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Ground-state properties of Ca2 from narrow-line two-color photoassociation
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By two-color photoassociation of 40Ca four weakly bound vibrational levels in the Ca2 X 1�+
g ground-state

potential were measured, using highly spin-forbidden transitions to intermediate states of the coupled system 3�u

and 3�+
u near the 3P 1 + 1S0 asymptote. From the observed binding energies, including the least bound state, the

long-range dispersion coefficients C6,C8,C10 and a precise value for the s-wave scattering length of 308.5(50)a0

were derived. From mass scaling we also calculated the corresponding scattering length for other natural isotopes.
From the Autler-Townes splitting of the spectra, the molecular Rabi frequency has been determined as a function
of the laser intensity for one bound-bound transition. The observed value for the Rabi frequency is in good
agreement with calculated transition moments based on the derived potentials, assuming a dipole moment being
independent of internuclear separation for the atomic pair model.
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I. INTRODUCTION

Photoassociation (PA) of ultracold atoms is a valuable
tool to accurately determine interatomic interactions, to create
ultracold molecules [1], or to modify their scattering properties
by optical Feshbach resonances [2]. In the PA process two
atoms collide in the presence of a light field, inducing
transitions from the atom-atom scattering continuum to bound
molecular states at relatively large internuclear distances R.
Therefore, the PA process is sensitive to the long-range parts
of the interaction potentials. Two-color PA via an excited
molecular state to states in the ground molecular potential
allows probing the interaction of two atoms in their electronic
ground states. It has been used with great success for the
investigation of binding energies and scattering lengths of
alkaline atoms Li [3], Na [4], K [5], Rb [6], Cs [7], and more
recently for systems with two valence electrons He∗ [8], Sr
[9], and Yb [10].

In this paper we report on the first two-color PA of the
alkaline-earth isotope 40Ca. It has an electronic structure
similar to Sr and Yb but for the atomic intercombination line
a much narrower width of 374 Hz [11] compared to 7 kHz in
Sr or 182 kHz in Yb. Due to its relatively simple electronic
structure calcium is a good model system to investigate the
theoretical predictions for line shape and rate of collisions in
the presence of laser fields given by the model of Bohn and
Julienne [12,13]. We have measured the four least bound states
(v = 40,J = 0; v = 39,J = 0,2; v = 38,J = 2) in the 40Ca2

X 1�+
g ground-state potential using strongly spin-forbidden

intercombination transitions to intermediate states near the
1S0 + 3P1 asymptote (Fig. 1).

Our measurements complement the short-range ground-
state potential determined by molecular spectroscopy [14] that
provided information about the interaction potential up to 2 nm
internuclear separations.

The observed levels with binding energies between
1.6 MHz and 8.2 GHz with respect to the 1S0 + 1S0 asymptote
can be used to precisely determine the long-range behavior of

*Corresponding author: veit.p.dahlke@ptb.de

the interaction potential and to extract the s-wave scattering
length a that plays a key role for the elastic scattering properties
of 40Ca at ultralow temperatures [15]. In a complementary
measurement we have determined the molecular dipole matrix
element for one transition between vibrational states in the
electronically excited and the ground-state potential from the
Autler-Townes splitting created by coupling of these states
with a resonant laser field.

II. EXPERIMENTAL SETUP

Samples of bosonic 40Ca atoms are prepared at ultralow
temperatures by two subsequent stages of magneto-optical
traps (MOT) using the broad singlet 1S0 - 1P1 and the strongly
forbidden intercombination 1S0 - 3P1 transitions [16]. During
the cooling phases the atoms at a temperature of 10 μK
are accumulating in a crossed dipole trap [15]. Following
the MOT phases the temperature of the atoms in the dipole
trap is further reduced by forced evaporative cooling, ramping
down the dipole trap depth. About 2 × 105 atoms remain at
a final temperature of T ≈ 1 μK and a maximum density of
ρ ≈ 1019 m−3 in the crossing region of the dipole trap beams
for the experiments described here. Two PA lasers precisely
tunable in the range of up to −1.4 GHz and −40 GHz relative
to the atomic resonance irradiate the atomic cloud. Both lasers
have a narrow linewidth �ν ∼ 1 Hz realized by an offset phase
lock to an extended cavity diode laser, which is stabilized by the
Pound-Drever-Hall method [17] to a high-finesse ULE cavity
[18]. Thus the difference frequency between the PA lasers
inherits the narrow linewidth, enabling ultrahigh resolution
two-color PA spectroscopy.

The output power of both PA lasers is amplified by a system
of injection-locked slave lasers. The spectral purity of the
difference frequency between both PA lasers was determined
from an independent beat of both lasers, which indicates
about 90% power in a sub-hertz-linewidth coherent peak. The
remaining power is contained in the servo peaks of the phase
lock within a bandwidth of 250 kHz. Both PA light sources are
coupled to the same single-mode optical fiber to ensure that
they irradiate the atomic cloud with a power of up to 20 mW
from the same direction, suppressing Doppler broadening in
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FIG. 1. Schematic overview of the two-color PA process featuring
the involved molecular potentials of Ca2, using intermediate states
near the 1S0 + 3P1 asymptote (λ = 657 nm).

the recorded spectra. Both beams are linearly polarized parallel
with respect to an applied magnetic field of B = 285 μT and
focused to 1/e2 beam waist radii ω0 = 50 μm at the location
of the atom cloud. We are using PA irradiation times of up
to 200 ms and maximum intensities of I1 = 250 W cm−2 and
I2 = 100 W cm−2 for the lasers driving the free-bound and the
bound-bound molecular transition, respectively. Depending
on the measurement configuration one of the PA lasers is
scanned and the induced loss of atoms from the dipole trap
is determined from absorption images using the 1S0-1P1 singlet
transition.

III. SIGNAL MODELING

Theoretical line shape

The PA spectra are evaluated using the theoretical model
developed by Bohn and Julienne [12,13]. It considers a pair of
colliding atoms with a kinetic energy ε of the relative motion
in the presence of two light fields with frequency ω1 and ω2,
respectively (see Fig. 1). In the following all frequencies are
expressed in angular frequencies if not noted otherwise.

The light field with frequency ω1 is tuned closely to
a molecular transition frequency which couples an excited
rovibrational state |1〉 to the scattering state |ε〉. The detuning
from this intermediate state is �1, i.e., for �1 = 0 the light
field is in resonance with the free-bound transition for ε = 0
(see Fig. 1).

The second laser frequency ω2 drives the bound-bound
transition between states |1〉 and |2〉. The two color detuning
with respect to the ground-state bound level located h̄�b < 0
below the ground-state asymptote is given by �2 = �b −
(ω1 − ω2). The two-color resonance at ε = 0 corresponds to
�2 = 0.

Generally, the lifetime of the bound state |2〉 is much
longer than the one of the intermediate state. Thus, on
the two-color resonance, the main loss mechanism proceeds
through excitation to the intermediate state |1〉, from where the
photoassociated molecules decay spontaneously and produce
atoms with high enough energy to escape from the dipole trap.

For samples at μK temperatures only s-wave scattering is
relevant, and the probability for a two-color PA loss from the
input scattering channel |ε〉 to the excited state |1〉 is given by
the squared scattering matrix element |Sε1|2 [13]1:

|Sε1|2 = γ1�stim�′
2

2

(
�′

1�
′
2 − �2

12/4
)2 + [(γ1 + �stim)�′

2/2]2
, (1)

with �′
2 = �2 − ε/h̄ and �′

1 = �1 − ε/h̄ + δ1. Here γ1

denotes the total decay rate of the upper molecular state,
including not radiative decay channels; h̄δ1 corresponds to
the light shift of the molecular level |1〉 induced by laser 1.
The coupling by the laser fields is described as time-dependent
interaction −d(R) · Ei(t) = V

(i)
opt cos(ωit), where the constant

optical potential V
(i)

opt denotes the amplitude of the harmonic
perturbation, d(R) the molecular transition dipole operator,
and Ei(t) = Ei cos(ωit) the electric field of laser (i) with
amplitude Ei = √

2Ii/ε0c. Hence we obtain the molecular
Rabi frequency

�12 = 1

h̄

〈
1
∣∣V (2)

opt

∣∣2〉
(2)

for a transition between states |1〉 and |2〉, which will
be explained in greater detail in Sec. VI. The free-bound
excitation by laser 1 from the energy-normalized continuum
state |ε〉 to state |1〉 according to Fermi’s golden rule the
harmonic perturbation induces a stimulated rate [19]:

�stim = π

2h̄

∣∣〈1∣∣V (1)
opt

∣∣ε〉∣∣2
. (3)

Under the assumption that d(R) is only weakly depending on
the internuclear separation R at long range, the total radiative
decay rate of the atom pair considered here is twice the atomic
decay rate γatom, and the stimulated rate can be expressed
as [20]

�stim = γatom
3I1c

2π2

ω3
fROTfFCD, (4)

where fROT contains the factor of 2 between atom pair
and atomic decay rate, the polarization dependence, and the
Hönl-London factor. fFCD = |〈1|ε〉rad|2 is the Franck-Condon
density between the energy-normalized scattering state |ε〉 and
the bound state |1〉, where the subscript indicates that only
the radial component is taken into account. ω is the atomic
transition frequency and I1 the laser intensity. At low energy ε

the Wigner threshold law applies, which allows one to express
�stim as

�stim = 2kloptγ1, (5)

with an energy-independent optical length lopt(I1), the scat-
tering wave number k = (2με)1/2/h̄, and the reduced mass μ

of the calcium dimer. The inelastic loss coefficient K for a
thermal sample at temperature T is the thermal average

K = 1

hQT

∫ ∞

0
e−ε/kBT |Sε1|2dε, (6)

1Note that the Rabi frequency �12 differs from the formula given in
[13]. Our definition follows the convention in [19] representing the
frequency for transferring amplitude between the two bound states.
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where QT = (2πμkBT /h2)3/2 denotes the partition function
for free particles. The total loss of atoms, assuming that all
molecules photoassociated to state |1〉 will decay to unbound
atom pairs with enough energy to leave the dipole trap, can be
described by the differential equation:

ρ̇ = −αρ − 2Kρ2, (7)

where ρ denotes the local density of atoms inside the trap, α the
loss coefficient from collisions with background gas, and K

the loss coefficient for PA-induced losses. In our experiment
only short irradiation times τ compared to the unperturbed
trap lifetime α−1 were used; thus inelastic scattering with
background gas can be neglected, i.e., α ≈ 0. In this case, the
differential equation (7) can be integrated across the trapping
volume to give the atom number N (t) assuming that the initial
thermal Gaussian distribution remains Gaussian throughout
the PA process. The differential equation for the total number
of atoms can then be solved:

N (τ ) = N0

1 + 2τN0K/(
√

8Veff)
, (8)

with an effective trap volume

Veff = 1

ωxωyωz

(
2πkBT

mCa

)3/2

and trap frequencies ωi (i = x,y,z).
In the so-called Raman configuration for two-color PA the

laser driving the free-bound transition is far detuned from
the intermediate molecular level, i.e., �1 
 (γ1,�stim,�12).
Under these conditions a maximum of the matrix element
|Sε1|2 is located at �′

2 = �2
12

�′
1

. Expressing Eq. (1) in terms of

the detuning from this maximum, i.e., �′′
2 = �′

2 − �2
12

�′
1

, and
assuming to stay in the vicinity of the maximum far away

from the minimum at �′
2 = 0 (|�′′

2| � |�2
12

�′
1
|), the individual

line shape for a fixed collision energy can be approximated by
a Lorentzian:

|Sε1(�2)|2 ≈ A

(�2 − ε/h̄ + δshift)2 + (�L/2)2
, (9)

with parameters A, δshift, �L, which are related to the experi-
mental parameters:

�L = �2
12(�stim + γ1)

4(�1 − ε/h̄ + δ1)2
, (10)

δshift = �2
12

4(�1 − ε/h̄ + δ1)
, (11)

A = �stimγ1�
4
12

16(�1 − ε/h̄ + δ1)4
. (12)

In the Raman configuration as used in our setup the deviation
between the approximation and the true individual line shape is
only marginal and thus can be neglected when performing the
thermal averaging over collision energies ε. When applying
Eqs. (10), (11), and (12), we neglect the kinetic energy ε in
the denominator, because its contribution is small compared
to �1 + δ1. This approximation allows an efficient modeling
of the thermally broadened measured spectra (see Fig. 2)
as applied in Sec. IV. Similar to one-color PA [21], the fit
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FIG. 2. Atom loss from the crossed dipole trap due to two-color
PA spectroscopy as a function of the difference of the two laser
frequencies for the most weakly bound molecular state in the
ground-state potential X 1�+

g v2 = 40; J2 = 0 using v1 = −1; J1 =
1 in c(0+

u ) as the intermediate level. Spectra for three different PA
intensities are shown together with their respective fit curves and
their derived resonance position indicated by vertical lines. The
green dots and the vertical dotted line correspond to I1 = 45 W cm−2

and I2 = 18 W cm−2, black diamonds and the vertical dashed line
to I1 = 118 W cm−2 and I2 = 18 W cm−2, red triangles and the
dashed-dotted line to I1 = 45 W cm−2 and I2 = 14 W cm−2. The
solid line at −1.601 MHz indicates the unperturbed binding energy.

approximates the integral of the thermal average [Eq. (6)] by
a sum of lines evenly spaced by δε ≈ h̄�L/3,

K ≈
N∑

n=0

e−n δε/kBT |Sε1|2 δε. (13)

The number N of summation intervals has to be large enough
to cover the entire line profile and is mostly depending on the
temperature of the sample.

IV. MEASUREMENTS RESULTS

Ground-state binding energies

We have observed two-color PA spectra of four weakly
bound molecular states |2〉 in the potential X 1�+

g via interme-
diate bound states |1〉 of the two excited states denoted a 3�+

u

and c 3�u in Hund’s coupling case (a). Near the 3P1 + 1S0

asymptote the spin-orbit interaction becomes dominant and the
adiabatic potentials are more accurately described by Hund’s
case (c) potentials c 0+

u and (a,c)1u being a strong mixture of
the two case (a) states (Fig. 1). In the experiment we have
used v1 = −1,J1 = 1,� = 1 and v1 = −1,J1 = 1,� = 0
[22] as intermediate states from which laser 1 was detuned
by �1/2π ≈ ±1 MHz. Here J denotes the total angular
momentum of the respective state. The PA lines were then fitted
using the procedure described before to assess the resonance
frequency at zero-collision energy, i.e., ε = 0.

Three spectra of the most weakly bound state v2 = 40;
J2 = 0 in X 1�+ for different experimental parameters and
their respective fitted line shapes are shown in Fig. 2. Their
characteristics shall be discussed in the following. The level
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FIG. 3. Measured resonance position of v = 40, J = 0 depend-
ing on the free-bound PA laser intensity I1. The solid red line
shows a linear extrapolation to zero intensity, while the green dotted
lines give the 1σ -uncertainty interval. Measurements were taken at
I2 = 18.3 W cm−2 and IDT = 44.2 W cm−2.

v1 = −1; � = 0 has been used as the intermediate level
in the Raman configuration PA with the large detuning
�1/2π ≈ +1 MHz. All spectra were taken at a temperature of
T = 1.15 μK determined from time-of-flight measurements.
They all show the typical asymmetric thermal broadening
that is a characteristic feature of photoassociation spectra
when the mean kinetic energy is large compared to the
width of the excited level. If we used the energy dependence
of �L in Eq. (10) through �stim according to Eq. (5) and
assumed γ1 = 2γatom during the fitting procedure we obtained
nonphysical values for the set of parameters {T ,�12,lopt}. This
behavior points towards a larger effective decay rate γ1. A
similar effect of enlarged molecular decay rates has been
reported for PA spectra of 88Sr [23]. To compensate for this we
use an energy-independent effective linewidth �L for a given
experimental condition defined by the intensities of laser 1 and
2, detuning �1, and temperature T . For the fit of the profiles
according to Eq. (13) we represent the squared matrix element
|Sε1|2:

|Sε1(ω1 − ω2)|2 ≈ Aeff√ε[−(ω1 − ω2) − ε/h̄ − �eff
b

]2 + (�L/2)2
,

(14)

with effective fit parameters �eff
b that contains light shifts

induced by the spectroscopy and trapping lasers (compare
Figs. 3, 4, and 5) and Aeff = A/

√
ε to account for the

energy dependence of the stimulated rate in A. Increasing
the free-bound intensity I1 from the green (circles) to the
black (diamonds) curves in Fig. 2 leads to a considerable light
shift of the resonance position. The linewidth �L increases
from 6.0 kHz to 9.2 kHz, while the temperature derived
by the fit remains nearly constant about 20% below the
value determined from the time-of-flight measurement. This
behavior is connected to the change in the stimulated rate in
Eq. (4) or Eq. (5) and to an increased light shift δ1, leading to
a broader individual linewidth.

FIG. 4. Measured resonance position of v = 40, J = 0 depend-
ing on the bound-bound PA laser intensity I2. The solid red line
shows a linear extrapolation to zero intensity, while the green dotted
lines give the 1σ -uncertainty interval. Measurements were taken at
I1 = 45.0 W cm−2 and IDT = 44.2 W cm−2.

In the same way a decrease of bound-bound laser intensity
between the green (dots) and red (triangles) data points leads
to a decrease of �L from 6.0 kHz to 4.3 kHz. This is consistent
with a reduced molecular Rabi frequency �12 that also shifts
the resonance position according to Eq. (11). The fit correctly
reproduces the theoretical expectations regarding individual
PA linewidth and PA rates as a function of increasing PA
intensities I1,I2. The sample temperature determined by the fit
is slightly underestimated.

Experimental noise near the steep edge in the spectra
can have enormous impact on some of the fit parameters.
Fortunately, the resonance position determined by the fit is
very robust against changes in �L,�eff

b ,Aeff,T and is mostly
determined by the steep edge, that is only a few kHz wide

FIG. 5. Measured resonance position of v = 40, J = 0 depend-
ing on the dipole trap laser intensity IDT. The solid red line shows
a linear extrapolation to zero intensity, while the green dotted
lines give the 1σ -uncertainty interval. Measurements were taken at
I1 = 45.0 W cm−2 and I2 = 18.3 W cm−2.
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TABLE I. Binding energies h̄�
exp
b with corrections and corresponding uncertainties. All values are given in kHz.

Bound level v = 38 J = 2 v = 39 J = 0 v = 39 J = 2 v = 40 J = 0
Intermediate state v1 = −1 � = 0 v1 = −1 � = 1 v1 = −1 � = 1 v1 = −1 � = 0
Detuning �1/(2π ) −1 101(10) −1 001(10) 1 016(10) −1 001(10) −924(10) +900(10) +978(10)

ac Stark free-bound laser 1(2) 0(10) −1(6) 0(3) 0(5) −24(24) 22(4)
ac Stark bound-bound laser 4(2) 30(5) −9(5) 9(3) 8(3) −10(2) −6(2)
ac Stark dipole trap 1(3) −17(17) −4(4) 0(4) 0(3) 0(3) −3(3)
Extrapolated position −8 218 897(4) −1 387 457(20) −1 387 439(9) −1 005 369(6) −1 005 361(7) −1 005 379(24) −1 601(6)

Weighted average −8 218 897(4) −1 387 442(8) −1 005 366(5) −1 601(6)
Systematic uncertainty 0(3) 0(3) 0(3) 0(3)

Unperturbed energy �
exp
b /(2π ) −8 218 897(5) −1 387 442(9) −1 005 366(6) −1 601(7)

Calc. energy �calc/(2π ) −8 218 896 −1 387 437 −1 005 372 −1 599

(see Fig. 2). Thus the zero-energy resonance position of the
molecular level can be determined with high reliability.

In addition to the thermal shift, the observed line is also
shifted due to the ac Stark effects from the two PA lasers
and from the trapping laser and should be contained in the
parameter �eff

b . These shifts were determined independently
by extrapolation to zero laser intensity from a series of
measurements for different intensities as shown in Figs. 3, 4,
and 5 to reduce the model dependence from the representation
of |Sε1|2 and to take into account the effect by the trapping laser
when deriving the desired binding energies from resonance
positions.

An overview of all considered corrections on the final
resonance position and their respective uncertainties is given in
Table I. An additional uncertainty contribution of the ac Stark
shift by laser 2 arises according to Eq. (11) by the detuning of
the intermediate level. Multiple measurements with detuning
�1/2π in the range ±(400–1000)kHz indicate an uncertainty
of 1 kHz for the resonance position.

As mentioned above, the fit routine underestimates the
temperature of the atomic sample by about 20% compared
to the temperature from time-of-flight measurements. We
account for this deviation by an uncertainty of the derived
binding energy of 0.1ε/h̄ ≈ 2 kHz (see Table I).

We estimate the combined uncertainty of the aforemen-
tioned sources combined with other sources of technical nature
to be 3 kHz. Among these are small nonlinearities of the atom
number estimation from the absorption imaging, variations of
dipole trap power and the ramp procedure for the evaporation
cooling, residual contributions of unwanted frequencies stem-
ming from the offset-locking of the spectroscopy lasers, and
residual magnetic fields.

The unperturbed binding energies h̄�
exp
b including all

corrections and uncertainties are shown in Table I.

V. MOLECULAR POTENTIALS

Molecular potentials are needed for the prediction of
binding energies, calculating Franck-Condon densities (FCD)
in Eq. (4), and modeling bound-bound transitions with appro-
priate Franck-Condon factors (FCF).

The excited-state potentials at the asymptote 3P1 + 1S0 were
determined in [22] and the vibrational levels are represented
by a multicomponent wave function, which we will describe
most conveniently for the calculation of the electric dipole

transition by the Hund’s case (e) basis |1S0 + 3Pj ,l,J 〉. The
first part of the basis vector describes the relevant atom
pair asymptote with the total atomic angular momentum j ,
l the angular momentum of the pair rotation, and J the total
angular momentum. Because the starting level in the present
experiment is always the s-wave continuum, corresponding to
J = 0 and parity +, we have only to consider the excited levels
J = 1, parity −, thus only the three possible basis states

|1S0 + 3P1,0,1〉, (15)

|1S0 + 3P1,2,1〉, (16)

and |1S0 + 3P2,2,1〉. (17)

Because of the electric dipole selection rule �l = 0 from
the calculated eigenstates for J = 1 only the component
|1S0 + 3P1,0,1〉 is needed for the calculation of the Franck-
Condon densities with the continuum |1!S0 + 1S0,0,0〉. The
first or second component [Eqs. (16), (17), respectively] were
used for the Franck-Condon factors with the bound levels
|1S0 + 1S0,0,0〉 (J = 1 → 0 transition) or |1S0 + 1S0,2,2〉 (J =
1 → 2 transition), respectively.

The molecular ground-state potential X 1�+
g is based on

spectroscopic measurements by [14] for the short-range part
and on the new data for the long-range branch as described by
the conventional power expansion in 1/R

VX = −f6(R)
C6

R6
− C8

R8
− C10

R10
. (18)

By the function f6(R) we apply the retardation correction
as calculated by Moszynski et al. [24], which turned out to
be essential for describing the asymptotic levels within their
experimental uncertainty. This correction is only significant
to the first term in the equation due to the very long-range
nature of the van der Waals interaction. An additional exchange
term is regularly used in the mathematical representation of
the long-range potential. Such a term is not needed for the
description in our case, due to the van der Waals term being
large compared to a possible exchange energy in the range
R > 1.1 nm in which Eq. (18) is applied.

In a least squares fit of all known data for the ground
state (in total 3586 data points) the long-range parameters
were varied including as additional condition the theoretical
coefficients Ci for i = 6,8,10 [25–27,29] applying their

043422-5



PACHOMOW, DAHLKE, TIEMANN, RIEHLE, AND STERR PHYSICAL REVIEW A 95, 043422 (2017)

TABLE II. Comparison of long-range parameters at the asymp-
tote 1S0 + 1S0 derived in this work with experimental results from
Allard et al. [14] and theoretical results from Ciuryło et al. [25],
Porsev et al. [26], and Mitroy and Zhang [27]. No error limits
are given for the individual long-range parameters from this work
because of significant correlation between these parameters. The full
set of long-range parameters should always be applied for model
calculations.

C6 C8 C10

Ref. 107 cm−1Å
6

108 cm−1Å
8

109 cm−1Å
10

[14] 1.0023 3.808 5.06
[25] 1.003
[26] 1.022 3.010 8.057
[27] 1.055 3.060 8.344
This work 1.0348 2.997 10.88

estimated uncertainties from the calculation as weights in the
fit. The fit reveals in total a reduced χ2 = 0.58; a good fit
should result to values close to one, if the applied uncertainties
are well justified and the theoretical model is appropriate.
Thus we obtain a very satisfactory result. Trying combinations
of C6, C8, and C10, we see the statistically allowed spread
of the coefficients with their correlation and conclude that
the accuracy of the derived C6 values is about 3% and that
of C8 is about 15%, but the total long-range function will
be much better in the range R > 1.6 nm because of the
correlation between the parameters. The fit also includes the
data from Fourier transform spectroscopy [14], which reach
the long-range region by high vibrational states. Thus the fit
also slightly changes the inner part of the potential.

In detail, the spectroscopic data from [14] are represented
within their respective experimental uncertainty, and the
binding energies of the asymptotic levels in the last line of
Table I are within their assumed uncertainties; only level
v = 39, J = 2 touches the upper edge. The derived long-range
parameters are shown in Table II and are compared with
earlier results from experiment and theory. With this improved
potential representation the uncertainty of the calculated
scattering length a = 308.5(50)a0 decreases by more than
a factor of 10 compared to former results (Table III). The
remaining uncertainty originates to a significant part from the
correlation between the long-range parameters C6,C8,C10. A
much denser set of eigenvalues at the ground-state asymptote
would be required to break this correlation. Because the last
bound state is very close to the asymptote, namely −1.6 MHz,
we compared our scattering length a to a simple semiclas-

TABLE III. 1S0 + 1S0 scattering length a of 40Ca in comparison
with experimental results; a0 ≈ 53 pm denotes the Bohr radius.

Method a/a0

Molecular spectroscopy [14] 200–800
1S0 + 1P1 photoassociation [28] 340–700
BEC mean field [15] ≈440
This work 308.5 (50)

TABLE IV. Scattering length a of homonuclear pairs for different
natural isotopes of calcium; a0 ≈ 53 pm denotes the Bohr radius.

Isotope a/a0

40Ca 308.5 (50)
42Ca 297 (6)
43Ca 43.7 (10)
44Ca 399 (7)
46Ca 1970 (20)
48Ca −281 (10)

sical approximation between binding energy and scattering
length [30],

a ≈ ā + h̄√
2μEb

, (19)

where ā is the background scattering length, μ the molecular
reduced mass, and Eb the binding energy. ā depends on the
long-range form of the potential. Using only the C6 value from
Table III one calculates ā = 53.4a0, and with our measured
binding energy one obtains a = 291a0, which comes close
to the value obtained from the full potential. The difference
indicates that Eb is still not small enough to accurately estimate
the scattering length using this approximation.

From mass scaling we also calculate the scattering length
of other natural isotopes of calcium as shown in Table IV
using the full potential of X 1�+

g . To account for possible
corrections to the assumed Born-Oppenheimer approximation
we enlarged the estimated uncertainty for the unobserved
isotope combinations in Table IV.

Scattering lengths for other isotopes of Ca are reported
[31,32] using earlier experimental results on 40Ca from our
group [14,15]; thus these values suffer from the lower precision
of those data.

The newly determined potential was applied to calculate
the desired FCD and FCF (see Table V) for evaluation of
the spectroscopic observations as detailed in Sec. III and the
following paragraph.

TABLE V. Calculated Franck-Condon factors fFCF for transitions
from bound levels (v1,J1 = 1) of the states � = 1u and 0+

u of the
coupled system a 3�+

u and c 3�u to bound levels (v2,J2 = 0,2) of
the ground state X 1�+

g . The last line gives the fraction of excited
molecules decaying back to continuum states near the ground-state
asymptote with J = 0,2.

� 0 1 0 1 0 1
J2 v2 \ v1 −1 −1 −2 −2 −3 −3

0 40 0.02 <10−2 <10−3 <10−2 <10−3 <10−3

2 39 0.38 0.15 0.25 0.04 0.03 0.02
0 39 0.06 0.54 0.12 0.15 0.01 0.04
2 38 <10−2 <10−4 0.23 0.12 0.40 0.13
0 38 <10−2 <10−2 0.07 0.29 0.17 0.33
2 37 <10−3 <10−6 <10−2 <10−3 0.13 0.06
0 37 <10−3 <10−3 <10−2 <10−2 0.05 0.13

Cont. 0.53 0.30 0.31 0.39 0.17 0.27
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VI. AUTLER-TOWNES SPECTRA AND MOLECULAR
DIPOLE MATRIX ELEMENT

We have also used a different configuration of PA laser
detunings, where the bound-bound laser was tuned to reso-
nance, i.e., �2 − �1 ≈ 0, and instead the free-bound laser
was scanned across the excited-state resonance. Through
coupling of the two bound states by the resonant light field
dressed states are created that lead to two resonances: the
Autler-Townes doublet [33]. The two resonances are separated
by the molecular Rabi frequency �12:

�12 =
√

fROT

√
fFCF

√
γatom

√
I2

6c2π

ω3h̄
. (20)

Here fROT is the rotational factor related to the coupling of
J1,M1 − J2,M2 and the ratio of atomic and molecular decay
rate. The Franck-Condon factor fFCF = |〈1|2〉rad|2 giving a
measure for the strength of molecular transitions is related to
the overlap integral of the wave functions of the bound states
using the selection rule for electric dipole transitions to choose
the proper component of the multicomponent wave functions.
For the transition J = 1 ↔ 0 the relevant component in
the excited state |1〉 is the Hund’s (e) state |1S0 + 3P1,0,1〉
and for the ground state |2〉 the component |1S0 + 1S0,0,0〉.
For the coupling J = 1 ↔ 2 the relevant components are
|1S0 + 3P1,2,1〉 in the excited state and |1S0 + 1S0,2,2〉 in the
ground state. The factor fROT is calculated in the Hund’s case
(e) basis. With conventional angular momentum algebra [34]
for a transition |j1,l1,J1,M1〉 to |j2,l2,J2,M2〉 applying the
decoupling of l1,2 because the electric dipole operator does
not act in the rotational space we obtain the rotational factor:

fROT = (2J1 + 1)(2J2 + 1)w6j (j1,J1,l1,J2,j2,1)2δ(l1,l2)

×w3j (J1,1,J2,−M1,q,M2)2 × 2 × (2j1 + 1),

(21)

where w3j and w6j are the conventional Wigner-nj symbols
and q = 0,±1 indicates the polarization of the light field. For
the present two cases with π polarized light and M1 = M2 = 0
the values are 2 and 4/5, respectively.

We have measured the splitting of the Autler-Townes dou-
blet for different intensities I2 to validate the approximation
that the atomic dipole moment governs the molecular transition
between these long-range levels. The recorded spectra are
shown in Fig. 6. The resonance curves show two features of
almost identical amplitude indicating that the second PA laser
was indeed tuned closely to the bound-bound transition, i.e.,
the detuning was �1 − �2 ≈ 0 [13].

From the measured splitting we determined the Rabi
frequencies for different PA laser intensities, which are plotted
as a function of laser intensity I2 in Fig. 7. They are consistent
with the expected square-root behavior (red solid line). From
the experimental values we determined the Franck-Condon
factor for a transition from the level v1 = −1,J1 = 1 of the
excited state (ac)� = 1 to the level v2 = 39,J = 0. A fit
of Eq. (20) to the data yields fFCF,exp = 0.45(9), which is
in fair agreement to the theoretical prediction fFCF,theo =
0.54 (see Table V). The dashed line in Fig. 7 shows the
theoretical expectation. The small deviation could be explained
by an additional uncertainty of the absolute intensity of the

FIG. 6. Atomic loss spectra when scanning the free-bound PA
laser across the v1 = −1, � = 1 molecular resonance in Autler-
Townes configuration. The bound-bound laser was set to be res-
onant between v2 = 39, J2 = 0 and the before mentioned excited
state. Autler-Townes splitting for different bound-bound PA laser
intensity I2.

bound-bound PA laser at the position of the ultracold atoms
due to uncertainty from the beam waist measurement and
the alignment of dipole trap and focus of the PA beam or
alternatively the assumed molecular transition dipole moment
deviates slightly from being

√
2 times the atomic dipole

moment.
The molecular potentials determined from the ground-state

binding energies measured in Raman configuration PA and
the excited-state potentials [22] can be used for calculating
fFCF,theo for arbitrary transitions between states close to the
excited-state asymptote 3P1 + 1S0 and rovibrational states in
X 1�+

g . Table V shows a set of calculated values of fFCF

FIG. 7. Measured molecular Rabi frequencies �12 from Autler-
Townes spectra (dots) of the v1 = −1, � = 1 molecular resonance in
dependence of the bound-bound laser intensity I2. The black dashed
line indicates theoretical prediction following Eq. (20) with ffcf,theo =
0.54 determined from molecular potentials, while the red solid line
is a fit to the data.
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for those excited states with an appreciable Franck-Condon
density fFCD between the ground-state continuum and the
respective excited state, which would be desirable for easy
PA spectroscopy. When calculating transition rates using the
values given in Table V one also has to consider the additional
fROT for transitions to final states with J2 = 0,2, respectively.
For calculating molecular radiation decay rates we have to sum
over the polarization q, i.e., γ1→2 = γatomfFCF �qfROT, which
for the present case with atomic angular momenta 1 and 0
results in the value 2 independent of the molecular angular
momentum. We obtain with values from Table V for the mea-
sured transition a spontaneous decay rate from the state v1 =
−1, � = 1, J1 = 1 to v2 = 39, J2 = 0 of γ1→2 = 1.08γatom

and to v2 = 39, J2 = 2 of γ1→2 = 0.30γatom. Table V gives
also in the last line the remaining continuum contribution.
The sum of all Franck-Condon factors of a single excited state
differs slightly from one, because it only represents the part for
electric dipole transitions, while the spin-orbit mixing for the
excited state results in a small component with total atomic
angular momentum j = 2, which will not decay by electric
dipole radiation to the ground state with j = 0.

VII. CONCLUSION

This paper shows the results of our study of the 1S0-1S0

asymptote of the calcium dimer by means of two-color
photoassociation in Raman and Autler-Townes configuration.
The investigation of the collisional properties of ultracold
thermal calcium molecules near the dissociation limit gives
access to the previously experimentally not well characterized
long-range part of the ground-state potential X 1�+

g . Including
earlier measurements of deeply bound states [14], an improved
description of the molecular potential near the dissociation
asymptote was derived and also a highly improved value for the
40Ca s-wave scattering length a = 308.5(50)a0 was calculated.
The scattering length for other natural isotopes of calcium were
also derived using the improved description of the ground-state
potential.

With the help of a coupled-channel calculation, transition
moments between excited- [22] and ground-state levels have

been derived and compared with experimental results from
Autler-Townes measurements. The values show good agree-
ment and confirm the validity of the theoretical description.
This will allow calculations of transition paths for efficient
creation of molecules in predetermined rovibrational states.
According to Table V for every asymptotic excited state only
a few transitions to bound ground states show a substantial
FCF allowing spontaneous decay to these states for use as a
starting level in future experiments like coherent population
transfer. For example, about 54% of the molecules produced
in the excited state v1 = −1, J1 = 1 are expected to decay to
the ground state v2 = 39, J2 = 0.

The improved understanding of the ground state allows
the calculation of an optical length lopt for the different excited
molecular states. For an incident intensity of I1 = 3.0 W cm−2

we calculate a value of about lopt = 103a0 for the least
bound state v1 = −1, � = 0, under the assumption that the
molecules in this state only decay radiatively with the rate
γ1 = 2γatom. These results lead to a promising prospect for
the implementation of low-loss optical Feshbach resonances
[35] for atom species with a very narrow intercombination line
like calcium, i.e., an optically induced change of the scattering
length aopt ≈ ±300a0 can be achieved at a detuning of about 30
times the natural linewidth, effectively reducing the scattering
length close to zero or even negative values.
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