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Geometric atom interferometry with shortcuts to adiabaticity
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Realization of the highly efficient π and π/2 pulses is crucial in an atom interferometry. Here we propose a
scheme to realize these operations based on an intrinsically fault-tolerant geometric phase and stimulated Raman
shortcuts to the adiabatic passage. The scheme is fast due to the shortcuts to adiabaticity and is robust based
on the geometric phase. In the presence of various noises, we show that the fringe contrast of the proposed
interferometer is higher than that of the resonant Raman pulse and the stimulated Raman adiabatic passage.
Furthermore, the scheme is demonstrated to be especially suitable for applications that require a large space-time
area enclosed by interfering wave packets.

DOI: 10.1103/PhysRevA.95.043608

I. INTRODUCTION

Light-pulse atom interferometry, a hallmark tool of pre-
cision measurements, plays a critical role in the test of
inertial forces [1–5] and fundamental physical constants [6–9].
Furthermore, highly sensitive light-pulse atom interferometry
has been proven to be a promising technology for inertial
navigators [10–12]. The critical ingredients of light-pulse atom
interferometry are the π/2 and π light pulses, which split or
recombine the atomic wave packets [13]. Realization of such
operations with high quality is thus fundamentally important in
atom interferometry. Two-photon stimulated Raman transition
is the traditional way to coherently realize such pulses [14,15].

Several significant technologies have been developed to
improve the quality of these light pulses, all with limitations.
Since the sensitivity of the atom interferometer scales linearly
with the space-time area enclosed by the interfering wave
packets [16–18], sequential application of stimulated Raman
transitions can be used to increase the momentum transfer [19].
However, the interference fringe contrast of an atom inter-
ferometer is sensitive to system errors, such as the velocity
distribution of the cold atoms and the inhomogeneous intensity
distribution of the laser field [20,21]. An alternative way to
improve the quality of interferometry is stimulated Raman
adiabatic passage (STIRAP), which has been demonstrated to
be a robust way to achieve the π and π/2 pulses [22–24].
However, the losing of atoms from the third excited state
significantly decreases the interference fringe contrast a lot.
Very recently, the frequency-swept Raman adiabatic passage
has proven to be a highly efficient and robust way to split the
atomic wave packets [21,25]. However, in order to maintain
the adiabatic condition, Raman adiabatic passage requires a
long evolution time, which will limit the increase of large
momentum transfer. Therefore, further development of π and
π/2 light pulses with fast and robust features is of significant
importance in achieving atom interferometry.
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In this paper, we propose a light-pulse atom interferometry
based on an intrinsically fault-tolerant geometric phase and
stimulated Raman shortcut to adiabatic passage (STIRSAP).
The π and π/2 operations can be realized with a nontrivial
dynamic phase or a pure geometric phase. The latter has been
shown to be robust against certain errors [26]. For instance, ge-
ometric quantum gates [27] have recently been experimentally
realized in various quantum computing candidates [28–30],
and they have been demonstrated to be of the highest fidelity
in the nitrogen-vacancy centers [29]. Furthermore, it has been
experimentally demonstrated in a superconducting qubit that
the contrast of the Landau-Zener interferometry with a pure
geometric phase is higher than that of the counterpart based
on a nontrivial dynamic phase [31]. On the other hand,
the applications of the adiabatic protocols are limited by
the requirement of slow driving, which conflicts with the
feebleness of quantum coherence when the system of interest
is embedded in an environment. Shortcuts to adiabaticity
protocols can solve this difficulty [32–36]. We demonstrate
that our scheme combines the advantages of the geometric
operations and the advantages of shortcuts to adiabaticity,
especially in the multipulse experiments: the employment
of shortcuts to adiabatic passages makes the manipulation
faster than Raman adiabatic passages and more robust than
stimulated Raman transition; the π/2 and π operations are
realized through geometric phases and are thus protected by
the geometric characteristic and resilient to random errors.
The scheme is easy to realize in experiments, requiring only
the modulation of the Raman pulse shapes. Fast and robust to
systemic and random errors, our protocol is especially suitable
for atomic interferometry applications that require a the large
momentum transfer.

The paper is organized as follows: Section II introduces the
dressed states and the realization of π/2 and π pulses without
dynamical phase by adiabatic passages. Section III shows
how to accelerate the adiabatic manipulations by reshaping
the pulse shapes. In Sec. IV we discuss the measurement
characteristics of the interferometers. In Sec. V, we use the
geometric operation to realize multi-π atom interferometer.
We conclude this paper in Sec. VI.
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FIG. 1. (a) A Mach-Zehnder atom interferometer composed of
the π/2 − π − π/2 pulses. The middle π pulse can be replaced
with multi-π pulses to increase the momentum transfer. (b) The
laser-atom coupling scheme. �P: pumping laser; �S: Stoke laser;
�: single-photon detuning; δ: two-photon detuning. (c) Evolution
paths of cyclic state (red solid line) on the Bloch sphere to realize
geometric π/2 and π operations. Cyclic state initialized in state |λ+〉
will evolve along the path B-A-D-C-B and pick up a geometric phase.
The blue dashed line depicts the trace of effective magnetic field in
the parameter space.

II. GEOMETRIC PHASE AND ADIABATIC
MANIPULATION

We consider a Mach-Zehnder atom interferometer as shown
in Fig. 1(a). The interferometer is composed of a π/2 pulse
that divides the atom wave packet, a π pulse that brings the
wave packets back together, and a second π/2 pulse that
overlaps the wave packets to create interference [13]. To obtain
a larger momentum transfer, one can replace the middle π

pulse with 2N pulses (N being an integer). The π/2-π -π/2
pulses can be realized with various approaches. For atom
interferometry with two-photon stimulated Raman transition,
these light pulses can be realized by Rabi oscillation with
large single detuning and two photon resonant, which is
fast but not robust against the system errors (i.e., variation
in Rabi frequencies or detuning). For atom interferometry
with STIRAP, the light pulses can be realized by ordinary
STIRAP with simultaneous single- and two- photon resonance,
which is robust against the system errors, but nevertheless
is sensitive to the spontaneous emission from the excited
state. For atom interferometry with frequency-swept Raman
adiabatic passage, the light pulses can be realized through
sweeping the two-photon detuning with large single-photon
detuning, which is also robust; however, both STIRAP and the
frequency-swept Raman adiabatic passage are not fast because
the adiabatic condition requires the evolution to be sufficiently
slow. Different from the above three approaches, we propose
to realize the geometric π/2 and π light pulses through a
shortcut to adiabatic passage with large single detuning and
two-photon resonant.

As shown in Fig. 1(b), we consider the 133Cs atoms and
the energy levels chosen as |0〉 = |6S1/2,F = 1,mF = 0〉,
|1〉 = |6S1/2,F = 2,mF ′ = 0〉, and |2〉 = |6P3/2〉 [37]. The
states |0〉,|2〉,|1〉 are coupled by the pumping and Stokes laser
fields with Rabi frequencies �P and �S, respectively. Using
the rotating-wave approximation, the system Hamiltonian
under the interaction picture is H I

0(t) = h̄/2(�Pe
iϕ |0〉〈2| +

�S|1〉〈2| + 2�|2〉〈2| + 2δ|1〉〈1| + H.c.), where � is the
single-photon detuning, δ is the two-photon detuning, and ϕ

is the relative phase between pumping and Stokes lasers. For
� � �P,S, the excited state |2〉 can be adiabatically eliminated
and the Hamiltonian H I

0(t) can be reduced to an effective
two-level system based on |0〉, |1〉:

Heff(t) = h̄

2

( −�eff �effe
−iϕ

�effe
iϕ �eff

)
, (1)

where �eff = [�2
P(t) − �2

S(t)]/4� and �eff =
−�P(t)�S(t)/2�. The system will evolve in the
subspace spanned by the two lower dressed states
{|λ−〉, |λ+〉}, where |λ−〉 = cos θ |0〉 − sin θe−iϕ |1〉,
and |λ+〉 = sin θeiϕ|0〉 + cos θ |1〉, with δ = 0 and
θ (t) = arctan �P(t)

�S(t) .
In the adiabatic case, the eigenstates |λ−〉, |λ+〉 become

cyclic states under the driving of control parameters. For
the system prepared in an initial state |ψi〉, it can be
expanded as |ψi〉 = a+|0〉 + a−|1〉 = a+|λ+(0)〉 + a−|λ−(0)〉.
After a cyclical evolution with adiabatic manipulation, the
final state will be |ψf 〉 = a+eiγ |λ+(T )〉 + a−e−iγ |λ−(T )〉 =
a+eiγ |λ+(0)〉 + a−e−iγ |λ−(0)〉. Here γ is the geometric phase,
and the dynamical phase is ignored since it can be canceled
by the spin-echo method described later. The final state and
the initial state can be linked by an evolution operator U(χ,γ ),
which is derived as

U(χ,γ ) =
(

cos γ + i sin γ cos χ i sin χ sin γ

i sin χ sin γ cos γ − i sin γ cos χ

)
,

(2)

where χ = θ (0) [38,39]. When choosing χ = π/2 and γ =
π/4, the evolution operator becomes

U(π/2,π/4) =
√

2

2

(
1 i

i 1

)
,

which is π/2 pulse; when choosing χ = π/2 and γ = π/2,
the evolution operator with the form

U(π/2,π/2) = i

(
0 1
1 0

)

is π pulse operation.
In the following, we describe in detail how to realize the

above geometric operations by adiabatic passages [40,41]. The
general expression of the pumping pulses and Stokes pulses in
STIRAP are given by

�P(t) = �0 exp

(−t2

b2

)
sin β + �0 exp

(−(t + τ )2

b2

)
sin α,

�S(t) = �0 exp

(−t2

b2

)
cos β + �0 exp

(−(t + τ )2

b2

)
cos α,

(3)
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where �0 is the peak value of Rabi frequency, τ is the delay
time between the laser pulses, and b is the full width at half
maximum of pulses. The parameter θ (t) can be adjusted by the
value of α and β. When t → −∞, θ (−∞) = α; when t → ∞,
θ (∞) = β. To achieve geometric phases, one should drive
the cyclic states (namely, the eigenstates |λ−〉, |λ+〉) evolving
along the closed path on the Bloch sphere. By parametrizing
the state vector with 〈ψ |σi |ψ〉 (σi is the Pauli matrices), i =
x,y,z, the cyclic state initialized in |λ+〉 will evolve along the
path B-A-D-C-B in our scheme as shown by the red curve in
Fig. 1(c). The variation of θ corresponding to the curve B-A-
D-C-B is given by π

4 → 0 → π
4 → π

2 → π
4 . By changing the

relative phase ϕ, we can change the value of geometric phase.
The π/2 pulse can be realized when ϕ = π/4, while the π

pulse is achieved when ϕ = π/2.
A concern with using adiabatic passage is the accumulation

of the dynamical phases, which can be canceled by the
spin-echo method. The Hamiltonian (1) can be rewritten as
Heff(t) = −(h̄/2)σ · B, where σ is the Pauli matrices {σx,
σy, σz} and B = (�eff sin ϕ,�eff cos ϕ,�eff) is the effective
magnetic field. We remove the dynamical phases by reversing
the field B [�eff(t) → −�eff(T − t), ϕ(t) → ϕ(T − t) + π ]
at the half time of the evolution, which results in Heff(t) =
−Heff(T − t) [39]. The trace of the effective magnetic field B
is shown in Fig. 1(c) by the blue dashed line. The modification
of �eff can be realized by controlling θ (t), while a π phase
should be added at point C to invert ϕ.

III. ACCELERATION BY SHORTCUTS TO
ADIABATIC PASSAGE

We now address a shortcut method to accelerate adiabatic
passage [32–36,42,43]. As the adiabatic evolution requires the
adiabatic condition, the evolution is usually time consuming.
According to the theory of shortcuts to adiabaticity [32,33], we
can suppress the diabatic transition and speed up the procedure
by adding an auxiliary Hamiltonian given by

Hcd(t) = h̄

2

(
0 −i�a(t)eiϕa

i�a(t)e−iϕa 0

)
, (4)

where �a(t) = 2(�P�̇S − �̇P�S)/(�2
P + �2

S) and ϕa = ϕ −
π/2. By choosing a suitable unitary transformation [33,34]
that does not change state at the initial and final times, one
can further incorporate the contribution of Hcd into the pulse
shapes. Therefore, by using the modified pulse shapes given
by [35]

�̃P(t) =
√

2�
(√

�̃2
eff(t) + �̃2

eff(t) + �̃eff(t)
)
,

�̃S(t) =
√

2�
(√

�̃2
eff(t) + �̃2

eff(t) − �̃eff(t)
)
, (5)

where �̃eff(t) = �eff + φ̇,�̃eff(t) =
√

�2
eff + �2

a , and φ =
arctan(�a/�eff) are the modified effective detuning and Rabi
frequency, we can realize fast transfer along adiabatic passage
by only adjusting the pulses shapes [44].

Here we compare the population dynamics of π pulses
as driven by STIRAP and STIRSAP. We choose the sys-
tem parameters as �0 = 2π × 4 MHz, � = 2π × 0.5 GHz,

FIG. 2. (a) The pulse shapes �P(t) and �S(t) for the geometric
π pulse according to Eq. (3). (b) The pulse shapes of �̃P(t) and
�̃S(t) for the modified π pulse according to Eq. (5). The population
dynamics of geometric π pulses (c) and π/2 pulses (d) driven by
the STIRSAP (black solid line) and STIRAP (red dashed line),
respectively. Note that the adiabatic is not fulfilled here; STIRAP
cannot realize perfect transfer. However, STIRSAP can realize perfect
transfer after eliminating the diabatic effect.

Ts = 22.5 μs, b = Ts/8, and τ = −Ts/8, where Ts is the
operation time of single fractional STIRAP, and the total
operation time is T = 4Ts = 90 μs. The pulse shapes of �P

and �S are plotted in Fig. 2(a), which drive the quantum states
evolving along the closed path by STIRAP. According to
Eq. (5), the modified pulse shapes of STIRSAP are plotted
in Fig. 2(b). The initial state of the system is set to be
|0〉. We plot the population transferred to |1〉 as driven by
STIRAP and STIRSAP in Fig. 2(c). The final population of
STIRAP is less than 20% since the adiabatic condition is not
satisfied [(�2

0/2�)T ≈ 2.88π ]. However, after we suppress
the diabatic effect by modifying the pulse shapes, the final
population of STIRSAP can reach 100% with the same
operation time T . Similar results are obtained for the π/2
pulse as shown in Fig. 2(d). The population transfer of an ideal
π/2 pulse should be 50%; however it is less than 10% when
the STIRAP is used without the adiabatic condition, while the
population transfer of STIRSAP reaches the expected value of
50% with the same operation time.

IV. RANDOM NOISE AND SYSTEMIC ERROR

It has been shown that geometric quantum gates in
quantum computation are insensitive to fast varying random
fluctuations [38,45,46]. Similarly, here we demonstrate that,
since our method is intrinsically geometric, it is also insensitive
to certain random fluctuations with relatively high frequencies.
In Fig. 3(a), we plot the transfer efficiencies of π pulses
under three kinds of interferometers (resonant Raman pulses,
STIRAP, and STIRSAP) versus the amplitude of random
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FIG. 3. (a) The π pulse transfer efficiency for the STIRSAP
(black solid line), STIRAP (red dashed line), and resonant Raman
pulses (blue dashed-dotted line) vs the amplitude of random fluc-
tuation. The plots are averaged over 500 times. (b) The fidelity of
interferometers for the same parameters in (a) vs the deviation of
Rabi frequency. The operation times of the resonant Raman pulses
(blue dashed-dotted line), STIRAP (red dashed line), and STIRSAP
(black solid line) are 13 μs, 2.7 ms, and 0.27 ms, respectively.

fluctuation in Rabi frequency. The randomized fluctuation is
artificially introduced by adding an amplitude shift to �0. The
actual Rabi frequency is written as �′ = (1 + ε)�0, where ε

has 1000 points of noise and a mean value of zero. The transfer
efficiency of π pulse driven by STIRSAP is almost stable at
1 when ε increases up to 20%, while the transfer efficiencies
for both resonant Raman pulses and STIRAP are lower. Thus
the simulation reveals STIRSAP is more robust than resonant
Raman pulses and STIRAP at a noise frequency higher than
10 kHz.

A major systemic error in an atom interferometer is the
amplitude shift of Rabi frequency, which comes mainly from
the inhomogeneous distribution of the laser fields and the
velocity distribution of the cold atoms [47]. We compare three
different ways to realize the π/2-π -π/2 atom interferometer
(resonant Raman pulses, STIRAP, and STIRSAP), where the
maximum Rabi frequencies of the three methods are the same.
The system parameters are chosen to be the same with the
ones in Fig. 2(a). The operation times of the resonant Raman,
STIRAP, and STIRSAP are TR = 13 μs, TA = 2.7 ms, and,
TSA = 0.27 ms, respectively. We plot in Fig. 3(b) the fidelity of
the final states as a function of the variation of Rabi frequency.
The fidelity is defined as F = √

Tr(ρideal · ρ), where Tr denotes
the trace of the matrix, ρ is the actual density matrix, and ρideal

is the ideal density matrix of the final state [48]. The variation
of Rabi frequency is set to be �′ = (1 + η)�0, η ∈ [−0.1,0.1].
The fidelity of interferometer driven by resonant Raman pulses
drops to 95% when the Rabi frequency deviates from �0

by 10%, as shown in Fig. 3(b). However, the fidelity of
interferometers driven by STIRAP and STIRSAP are higher
than 99.5% with the same deviation, with STIRSAP needing
only one-tenth of the operation time of STIRAP.

It should be noted that there is also imperfection in two-
photon detuning, which is introduced by the Zeeman shift and
the unwanted ac Stark light shift. The Zeeman shift can be
suppressed by choosing magnetic-insensitive levels mF = 0
as ground states. The unwanted ac Stark shift comes from
the virtual coupling, namely, �P couples |1〉 ←→ |2〉 and �S

couples |0〉 ←→ |2〉. The ac Stark shift of virtual coupling

FIG. 4. The fringe contrasts of the π/2-π -π/2 interferometers
(a) and the interferometers with 30 intermediate π pulses (b) for the
STIRSAP (black solid line), STIRAP (red dashed line), and resonant
Raman pulses (blue dashed-dotted line) vs the deviation of Rabi
frequency.

can be calculated as δac = |�P |2
4�P,12

+ |�S |2
4�S,02

, where �P,12, �S,02

is the detuning between the coupling laser and the coupled
energy level. With atom 133Cs (the ground states’ splitting
is about 9 GHz) and suitable single-photon detuning � =
2π × 0.5 GHz, δac induced by the virtual coupling is smaller
than 2π × 50 Hz. The ac Stark shift has been taken into
account in the calculation of transfer, nevertheless, it has little
influence on the results.

We next compare the fringe contrasts of the interferometers
versus the variation of Rabi frequency. By tilting the relative
phase of the last π/2 pulse, we will get a fringe where
the final population of |1〉 changes with the relative phase.
The fringe contrast of the interferometer is defined as V =
(Pmax − Pmin)/(Pmax + Pmin), where Pmax is the maximum of
the population and Pmin is the minimum of the population. As
shown in Fig. 4(a), the fringe contrast of the interferometer
composed of resonant Raman pulses drops to 95% when Rabi
frequency deviates from �0 by 10%. In contrast, the fidelity
composed by STIRAP and STIRSAP are higher than 98.5%.
Therefore, the interferometer based on STIRSAP is more
robust than resonant Raman pulses against control parameter
variations, and it needs much less operation time than the
adiabatic passages.

V. MULTI-π -PULSE ATOM INTERFEROMETER

The robustness of the geometric atom interferometer with
STIRSAP implies that our proposal can be generalized to
multi-π -pulse cases, which can be used to realize large
momentum transfer [16–18]. Here we consider an atom
interferometer with 30 intermediate π pulses. We compare
the multi-π -pulse interferometers realized by resonant Raman
pulses, STIRAP, and STIRSAP; the total evolution times are
0.20 ms, 28.8 ms (with adiabatic condition satisfied), and
2.88 ms, respectively. Since the typical ground-state coherence
time of cold atoms is about Tc = 40 ms [49], we take into
account the decoherence when simulating the evolutions. The
decoherence effect can be introduced by revising the final
population P by an exponential decay factor of P (T ) =
(1 + exp −T 2/T 2

c )/2|Pid(T )|2 [50], where T is the period and
Pid is the population without decoherence. The fringe contrast
as a function of the Rabi frequency shift is shown in Fig. 4(b).
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The resonant Raman pulses reveal an oscillation behavior
when the Rabi frequency changes. The contrast of resonant
Raman pulses is high at a certain point; however, it drops
quickly due to the average effect among the atomic ensemble.
Though the operation time of STIRAP is long enough to satisfy
the adiabatic condition, its fringe contrast is not high due
to the decoherence effect. A high fringe contrast is achieved
when we choose STIRSAP to realize the atom interferometer
because the operation is robust and the operation time is short
and avoids the decoherence effect. Therefore, STIRSAP is a
promising way to realize a large momentum transfer in the
atom interferometers.

VI. CONCLUSIONS

In summary, we have proposed a useful scheme of atom
interferometry based on a geometric phase and shortcuts
to adiabatic passages. The scheme is easy to realize in
experiments and combines STIRSAP’s fast feature and the

geometric operation’s resilience towards the random fluctua-
tion. Therefore, the proposed fast and robust atom interferom-
eter may pave a way to precision measurements. For example,
the detailed applications of the present scheme to a kind of
special atom interferometry, such as the interferometries used
to test inertial forces and fundamental physical constants or
for inertial navigators, deserve further exploring.
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