

where δ = �μ + ωMV
− (ωL + ωMI

) ≡ �μ + ωMV
− �. In

order to evaluate the optimal function we will proceed as
follows. First, we define the ratio of the effective and the atomic
masses α = MV /mV . Since the interaction is off-resonance,
the detuning of the laser and the chemical potential can be
determined by this ratio. Thus we are left with a controlled
parameter α, which is restricted to be much smaller than one.
Next we choose a function and fit it to the numerical solutions
for various values of α. Then we find the dependence of the
analytic function’s parameters on α.

In the proceeding calculation we set cs = 1 and fix the
parameters as follows:

0.08 � α � 0.12, �μ − � = M. (B2)

In one dimension the function I(X−) is given by

I(X−) =
∫ ∞

−∞
dp eipX−

(
p2

2m
+ m − E(p)

)
E(p)[�μ + E(p) − �]

=
√

2
∫ ∞

−∞
dη eiηs 1 + η2 − E(η)

E(η)[α + E(η)]
≡

√
2I (s), (B3)

where s = √
2mV X− and

E(η) =
√

α2 + 2η2 + η4. (B4)

We choose I (s) to be

I (s) = ae−b|s|, (B5)
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FIG. 7. Comparison between the numerical result (blue solid line)
of the dimensionless integral I (s) (B3) and the evaluated function (red
dashed line) (B5) for different values of α in one dimension.

where a and b are both functions of α. A comparison between
the numerical result and the fitted function is given in Fig. 7 for
different values of α. We observe that the chosen function fits
well to the numerical result and describes the general behavior
of the numerical function. Next we will find the dependence
of the two parameters a and b on α. In order to do so, we take
the results of the two parameters for various values of α and
fit a function that describes their dependence on the parameter
α. The two parameters of the approximated function result in

a(α) ≈ 0.64

α1.23
, (B6)

b(α) ≈ 0.56α0.88, (B7)

with a comparison of the numerical results and the fitted curves
given in Fig. 8. In conclusion, we obtain

I(X−) ≈ 0.9

α1.23
e−0.8α0.88mV |X−|. (B8)

As one can see, the decay rate of the function I(X−) is greater
than MV . Hence it dictates a characteristic length scale that is
on the scale of or smaller than the interacting modes’ healing
length ξI ≡ (

√
2mcsI )−1.

In two dimensions the function I(X−) is given by

I(s) = 4πmV

∫ ∞

0
dη

1 + η2 − E(η)

E(η)[α + E(η)]
J0(ηs)

≡ 4πmV I (s), (B9)

where J is a Bessel function of the first kind. We repeat the
procedure used in the case of the one-dimensional system
and choose the evaluated function to be (B5). A comparison
between the numerical results and the fitted function is
depicted in Fig. 9. The two parameters of the evaluated
function are given by

a(α) = 0.16

α0.58
, (B10)

FIG. 8. Comparison between the numerical results of the param-
eters a and b (dots) and their evaluated functions (solid line) in one
dimension, with a(α) and b(α) given in (B6) and (B7), respectively.

FIG. 9. Comparison between the numerical result (blue solid line)
of the dimensionless integral I (s) (B9) and the evaluated function (red
dashed line) (B5) for different values of α in two dimensions.

b(α) = 0.523α0.61 (B11)

and are plotted in Fig. 10. In conclusion, I(X−) can be
evaluated by

I(X−) ≈ 2mV

α0.58
e−0.74α0.61mV X− . (B12)

We observe that the evaluated function decays in the scale
or faster than M−1

V and hence the characteristic length scale
of the interaction is in the order or smaller than the healing
length of the interacting system. In conclusion, the estimation
of the interaction length scale X− is justified and the effective
interaction (58) can be expanded in terms of this relatively
small parameter.

We proceed with the formulation of the effective interaction
(61). Expanding (58) to first order in X− yields

Heff =
∫

dX+
2
3(X+)ϕ†

I (X+)ÔϕI (X+), (B13)

where

Ô =
∫

dX−I(X−)eik·X− (1 + X− · ←→∇ ). (B14)

Substituting (B12) into (B14), we can carry out the integration
on X−, resulting in

Ô = F + iG←→∇ k, (B15)

where F and G are given by

F = 2mV a

∫ ∞

0
dX−X−e−√

2bmV X−J0(kX−)

= 2π

mV

ab(
b2 + η2

k

)3/2 , (B16)

FIG. 10. Comparison between the numerical results of the pa-
rameters a and b (dots) and their evaluated functions (solid line)
in two dimensions, with a(α) and b(α) given in (B10) and (B11),
respectively.
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G = 2mV b

∫ ∞

0
dX−X2

−J1(kX−)e−√
2bmV X−

= 2π√
2m2

V

abηk(
b2 + η2

k

)5/2
. (B17)

Here ηk = k/
√

2mV and the parameters a and b are given
in (B10) and (B11), respectively. Finally, the effective

interaction (58) is

Heff = 
2
3(X+)ϕ†

I (X+)[F + iG←→∇ k]ϕI (X+). (B18)

The first term is irrelevant to our model and thus should be
compensated by an additional laser-induced interaction

Hcomp = 
comp[ψ†
1ψ1 + ψ

†
2ψ2 − (ψ†

1ψ2 + ψ
†
2ψ1)], (B19)

where 
comp = −
2
3(X+)F/2.
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