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Noise spectroscopy with a quantum gas
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We report on the spectral analysis and the local measurement of intensity correlations of microwave fields
using ultracold quantum gases. The fluctuations of the electromagnetic field induce spin flips in a magnetically
trapped quantum gas and generate a multimode atom laser. The output of the atom laser is measured with
high temporal resolution on the single-atom level, from which the spectrum and intensity correlations of the
generating microwave field are reconstructed. We give a theoretical description of the atom-laser output and its
correlations in response to resonant microwave fields and verify the model with measurements on an atom chip.
The measurement technique is applicable for the local analysis of classical and quantum noise of electromagnetic
fields, for example, on chips, in the vicinity of quantum electronic circuits.
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I. INTRODUCTION

Fluctuations and noise play an important role in our
fundamental understanding of classical and quantum systems.
In the famous Hanbury Brown–Twiss experiment, intensity
fluctuations were used to determine coherence properties of
chaotic light [1]. Similar effects have been observed for
massive particles, such as bosons and fermions, showing
bunching [2] and antibunching [3] in the particle correlations.
Transport phenomena in solid-state quantum devices, such as
single-electron transport through quantum dots [4] or ballistic
transport in graphene [5], are well characterized by the electron
counting statistics and the corresponding field noise. This be-
comes especially important, as novel materials such as artificial
honeycomb crystals [6] predict quantum effects in the electron
transport even at room temperature, due to the formation of
topologically protected states [7]. Such quantum transport phe-
nomena might be measured by means of a recently proposed
quantum galvanometer [8], in which the low-frequency current
noise of a nanodevice is coherently coupled to an atomic
quantum gas and analyzed via state-selective single-atom
detection.

Here we demonstrate the basic operation of the quantum
galvanometer and extend it to quantum correlation measure-
ments. Using a Bose-Einstein condensate, we coherently probe
artificial, low-frequency magnetic-field fluctuations (noise) by
shifting them electronically into the microwave (MW) regime,
close to an atomic resonance. These fluctuations generate
a multimode atom laser with an output directly connected
to the original field fluctuations. Using a sensitive detector,
we analyze this output on the single-atom level and show
how the power spectral density and the intensity correlations
of the microwave field can be reconstructed. We give a
theoretical description for the output of the multimode atom
laser, including decoherence effects.

*Corresponding author: a.guenther@uni-tuebingen.de

II. EXPERIMENTAL SETUP

The experiment is illustrated in Fig. 1(a). Using an
atom-chip-based cold-atom apparatus [9], we prepare Bose-
Einstein condensates (BECs) and thermal ensembles of 87Rb
atoms in the |5S1/2,F = 2,mF = 2〉 ground state. The atoms
are magnetically trapped in a harmonic configuration with
trap frequencies ω(x,y,z) = 2π×(85,70,16) Hz and offset field
Bz,off ≈ 0.93 G. If this cloud is exposed to resonant mi-
crowave radiation, spin flips to the antitrapped |5S1/2,F = 1,

mF = 1〉 state occur. Here we irradiate microwaves of various
spectra to demonstrate the measurement of noise spectra and
correlations. In particular, we apply amplitude modulation to
a microwave carrier at ωc ≈ 2π×6.834 GHz with a variable
function A(t) in the kilohertz regime. Here A(t) mimics the
low-frequency field noise, which in the quantum galvanometer
case is intrinsically (via a mechanical oscillation of the
current driven nanodevice) mixed up to atomic transition
frequencies in the megahertz regime [8]. The magnetic
coupling field at the position of the atoms is then given
by | �B(t)| = A(t)B0 cos(ωct + φ), with B0 and ϕ being the
amplitude and phase of the microwave carrier. The amplitude
modulation produces sidebands to the carrier frequency ωc.
Each frequency component of the microwave addresses atoms
at different resonance surfaces of the trap [see Fig. 1(b)].
Adjusting ωc and A(t), individual or multiple regions of the
BEC can be addressed at the same time. Spin-flipped atoms
leave the trap and are detected with single-atom resolution and
∼19% efficiency, using a multiphoton ionization process and
subsequent ion counting [10].

III. ATOMIC RESPONSE

A monochromatic microwave of amplitude B0 and fre-
quency ω outcouples a coherent atom-laser beam from a BEC.
In the limit of weak outcoupling, losses are negligible and
the outcoupling rate is �(ω) = γ (ω)B2

0 . The spectral response
γ (ω) can be measured as shown in Fig. 1(c), yielding a
frequency width largely increased due to gravity [11,12].
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FIG. 1. (a) Cold-atom spectrometer (not to scale) consisting of
a magnetically trapped Bose-Einstein condensate and an ionization-
based single-atom detector. (b) The MW couples atoms at resonance
surfaces, given by equipotential surfaces of the atomic Zeeman
potential, i.e., magnetic isofield lines (dashed lines). Due to gravity,
the BEC is displaced from the magnetic trap center and the resonance
surfaces become nearly plane. Without amplitude modulation, the
MW carrier couples atoms from a single resonance surface (red solid
thick line) with a position given via ωc. Amplitude modulation at a
single frequency generates sidebands to the carrier and outcoupling
from two resonance surfaces (green solid thin lines) (c) Normalized
spectral response γ (ω)/γmax of a BEC to a single MW frequency
(black dots) and model function (red line).

Using a wavelike approach, where the phase of the atom
laser is locked to the microwave field [13,14] and different
atom lasers may interfere with each other [15,16], the
outcoupling rate can be extended to arbitrary fields B(t),

�(t) =
∣∣∣∣ 1

π

∫ ∞

0
B̃(ω)

√
γ (ω)eiωtdω

∣∣∣∣
2

∗ V (t) (1)

= 1

π2

∫ ∞

−∞
ei�ωtRξξ (�ω)Ṽ (�ω)d�ω, (2)

with ∗ being the convolution, B̃(ω) the Fourier transform1 of
B(t), and Rξξ the autocorrelation of ξ (ω) = 
̃(ω)B̃(ω)

√
γ (ω)

with the Heaviside function 
̃(ω). The visibility function
Ṽ (�ω) = F(V (t)) has been included to account for the
detector’s finite temporal resolution and decoherence effects,
which may arise from the atoms’ finite coherence length.
Here Ṽ is expected to be symmetric with Ṽ (|�ω|) � 1 and
Ṽ (0) = 1. The time-averaged count rate 〈�(t)〉 can be found
from Eq. (1) in the limit V (t) → const. This corresponds
to the incoherent case with V (�ω �= 0) = 0, for which the
outcoupling rate becomes time independent and Eq. (2) yields

〈�(t)〉 = 1

π2
Rξξ (0) = 1

π2

∫ ∞

0
SBB(ω)γ (ω)dω, (3)

with the power spectral density SBB(ω) = |B̃(ω)|2.

1The Fourier transform F is defined as F(B(t)) =∫ ∞
−∞ B(t)e−iωt dt = B̃(ω).

IV. NOISE ANALYSIS

Spectroscopic information about the local magnetic field at
the atomic position can be gained from analyzing either the
time-dependent outcoupling �(t) or its time average 〈�〉. This
defines two possible measurement modes.

(i) The spectrometer mode concentrates on measuring
time-averaged count rates, which are, according to Eq. (3),
independent of the visibility function Ṽ . In this mode,
information about the power spectral density can be gained, by
making the BEC sensitive to different parts of the spectrum,
thus measuring 〈�〉 while tuning the difference δω between the
center of the spectral response and the microwave spectrum.
This can be reached either by shifting γ via the magnetic offset
field or by shifting SBB via the carrier frequency. The mean
outcoupling rate from Eq. (3) then reads

〈�(t)〉(δω) = 1

π2

∫ ∞

0
SBB(ω + δω)γ (ω)dω (4)

= 1

2π2
[SBB(ω) ∗ γ (ω)](δω). (5)

Here we used γ (−ω) = γ (ω) and SBB(−ω) = SBB(ω), which
is valid for classical fields. If the spectral response function
is known, the power spectral density can be reconstructed via
a deconvolution. It is then a direct measure for the power
spectrum SAA(ω) = |Ã(ω)|2 of the low-frequency noise, since
SBB(ω) = π2B2

0SAA(ω − ωc).
(ii) The correlator mode concentrates on analyzing the time-

dependent signals �(t) and the corresponding second-order
correlation function g(2)(τ ) = 〈�(t)�(t + τ )〉/〈�(t)〉〈�(t + τ )〉
reads

g(2)(τ ) = 4π2

Rξξ (0)
F−1(|Rξξ (�ω)Ṽ (�ω)|2) (6)

= A(|ξ (t)|2) ∗ V (t) ∗ V (t), (7)

with ξ (t) = F−1(ξ̃ (ω))(t) and A being the autocorrelation
function. Using the theory of analytic signals [17], one can
show that the envelope of any real-valued function f (t)
can be calculated via E(f (t)) = |
(t) ∗ f (t)| [17], with 
(t)
being the inverse Fourier transform of the Heaviside function.
Following this, one finds

|ξ (t)|2 = |
(t) ∗ F−1(B̃(ω)
√

γ (ω))|2 (8)

= E(B(t) ∗ F−1(
√

γ (ω)))2 = Ifil(t), (9)

with Ifil(t) being the spectrally filtered microwave intensity and
E(B(t)) ∝ |A(t)|. Measuring g(2) will thus directly unveil in-
tensity correlations of the radiation field within the bandwidth
of the quantum gas.

The correlator mode requires knowledge of either Ṽ (�ω)
or V (t). The former is most easily measured by outcoupling
with two frequencies B = B0[cos(ω1t + ϕ1) + cos(ω2t +ϕ2)].
Choosing the frequencies such that γ (ω1) = γ (ω2), Eq. (2)
becomes

�(t) ∼ 1 + Ṽ (|�ω|) cos(�ωt + �φ) (10)

and

g(2)(τ ) = 1 + Ṽ (|�ω|)2

2
cos(�ωτ ), (11)
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with �ω = ω2 − ω1 and �φ = φ2 − φ1. The visibility func-
tion is thus directly connected to the interference contrast of
the two beating atom lasers and can be measured by varying
�ω. In contrast, V (t) can be measured in the limit of short MW
pulses and spectral response functions much broader than the
bandwidth of Ṽ (�ω). In this case B̃(ω),γ (ω) → const and
Eq. (1) becomes

�(t) ∼ δ(t) ∗ V (t) = V (t). (12)

For spectral response functions of finite width and MW pulses
of finite length, however, Eq. (1) reads

�(t) ∼ |F−1(θ̃ (ω)B̃(ω)
√

γ (ω))(t)|2 ∗ V (t), (13)

causing a slight broadening of the measured pulse response
�(t) with respect to V (t).

Using our single-atom detector, both 〈�(δω)〉 and �(t) can
be measured in situ and in real time. In practice, 〈�(δω)〉
(the spectrometer mode) is best used for measuring broadband
power spectral densities with a resolution limited by the atoms’
spectral response. Spectral information within the atomic
bandwidth, however, can be obtained in the form of intensity
correlations, from measuring �(t) or g(2)(τ ) (the correlator
mode) for a fully coherent object such as a BEC. In this mode,
the bandwidth of the spectral response sets an upper limit for
the fastest detectable correlations.

V. MEASUREMENTS

To demonstrate the spectrometer mode, we generate a
broadband MW spectrum via amplitude modulation of a
microwave carrier. As the source for the amplitude modulation
A(t) we use a low-pass filtered noise diode with cutoff at
around 200 kHz. The resulting power spectral density is
shown in the inset of Fig. 2. As atomic probe we use a BEC
with 8900 atoms and expose it to the MW spectrum, which
is shifted within 700 ms by sweeping the carrier frequency
with 1.4 kHz/ms. Outcoupled atoms are photoionized by two
overlapping laser beams [10] of about 50 μm waist, which are
positioned 370 μm below the atomic cloud [see Fig. 1(a)]. The
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FIG. 2. Spectrometer mode. Mean ion count rate for different
microwave carrier detunings δω. The inset shows the power spectrum
of the original microwave as measured with a spectrum analyzer.
Experimental data (blue lines) are shown together with the theory
from Eq. (5) (dashed line). The form of the model function from
Fig. 1(c) was used to calculate the convolution. The amplitude was
calculated from the theory of [11] with N = 8900 and T = 33.75 nK.
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FIG. 3. (a) Ion count rate (upper plot) and g(2)-correlation
function (lower plot) of two interfering atom lasers with �ω =
2π×20 Hz. A fit of the theory from Eqs. (10) and (11) allows for
extracting the visibility Ṽ (�ω). (b) Visibility functions of thermal
clouds and BECs, as derived from two interfering atom lasers with
variable �ω. Gaussian model functions have been fitted to deduce
the coherence frequency σ . The fits yield σ = 2π×420, 540, 700,
and 960 Hz for 260 nK, 150 nK, partially condensed, and fully
condensed clouds, respectively. (c) Temporal ion distribution for
pulsed outcoupling from thermal clouds and a BEC with 40×103

atoms. Ion distributions are peaked at around 6 ms, which is the mean
delay between outcoupling and detection. The black solid rectangular
line shows the initial pulse of 120 μs width. The gray line nearby
shows |F−1(θ̃ (ω)B̃(ω)

√
γ (ω))(t)|2, which is, according to Eq. (13),

the expected count rate in the limit of full coherence, calculated for a
spectral response of 20 kHz width.

number of detected ions per sweep is about 50 and their arrival
times can be mapped to the carrier detuning. Repeating the
measurement 1500 times, the ion count rate can be deduced,
as shown in Fig. 2. The measured data are in agreement with
the theory from Eq. (5), which has been derived by convolving
the microwave spectrum with the spectral response function
γ (ω) from Fig. 1(c).

To interpret time-dependent outcoupling rates, the visibility
function Ṽ (�ω) has to be determined. This can be done by
using A(t) = A0 sin(�ωt/2 + φ) as amplitude modulation,
generating two frequencies at ω1/2 = ωc ± �ω/2. Setting ωc

to the center of the spectral response ensures γ (ω1) ≈ γ (ω2)
and thus, according to Eqs. (10) and (11), a direct measure
of V (|�ω|). Figure 3(a) shows the resulting count rate and
the corresponding correlation function for a thermal cloud
of 260 nK and �ω = 2π×20 Hz. Both signals show a clear
oscillation at frequency �ω, with the signal-to-noise ratio
being much higher in the g(2) analysis.2 Here the two atom

2This is because the correlation function has been calculated on the
arrival times of the individual counts and not from the temporally
binned detector signal. The correlation function is thus much better
suited for extracting the visibility.
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lasers are fully coherent, because the separation between the
two outcoupling surfaces �z = λh̄�ω/mg amounts to only
6.2 nm [11], which is well below the atoms’ thermal de
Broglie wavelength. Increasing �ω and thus �z will lead to
reduced visibility. Figure 3(b) shows the measured visibilities
for different �ω and clouds of different temperatures. Within
each data set, the visibility drops on a characteristic frequency
scale σ , which we deduce by fitting a Gaussian model
function V (�ω) = exp(−�ω2/2σ 2) to the data. As expected,
thermal clouds of reduced temperature show increased values
of σ , which correspond to larger de Broglie wavelengths.
However, the visibility is not influenced from the atoms’
spatial coherence only, but also from the detector’s finite
temporal resolution. This is best seen in the BEC data, where
we would expect full coherence within the spectral response.
The measurement, however, shows a reduced visibility of
σ ≈ 1 kHz, which we attribute to the temporally delocalized
ionization process. Due to the rather large beam profile of
the ionization lasers, ionization occurs in a time window
of ∼0.6 ms. Instead of Ṽ (�ω) we can measure V (t) via
pulsed outcoupling with A(t) = A0

∑
n (t − nT ,�t) and

(t,�t) = 
̃(t + �t/2) − 
̃(t − �t/2). This corresponds to
a microwave pulse sequence with periodicity T = 12 ms and
pulse width �t = 120 μs. Figure 3(c) shows the resulting
ion distributions for different cloud temperatures, alongside
the (shifted) initial pulse and the spectral response broadened
pulse, resulting from Eq. (13) in the limit of full coherence
Ṽ = 1. Both pulses are sufficiently short such that the measured
ion distributions give the approximate form of V (t). As
expected, V (t) shows a clear temperature dependence, with
decreasing temporal width for decreasing cloud temperatures.
However, the spatially full coherent BEC does not approach
the spectral response broadened pulse but shows a pulse width
of ∼0.6 ms, which is mainly given by the time uncertainty of
ionization.

Having the visibility function at hand, we use Bose-Einstein
condensates to demonstrate the correlator mode. Therefore,
we investigate narrow-band microwave noise spectra with
adjustable bandwidths, generated via a modulation A(t) =
A0

∑
νi∈[ν1,ν2] sin(2πνit + φi), in which the frequencies are

chosen in 1-Hz steps and the angles φi are chosen randomly.
The outcoupling was adjusted such that the atomic cloud is
sensitive to the right sideband only, by choosing ν1 much
bigger than the bandwidth of the condensate. Using this arti-
ficial spectrum, we measure the time-dependent outcoupling
rate from which we deduce the g(2) correlations. Figure 4
shows g2(τ ), as measured with a BEC of 40×103 atoms,
for bandwidths �ν = ν2 − ν1 ranging from 200 Hz up to
5 kHz. On short time scales all measurements show clear
correlations with g(2) > 1. These correlations decay on time
scales on the order of the inverse MW bandwidth, until the
system becomes fully uncorrelated. According to Eq. (7), g(2)

is directly connected to the MW intensity correlations, which
are due to the finite bandwidth of the MW noise. Within
this bandwidth, all atom lasers interfere mutually, resulting
in multiple overlapping two-beam interferences. As the phase
information is lost in the correlation analysis [see Eq. (11)],
overlapping g(2) functions of different frequencies will peak at
τ = 0 and become uncorrelated on a time scale proportional
to the inverse bandwidth. The theory shows good agreement
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FIG. 4. Correlator mode. Second-order correlations of the ion
arrival times, as measured for a BEC with 40×103 atoms while irra-
diating a phase correlated (corr.) or uncorrelated (uncorr.) microwave
noise of variable bandwidth (solid lines, from top to bottom: 200 Hz
correlated; 200 Hz, 1 kHz, 2 kHz, and 5 kHz uncorrelated). The
dashed lines show the theory from Eq. (7). The increase of the g(2)

correlation function on small time scales τ < 100 μs is due to laser
intensity noise on the ionization laser, which was verified from a
photodiode-based intensity measurement and subsequent correlation
analysis.

with the experiment, once V (t) is included. In the case of
randomly chosen phases φi , the maximum correlation value
amounts g(2)(0) = 2, similar to chaotic light in the Hanbury
Brown–Twiss experiment. The multifrequency outcoupling
with random phases thus generates a pseudothermal atom
distribution [18], which is expected to show bunching for
bosons at τ = 0. However, g(2)(0) drops if the bandwidth of
the microwave noise extends that of the visibility function. For
the BEC measurements in Fig. 4, the latter is mainly limited
by the 0.6-ms timing resolution of the ionization process,
leading to decreasing values g(2)(0) for noise bandwidths
larger than 1.7 kHz. Using phase-correlated noise, arbitrary
correlation values can be generated. The purple data set in
Fig. 4 shows the particle correlations for phase-correlated noise
with ν1 = 1 Hz, ν2 = 100 Hz, and the carrier frequency set to
the center of the cloud. This way, the condensate becomes
sensitive to both sidebands, which have a fixed phase relation
to each other. The measurement shows a maximum correlation
value of g(2)(0) > 2, as expected from theory. The deviation
of experiment from theory in the phase-correlated case is
likely due to additionally induced dynamics, which may result
from the local depletion of the condensate for sufficient high
outcoupling rates. With the fluctuations in the outcoupling
rate becoming stronger and stronger for increasing values of
g(2)(0), such processes are more likely to occur.

VI. CONCLUSION

We have demonstrated the local measurement of the
spectrum and correlations of a microwave field using ultracold
atomic quantum gases. The fluctuations of the field have been
transferred onto an atom laser, whose output is measured
with single-atom resolution. Analyzing the statistics of the
atom laser, we reconstructed the power spectral density and
the intensity correlations of the fluctuating electromagnetic
field. While power spectral densities can be measured with
resolutions down to the bandwidth of the atoms’ spectral
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response, intensity correlations are only limited by the
linewidth of the atomic transition. In its current realization
our detection scheme features a local sensitivity of few
10pT/

√
Hz [11] corresponding to a flux sensitivity in the

μ�0/
√

Hz regime, comparable to commercial squid magne-
tometers. In the future our scheme might be applicable to
study nonclassical noise [19–21] either via Raman induced
outcoupling with squeezed light or by measuring field noise
emitted from quantum electronic circuits, such as quantum
dots or single-walled carbon nanotubes. Quantum effects will
then show up either via antibunching in the correlation mode or
by asymmetries in the emission and absorption low-frequency
noise spectrum, which can be measured as sidebands on
the carrier frequency close to an atomic resonance [22].

A quantum galvanometer [8] comes thus in direct reach,
allowing to investigate quantum transport phenomena. Due
to the micrometer size of the quantum gas, such field noise
could be measured in the near field, i.e., on length scales much
smaller than the wavelength of the radiation field.
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