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Characteristic temperature for the immiscible-miscible transition of binary condensates in optical
lattices
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We study two-species Bose-Einstein condensates confined in quasi-two-dimensional (quasi-2D) optical lattices
at finite temperatures, employing the Hartree-Fock-Bogoliubov theory with the Popov approximation. We
examine the role of thermal fluctuations in the ground-state density distributions and the quasiparticle mode
evolution. At zero temperature, the geometry of the ground state in the immiscible domain is side by side. Our
results show that the thermal fluctuations enhance the miscibility of the condensates, and at a characteristic
temperature the system becomes miscible with rotationally symmetric overlapping density profiles. This
immiscible-miscible transition is accompanied by a discontinuity in the excitation spectrum, and the low-lying
quasiparticle modes such as slosh mode become degenerate at the characteristic temperature.
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I. INTRODUCTION

Ultracold atoms in an optical lattice offer fascinating
prospects to investigate many-body quantum physics of
strongly correlated systems in a highly controllable environ-
ment [1–4]. These systems are recognized as ideal tools to
explore new quantum phases [5–7], complex phase transitions
[8–11], quantum magnetism [12,13], and quantum information
[14] and to simulate the transport and magnetic properties of
condensed-matter systems [15,16]. Moreover, the effects of
phase separation [17,18], quantum emulsions and coherence
properties [19–21], and multicritical behavior [22,23] of the
mixtures have been explored in the past decade.

Among the various observations made in two-species Bose-
Einstein condensates (TBECs) of ultracold atomic gases, the
most remarkable is the phenomenon of phase separation, and
it has been a long-standing topic of interest in chemistry and
physics. For repulsive on-site interactions, the transition to the
phase-separated domain or immiscibility is characterized by
the parameter � = U11U22/U 2

12 − 1, where U11 and U22 are
the intraspecies on-site interactions and U12 is the interspecies
on-site interaction. When � < 0, an immiscible phase occurs
in which the atoms of species 1 and 2 show relatively strong
repulsion, whereas � � 0 implies a miscible phase [24–26]. It
is important to note that the mention criterion is valid at zero
temperature for homogeneous systems. The presence of an
external trapping potential, however, modifies this condition,
as the trap introduces an additional energy cost for the species
to spatially separate [27]. In experiments, the unique feature
of phase separation has been successfully observed in TBECs
with a harmonic trapping potential [28–30]. Previously, in
the context of superfluid helium at zero temperature, the
phase separation of bosonic mixtures of isotopes of different
masses has also been predicted in Refs. [31] and [32]. Recent
experimental realizations of TBECs in optical lattices, either
of two atomic species [33] or two hyperfine states of same
atomic species [34,35], provide the motivation to study these
systems in detail. In recent works, we have examined the
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miscible-immiscible transition, and the quasiparticle spectra
of the TBECs at zero temperature in quasi-one-dimensional
(quasi-1D) [36] and quasi-two-dimensional (quasi-2D) [37]
geometries. The finding in the latter work [37], where we
examined the nature of the density profiles in the immiscible
regime at zero temperature, is of relevance to the present
work. In addition, we showed how the optical lattice potential
influences the density profiles in the immiscible domain. The
other related study is the ground-state phase diagram, and the
effect of the filling factor of the TBECs on the phenomenon
of phase separation, which was investigated using quantum
Monte Carlo simulations [38,39]. In addition, phase separation
of TBECs at various length scales has been examined using the
multiorbital mean-field theory [40,41]. Among the full quan-
tum methods the multiconfigurational time-dependent Hartree
for bosons (MCTDHB) method provides a good description
of the formation of interference fringes in the densities during
the mixing of condensates [42,43]. This method allows the
dynamical creation of quantum superposition of states in
ultracold Bose gases [44]. In other theoretical studies, the
finite-temperature properties of TBECs have been explored
[45–47]. In continuum or TBECs with a harmonic confining
potential alone, we have explored the suppression of phase
separation due to the presence of thermal fluctuations [48].
However, a theoretical understanding of the finite-temperature
effects on the topology and the collective excitations of
TBECs in optical lattices is yet to be explored. Bose-Einstein
condensation and, hence, the coherence in a system of
bosons depend on the interplay between various parameters,
such as the temperature, interaction strength, confinement,
and dimensionality [49]. In particular, in low-dimensional
Bose gases, coherence can only be maintained across the
entire spatial extent at a temperature much below the critical
temperature. The coherence property, in experiments, has been
studied in recent works [50–54].

With attention to this unexplored physics, we study the
finite-temperature effects of quasi-2D trapped TBECs in
optical lattices. In the present work, we address the topological
phase transition in TBECs of two isotopes of Rb with
temperature as a control parameter in the domain T < Tc,
where Tc is the critical temperature of either of the species of
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the mixture. Here, it must be mentioned that in our previous
works [36,37], we investigated the ground-state density and
quasiparticles with variation in the on-site interaction energy
at zero temperature. In addition, we have examined the effect
of quantum fluctuations on the ground-state geometry and
collective excitations of quasi-1D TBECs. In the present work,
we examine the evolution of quasiparticle modes of TBECs
in quasi-2D optical lattices with variation in the temperature.
For this work, we use the Hartree-Fock-Bogoliubov (HFB)
formalism with the Popov approximation, and starting from
the phase-separated domain at zero temperature we increase
the temperature. We observe that there is an immiscible-to-
miscible transition of the TBEC at a characteristic temperature.
This transition is accompanied by a discontinuity in the
quasiparticle excitation spectrum, and in addition, some of
the modes like the slosh mode become degenerate. We then
compute the equal-time first-order spatial correlation function,
which is a measure of the coherence and phase fluctuations
present in the system. It describes the off-diagonal long-range
order, which is a defining feature of the BEC [55]. This is
an important theoretical tool to study many-body effects in
atomic physics experiments [56,57].

This paper is organized as follows. In Sec. II we describe
the HFB-Popov formalism and the numerical techniques used
in the present work. The evolution of the quasiparticle modes
and density distributions with the temperature is reported in
Sec. III. Finally, our main results are summarized in Sec. IV.

II. THEORY AND METHODS

A. HFB-Popov approximation for a quasi-2D TBEC

We consider a TBEC confined in an optical lattice with
a pancake-shaped configuration of the background harmonic
trapping potential. Thus, the trapping frequencies satisfy
the condition ω⊥ � ωz with ωx = ωy = ω⊥. In this system,
the excitation energies along the axial direction are high,
and the degree of freedom in this direction is frozen. The
excitations, both quantum and thermal fluctuations, are con-
sidered only along the radial direction. In the tight-binding
approximation [58,59], the Bose-Hubbard (BH) Hamiltonian
[60–62] describing this system is

Ĥ =
2∑

k=1

[
−Jk

∑
〈ξξ ′〉

â
†
kξ âkξ ′ +

∑
ξ

(
ε

(k)
ξ − μk

)
â
†
kξ âkξ

]

+ 1

2

2∑
k=1,ξ

Ukkâ
†
kξ â

†
kξ âkξ âkξ + U12

∑
ξ

â
†
1ξ â1ξ â

†
2ξ â2ξ , (1)

where k = 1,2 is the species index, μk is the chemical potential
of the kth species, and âkξ (â†

kξ ) is the annihilation (creation)
operators of the two species at the ξ th lattice site. The index
is such that ξ ≡ (i,j ), with i and j the lattice site index along
the x and y directions, respectively. The summation index
〈ξξ ′〉 represents the sum over the nearest neighbor to the
ξ th site. The tight-binding approximation is valid when the
depth of the lattice potential is much larger than the chemical
potential V0 � μk; the BH Hamiltonian then describes the
system when the bosonic atoms occupy the lowest energy
band. A detailed derivation of the BH Hamiltonian is given
in our previous works [36,37]. In the BH Hamiltonian, Jk

are the tunneling matrix elements, ε
(k)
ξ is the offset energy

arising due to the background harmonic potential, and Ukk

(U12) are the intraspecies (interspecies) interaction strengths.
In the present work all the interaction strengths are considered
to be repulsive, that is, Ukk,U12 > 0.

In the weakly interacting regime, under the Bogoliubov
approximation [63,64], the annihilation operators at each
lattice site can be written as â1ξ = (cξ + ϕ̂1ξ )e−iμ1t/h̄ and
â2ξ = (dξ + ϕ̂2ξ )e−iμ2t/h̄, where cξ and dξ are the complex
amplitudes describing the condensate phase of each of the
species. The operators ϕ̂1ξ and ϕ̂2ξ represent the quantum or
thermal fluctuation part of the field operators. Furthermore, we
consider the system in the superfluid domain where the mean-
field description is applicable, and accordingly, the parameters
satisfy the condition U/J � 16.7 [65–67]. In this domain,
the equation of motion of the condensate in an optical lattice
with the tight-binding approximation is reduced to the discrete
nonlinear Schrödinger equation (DNLSE). However, in the
Mott-insulator phase, U/J � 16.7, the mean-field description
breaks down, and a full quantum description is required
[68–70]. From the equation of motion of the field operators
with the Bogoliubov approximation, the equilibrium properties
of a TBEC is governed by the coupled generalized DNLSEs,

μ1cξ = −J1

∑
ξ ′

cξ ′ + [
ε

(1)
ξ + U11

(
nc

1ξ + 2ñ1ξ

) + U12n2ξ

]
cξ ,

(2a)

μ2dξ = −J2

∑
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dξ ′ + [
ε

(2)
ξ + U22

(
nc

2ξ + 2ñ2ξ

) + U12n1ξ

]
dξ ,

(2b)

where nc
1ξ = |cξ |2 and nc

2ξ = |dξ |2, ñkξ = 〈ϕ̂†
kξ ϕ̂kξ 〉, and

nkξ = nc
kξ + ñkξ are the condensate, noncondensate, and total

density of the species, respectively. The fluctuation operators
are defined in terms of the quasiparticles through the Bogoli-
ubov transformation

ϕ̂kξ =
∑
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[
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−iωl t − v∗l
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†
l e

iωl t
]
, (3)

where α̂l (α̂†
l ) are the quasiparticle annihilation (creation)

operators, which satisfy the Bose commutation relations, l is
the quasiparticle mode index, ul

kξ and vl
kξ are the quasiparticle

amplitudes for the kth species, and ωl = El/h̄ is the frequency
of the lth quasiparticle mode with El as the mode excitation
energy.

Using the Bogoliubov transformation, we obtain the HFB-
Popov equations [37]
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where U1 = 2U11(nc
1ξ + ñ1ξ ) + U12(nc

2ξ + ñ2ξ ) + (ε(1)
ξ −

μ1) and U2 = 2U22(nc
2ξ + ñ2ξ ) + U12(nc

1ξ + ñ1ξ ) + (ε(2)
ξ −

μ2) with U k = −Uk . To solve the above eigenvalue equation,
we use a basis set of on-site Gaussian wave functions and define
the quasiparticle amplitude as a linear combination of the basis
functions. The condensate and noncondensate densities are
then computed through the self-consistent solution of Eqs. (2)
and (4). The noncondensate atomic density at the ξ th lattice
site is

ñkξ =
∑

l

[(∣∣ul
kξ

∣∣2 + ∣∣vl
kξ

∣∣2)
N0(El) + ∣∣vl

kξ

∣∣2]
, (5)

where N0(El) = (eβEl − 1)−1 with β = (kBT )−1 is the Bose-
Einstein distribution factor of the lth quasiparticle mode
with energy El at temperature T . The last term in ñkξ is
independent of the temperature and, hence, represents the
quantum fluctuations of the system. To examine the role of
temperature we define the miscibility of the condensates in
terms of the overlap integral

	 = [
∫

n1(r)n2(r)dr]2[ ∫
n2

1(r)dr
][ ∫

n2
2(r)dr

] . (6)

Here, nk(r) is the total density of the kth condensate at position
r ≡ (x,y). If the two condensates of the TBEC have complete
overlap with each other, then the system is in the miscible phase
with 	 = 1, whereas for the completely phase-separated case
	 = 0. Using 	 as a measure we identify the miscible and
immiscible domains as a function of the temperature. As we
use the coupled DNLSEs to describe the TBEC, our study is
valid deep within the superfluid domain, and the mean-field
description would begin to deviate from the true results near the
superfluid–Mott-insulator phase transition. In this regime a full
quantum description [70] would be the appropriate method,
and the same applies to probing the nature of the quantum
phase transition [71–74]. It is well established that for some
parameter regimes, TBECs in optical lattices can be either the
superfluid phase of both species or the superfluid phase of one
species coexisting with the Mott-insulator phase of the other
[75–78].

B. Field-field correlation function

To define a measure of the coherence in the condensate
we introduce the first-order correlation function g

(1)
k (r,r′),

which can be expressed as expectations of the products of
field operators at different positions and times [79–82]. These
are normalized to obtain the unit modulus in the case of
perfect coherence or a system consisting of only condensate
atoms. Here, we restrict ourselves to ordered spatial correlation
functions at a fixed and equal time. In terms of the quantum
Bose field operator 
̂k the first-order spatial correlation
function is

g
(1)
k (r,r′) = 〈
̂†

k (r)
̂k(r′)〉√
〈
̂†

k (r)
̂k(r)〉〈
̂†
k (r′)
̂k(r′)〉

, (7)

where 〈· · · 〉 represents thermal average. It is important to note
that the local first-order correlation function is equal to the
density, i.e., g(1)

k (r,r) = nk(r). The expression of g
(1)
k (r,r′) can

also be written in terms of condensate and noncondensate
density correlations as

g
(1)
k (r,r′) = nc

k(r,r′) + ñk(r,r′)√
nk(r)nk(r′)

, (8)

where

nc
k(r,r′) = ψ∗

k (r)ψk(r′),

ñk(r,r′) =
∑

l

[{
u∗l

k (r)ul
k(r′) + v∗l

k (r)vl
k(r′)

}
N0(El)

+ v∗l
k (r)vl

k(r′)
]
,

nk(r) = nc
k(r) + ñk(r)

are the condensate density correlation, noncondensate density
correlation, and total density of the kth species, respectively.
In the above expressions, nc

k(r,r′) and ñk(r,r′) are obtained by
expanding the complex amplitudes (cξ ,dξ ) and the quasiparti-
cle amplitudes (ul

k,ξ ,v
l
k,ξ ) in the localized Gaussian basis. At

T = 0 K, the entire condensate cloud has complete coherence,
and therefore g

(1)
k = 1 within the condensate region. In TBECs,

the transition from the phase-separated to the miscible domain
at T �= 0 has characteristic signatures in the spatial structure
of g

(1)
k (r,r′).

C. Numerical methods

To solve the coupled DNLSEs, Eqs. (2), we scale and
rewrite the equations in the dimensionless form. For this
we choose the characteristic length scale as the lattice
constant a = λL/2, with λL the wavelength of the laser which
creates the lattice potential. Similarly, the recoil energy ER =
h̄2k2

L/2m, with m the atomic mass of the species and kL =
2π/λL, is chosen as the energy scale of the system. We use
the fourth-order Runge-Kutta method to solve these equations
for zero as well as finite temperatures. To initiate the iterative
steps to solve the equations appropriate initial guess values of
cξ and dξ are chosen. For the present work we chose values
corresponding to the side-by-side profile, as it gives quasiparti-
cle energies which are real and not complex. This is important,
as it shows that the solution we obtain is a stable one, and not
a metastable one. The stationary ground-state wave function
of the TBEC is obtained through imaginary-time propagation.
In the tight-binding limit, the width of the orthonormalized
Gaussian basis functions localized at each lattice site is 0.3a.
Furthermore, to study the quasiparticle excitation spectrum, we
cast Eqs. (4) as matrix eigenvalue equations, and diagonalize
the matrix using the routine ZGEEV from the LAPACK library
[83]. For finite-temperature computations, to take into account
thermal fluctuations, we solve the coupled equations, Eqs. (2)
and Eqs. (4), self-consistently. The solution of the DNLSEs
is iterated until it satisfies the convergence criteria in terms
of the number of condensate and noncondensate atoms. In
general, the convergence is not smooth, and most of the time
we encounter severe oscillations in the number of atoms. To
remedy these oscillations and attain convergence, we damp the
solution using the successive overrelaxation (underrelaxation)
technique while updating the condensate (noncondensate)

043602-3



K. SUTHAR AND D. ANGOM PHYSICAL REVIEW A 95, 043602 (2017)

atoms. Thus, the new solutions after an iteration cycle (IC)
are

cnew
ξ,IC = rovcξ,IC + (1 − rov)cξ,IC−1, (9a)

dnew
ξ,IC = rovdξ,IC + (1 − rov)dξ,IC−1, (9b)

ñnew
kξ,IC = runñkξ,IC + (1 − run)ñkξ,IC−1, (9c)

where rov > 1 (run < 1) is the overrelaxation (underre-
laxation) parameter. The choice of rov and run depend on
the temperature and interaction parameters. In general, our
observation is that the oscillations are more prominent at
higher temperatures, and hence, lower values of rov and run

must be chosen. This in turn implies that it takes a larger
number of iterations to get converged solutions at higher
temperatures.

III. RESULTS AND DISCUSSION

To examine the effects of thermal fluctuations on the
quasiparticle spectra we consider the 87Rb-85Rb TBEC with
87Rb labeled species 1 and 85Rb labeled species 2. The
radial trapping frequencies of the harmonic potential are
ωx = ωy = ω⊥ = 2π × 50 Hz with the anisotropy parameter
ωz/ω⊥ = 20.33, and these parameters are chosen based on
the experimental work of Gadway and collaborators [34] on
the TBEC of two hyperfine states of 87Rb in optical lattices.
It is important to note that we consider equal background
trapping potentials for species 1 and 2. We emphasize here
that the results are equally applicable to the case of the TBEC
consisting of two hyperfine states of 87Rb, however, we have
chosen 87Rb-85Rb to highlight that the small mass difference
has no influence on the geometry of the ground state. The
laser wavelength used to create the 2D lattice potential and
the lattice depth are λL = 1064 nm and V0 = 5ER , respec-
tively. We then take the total number of atoms as N1 = N2 =
100 confined in a 40 × 40 quasi-2D lattice system. It must be
mentioned that the number of lattice sites considered is much
larger than the spatial extent of the condensate cloud. Although
the computations require a longer time with the larger lattice
size, we chose it to ensure that the spatial extent of the thermal
component is confined well within the lattice considered. The
tunneling matrix elements are J1 = 0.66ER and J2 = 0.71ER ,
which correspond to an optical lattice potential with a depth
of 5ER . The intraspecies and interspecies on-site interactions
are set as U11 = 0.07ER , U22 = 0.02ER , and U12 = 0.15ER ,
respectively. For this set of parameters the ground-state density
distribution of 87Rb-85Rb TBEC is phase separated with side-
by-side geometry. This is a symmetry-broken profile where
one species is placed to the left and the other to the right of
the trap center along the y axis. The evolution of the ground
state from the miscible to the side-by-side density profile due
to a decrease in the U22 is reported in our previous work [37].
In the present work, we demonstrate the role of temperature in
the phase-separated domain of the binary condensate.

A. Zero temperature

At zero temperature, in the phase-separated domain, the
energetically preferable ground state of TBEC is the side-by-
side geometry, which is reported in our previous work [37].

FIG. 1. Density distribution for the condensate atoms of
87Rb-85Rb TBEC as a function of the temperature T/Tc. Density
profiles of the 87Rb (upper panel) and 85Rb species (lower panel)
are shown for T/Tc = 0, 0.08, 0.17, and 0.2. In the phase-separated
domain, the condensate density has side-by-side geometry at zero
temperature, and as the temperature is increased, there is a transition
to the miscible domain or the densities completely overlap at
Tch = 0.185Tc. Here x and y are measured in units of the lattice
constant a.

Unlike in the 1D system [36] in the quasi-2D system the
presence of the quantum fluctuations does not alter the ground
state. For the parameters chosen the 87Rb-85Rb TBEC is phase
separated, and the overlap integral has the value 	 = 0.10.
The density distributions of the condensate and noncondensate
atoms of the two species at zero temperature are shown in Fig. 1
and Fig. 2. This is a symmetry-broken side-by-side geometry
with noncondensate atoms more localized at the edges of the
condensate along the y axis.

B. Finite temperatures

At T �= 0, in addition to the quantum fluctuations, which are
present at zero temperature, the thermal cloud also contributes
to the noncondensate density. As shown in Figs. 1 and 2, at
T/Tc = 0.08, the condensate density profiles of both species
begin to overlap or, in other words, the two species are partly

FIG. 2. Density distribution for the noncondensate atoms of
87Rb-85Rb TBEC as a function of the temperature T/Tc. The non-
condensate density of the 87Rb (upper panel) and 85Rb (lower panel)
species are shown for T/Tc = 0, 0.08, 0.17, and 0.2. Noncondensate
atoms which are localized at the edges acquire rotational symmetry
in the miscible phase, which happens at Tch = 0.185Tc as the
temperature is increased. Here x and y are measured in units of
the lattice constant a.
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miscible. This is also evident from the value of 	 = 0.16,
which shows a marginal increase compared to the value of
0.10 at zero temperature. In the figures, the temperature is
defined in units of the critical temperature Tc of 87Rb atoms,
which for the parameters considered is 338 nK based on our
finite-temperature computations. This value of Tc is consistent
with the analytic expression for an ideal Bose gas in an optical
lattice [84],

Tc = mω2a2

2πkB

[
Nk

ζ (3/2)

]2/3

, (10)

where ω is the geometric mean of the three oscillator frequen-
cies, Nk is the number of atoms of the kth species and ζ (3/2) =
2.612 is the Riemann zeta function. In the presence of the
harmonic confinement, the repulsive interatomic interaction
reduces the density at the trap center and hence decreases Tc

[84]. Upon a further increase in temperature, at T/Tc = 0.18,
	 = 0.36, this indicates an increase in the miscibility of
the two species. Another important feature at T/Tc = 0.08
and 0.18 is the localization of the noncondensate atoms at
the interface. This is due to repulsion from the condensate
atoms and the lower thermal energy, which is insufficient to
overcome this repulsion energy. The transition to the miscible
domain occurs when the temperature exceeds the characteristic
temperature

Tch ≈
√

n1maxn2maxU12

kB

, (11)

where nkmax is the maximum density of the kth species.
At higher temperatures, the extent of overlap between the
condensate density profiles increases, and the TBEC is com-
pletely miscible at Tch = 0.185Tc ≈ 63 nK. This is reflected
in the value of 	 = 0.95, and the condensate as well as
the noncondensate densities acquire rotational symmetry.
The Tch at which this transition occurs corresponds to the
thermal energy kBTch = 0.72ER , which is comparable to the
interspecies interaction energy of 0.66ER . Albeit, we discuss
in detail the results for the parameters mentioned earlier, we
find similar trends in the immiscible-miscible transition for
different values of J ’s and U ’s. As is to be expected the only
change is that the Tch is lowered at a higher J . This is due to
the higher kinetic energy associated with a higher J ; hence the
atoms require less thermal energy to overcome the interspecies
repulsion energy for the transition to the miscible phase. In
terms of the interaction energies, the lower value of Ukk and
higher value of U12 increase the Tch of the TBEC.

The transition from the phase-separated to the miscible
domain can further be examined from the evolution of
the quasiparticle modes as a function of the temperature. The
evolution of the few low-lying mode energies with temperature
is shown in Fig. 3, where the temperature is defined in
units of Tc. It is evident from the figure that there are mode
energy bifurcations with the increase in temperature. These are
associated with the restoration of rotational symmetry when
the TBEC is rendered miscible through an increase in the
temperature.

As is to be expected the two lowest energy modes are
the zero-energy or the Goldstone modes, which are the
result of the spontaneous symmetry breaking associated with

0
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l
/
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BM, QM

FIG. 3. Evolution of the excitation energies of the low-lying
quasiparticle modes as a function of the temperature in 87Rb-85Rb
TBEC. The slosh and some of the other higher energy modes
become degenerate at Tch = 0.185Tc, where the density distribution
is transformed from phase-separated to the miscible profile. In the
plot, the slosh mode (SM), Kohn mode (KM), breathing mode (BM),
and quadrupole mode (QM) are shown by the black arrows. Here, the
excitation energy El and the temperature T are scaled with respect
to the recoil energy ER and the critical temperature Tc of the 87Rb
species, respectively.

condensation. In the phase-separated domain, these modes
correspond to one each for each of the species. The first two
excited modes are the nondegenerate Kohn or slosh modes
of the two species, and these remain nondegenerate in the
domain T < Tch. The structures of these modes are shown in
Figs. 4 and 5. When T � Tch as the TBEC acquires rotational
symmetry, the slosh modes becomes degenerate with π/2
rotation. A key feature in the quasiparticle mode evolution
is that the energy of all the out-of-phase modes increases for
T � Tch, whereas all the in-phase modes remain steady. Here,
out-of-phase and in-phase means that the amplitudes u1 and

FIG. 4. Quasiparticle mode function of the first excited mode
(slosh mode) as a function of the temperature for the 87Rb-85Rb
TBEC. The mode functions corresponding to the 87Rb and 85Rb
species are shown in the upper and lower panels, respectively. The
slosh mode is an out-of-phase mode where the density flows of the two
species are in opposite directions. As the TBEC acquires rotational
symmetry at Tch = 0.185Tc, the slosh mode is rotated by an angle
π/2 for T/Tc � 0.185. The value of T/Tc is shown in the top-left
corner of each plot in the upper panel. The spatial coordinates x and
y are in units of the lattice constant a.
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FIG. 5. Quasiparticle mode function corresponding to the second
excited mode (slosh mode), which becomes degenerate with the first
excited mode for T/Tc � 0.185. The mode functions of the 87Rb and
85Rb species are shown in the upper and lower panels, respectively.
The value of T/Tc is shown in the top-left corner of each plot in the
upper panel. Here x and y are in units of the lattice constant a.

u2 of a quasiparticle are of different and the same phases,
respectively. Among the low-energy modes, the Kohn mode
is in-phase, whereas the breathing and quadrupole modes are
out-of-phase in nature. One unique feature of the TBEC in
the immiscible phase is the presence of interface modes; these
have amplitudes prominent around the interface region. The
existence of these modes is reported in our previous work
[37] and was investigated in other works [85,86] for TBECs
confined in a harmonic potential alone at zero temperature. As
an example, one of the low-energy interface modes is shown in
Fig. 6. It is evident from the figure that the mode is out-of-phase
in nature, and it is transformed into the breathing mode in
the miscible domain when T � Tch. In the miscible domain,
the breathing mode becomes degenerate with the quadrupole
mode and gains energy. The quasiparticles of the miscible
domain have a well-defined azimuthal quantum number, and
modes undergo rotations as T is increased further.

To gain additional insight into the immiscible-miscible
transition, we consider other TBECs. In particular, we consider

FIG. 6. The quasiparticle mode function corresponding to the
interface mode in the phase-separated domain of 87Rb -85Rb TBEC
as a function of the temperature. This is an out-of-phase mode and the
mode function is more prominent at the interface region between the
condensates. For T/Tc � 0.185, when the TBEC acquires rotational
symmetry, this mode is transformed into the out-of-phase breathing
mode, where the mode functions are radially symmetric. The value of
T/Tc is shown in the top-left corner of each plot in the upper panel.
Here x and y are in units of the lattice constant a.

FIG. 7. Normalized first-order spatial correlation function
g

(1)
k (0,r) for 87Rb (upper panel) and 85Rb (lower panel) species at

T/Tc = 0, 0.08, 0.17, and 0.2. Here x and y are measured in units of
the lattice constant a.

Rb-Cs and Rb-K TBECs confined in quasi-2D optical lattices.
The details of the parameters chosen and discussion are given
in the Appendix. Starting from the immiscible domain we
analyze the ground state and the quasiparticle mode evolution
with increasing temperature. Based on the results we observe
that the trend in the evolution of low-lying quasiparticle modes
with the temperature is qualitatively similar to that of the
87Rb-85Rb TBEC. The condensate density profiles also exhibit
the same trend of transformation from immiscible side-by-side
geometry to the rotationally symmetric miscible profile. As is
to be expected, the value of Tch depends on the mass ratio;
this is due to the mass dependence of the interaction energy.
In particular, for Rb-Cs and Rb-K TBECs, the Tch values
are 0.62Tc and 0.53Tc, respectively. The thermal energies
corresponding to these temperatures are 2.15ER and 2.80ER ,
respectively. These are comparable to the interaction energies
of the TBECs, which are 1.97ER and 2.84ER , respectively.
Here Tc is the critical temperature of condensation for the
species with the lower value. In addition to the atomic mass of
the condensates, as mentioned earlier, the immiscible-miscible
transition also depends on the lattice parameters U and J .
For these two TBECs also we have examined the density
distributions with variation in the U and J parameters. We find
similar trends in the value of Tch as in the 87Rb-85Rb TBEC.
That is, a decrease in Tch with an increase in J and an increase
with lower and higher values of Ukk and U12, respectively.

To investigate the spatial coherence of TBEC at equi-
librium, we examine the trends in g

(1)
k (0,r) defined earlier

in Eq. (8) and shown in Fig. 7 for various temperatures.
As mentioned earlier, at zero temperature, nk(r) ≈ nc

k(r) has
complete phase coherence, and therefore, g

(1)
k = 1 within the

spatial extent of the condensates; this is shown in Fig. 7.
At zero temperature or in the limit ñk ≡ 0 the correlation
function, Eq. (8), resembles a Heaviside function, and the
negligible contribution from the quantum fluctuations smooths
out the sharp edges as g

(1)
k drops to 0. More importantly, in

the numerical computations this causes a loss of numerical
accuracy, as it involves the division of two small numbers in
Eq. (8) [87]. However, at a finite temperature the presence
of noncondensate atoms modifies the nature of the spatial
coherence present in the system. The decay rate of the
correlation function increases with the temperature, and this
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is evident in Fig. 7, which shows g
(1)
k (0,r) at T/Tc = 0.08,

0.17, and 0.2. In addition to this, the transition from the
phase-separated to the miscible TBEC is also reflected in the
decay trends of g

(1)
k (0,r).

IV. CONCLUSIONS

We have examined finite-temperature effects on the phe-
nomenon of phase separation in TBECs confined in quasi-2D
optical lattices. As the temperature is increased the phase-
separated side-by-side ground-state geometry is transformed
into the miscible phase. For the case of the TBEC comprised of
87Rb and 85Rb, the transformation occurs at the characteristic
temperature. This demonstrates the importance of thermal
fluctuations, which can make TBECs miscible. Based on the
present work, in general, the TBEC undergoes the transition
to the miscible phase at a characteristic temperature Tch. This
corresponds to the temperature at which the thermal energy
overcomes the interspecies repulsion energy

√
n1maxn2maxU12.

The other key observation is that the transition from the
phase-separated domain to the miscible domain is associated
with a change in the nature of the quasiparticle energies.
Low-lying out-of-phase modes, in particular, the slosh mode,
become degenerate and increase in energy. On the other hand,
in-phase modes, such as the Kohn mode, remain steady as the
temperature (T < Tc) is increased. Interface modes, which are
unique to the phase-separated domain, in addition to changing
in energy are geometrically transformed into rotationally
symmetric breathing modes in the miscible domain. The
temperature-driven immiscible-to-miscible transition is also
evident in the profile of the correlation functions.
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APPENDIX

Here, we provide brief descriptions of the computations
pertaining to the Rb-Cs and Rb-K TBECs confined in quasi-2D
optical lattices.

1. 87Rb-133Cs TBEC

We consider a 87Rb-133Cs TBEC containing 100 atoms of
each species confined in a 40 × 40 quasi-2D optical lattice
with a 1064-nm wavelength of the laser beams. The lower
number of atoms is chosen to improve the convergence of
finite-temperature computations, and at the same time it is
sufficient to provide a good description of the superfluid
phase of the TBECs. The radial trapping frequencies of the
external harmonic trapping potential are ωx = ωy = ω⊥ =
2π × 50 Hz, with the anisotropy parameter 20.33 [34]. The
tunneling matrix elements are J1 = 0.66ER and J2 = 1.70ER ,
corresponding to a depth of the optical lattice V0 = 5ER .
The lattice depth is considered such that the tight-binding
limit, V0 � μk , is valid. The large difference in the values
of Jk is due to the large mass difference between the atoms
of the two species. The intraspecies and interspecies on-site
interactions considered are U11 = 0.96ER , U22 = 0.42ER ,
and U12 = 1.2ER . These DNLSE parameters are derived from
the intra- and interspecies scattering lengths of the species,
the trap parameters, and the width of the Gaussian basis,
which is 0.3a. At zero temperature, the ground state of
the TBEC has side-by-side geometry with 	 = 0 [37]. As
in the case of 87Rb-85Rb, as the temperature of the TBEC
is increased (T < Tc), the system is transformed into the
miscible phase. In addition, we have observed a bifurcation
in the energy of the slosh mode, and the mode becomes
degenerate with a discontinuity in the quasiparticle spectra
at Tch = 0.62Tc ≈ 140 nK.

2. 87Rb-41K TBEC

In the case of the 87Rb-41K TBEC, the wavelength of the
laser beams and the number of atoms are considered the
same as in the case of the 87Rb-133Cs TBEC. The radial
trapping frequencies are ωx = ωy = ω⊥ = 2π × 100 Hz, with
the anisotropy parameter 1.40 [88]. The tunneling matrix
elements are J1 = 0.66ER and J2 = 2.84ER , corresponding
to a 5ER lattice depth. The intraspecies and interspecies on-site
interactions considered are U11 = 0.20ER , U22 = 0.06ER ,
and U12 = 0.60ER . The set of parameters is chosen such that
the density profile of the TBEC is immiscible and has side-by-
side geometry at zero temperature. As in the previous cases, the
geometry of the TBEC is transformed from the side-by-side
type to the rotationally symmetric overlapping profile and the
slosh mode becomes degenerate at Tch = 0.53Tc ≈ 278 nK.
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