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Photoionization of hydrogen in a strong static electric field
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We analyze photoionization of hydrogen in the presence of a strong static electric field F ∼ 0.1 a.u. Such
a field essentially modifies the spectrum of the unperturbed atom. Even the ground n = 1 state acquires a
non-negligible width, while the higher field-free bound states become overlapping resonances. At the same time,
static-field-induced states (SFISs) found recently [A. V. Gets and O. I. Tolstikhin, Phys. Rev. A 87, 013419
(2013)] emerge in the field-free continuum. We formulate the theory of photoionization from a decaying initial
state and define appropriate observables—the reduced photoionization rate and transverse momentum distribution
of photoelectrons. These observables are calculated for the four initial states with n = 1 and 2 in the different
polarization cases. The SFISs are shown to manifest themselves as distinct peaks in the observables. Remarkably,
even broad SFISs can be seen as narrow well-pronounced peaks at fields where their widths are comparable to
that of the initial state. Such a resonance enhancement of the manifestations of SFISs is the main finding of this
paper. This finding suggests that SFISs should manifest themselves also in photoelectron momentum distributions
produced by photoionization in the presence of a quasistatic field of intense low-frequency laser pulses currently
used in strong-field physics.
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I. INTRODUCTION

Early experiments on photoionization of atoms in the
presence of a static electric field were conducted with rubidium
[1,2] and hydrogen [3–5]. The field strengths considered were
in the range 1–15 kV/cm (2 × 10−7–3 × 10−6 a.u.). Such
fields are regarded as strong on the scale of static fields
accessible in laboratory, but are several orders of magnitude
weaker than typical field amplitudes (∼0.1 a.u.) of intense low-
frequency laser pulses currently used in strong-field physics
[6]. The experiments revealed a reach field-induced structure in
photoionization cross sections above the field-free ionization
threshold, which has motivated numerous theoretical studies
[7–12]. The structure consists of a series of rather broad peaks
the positions and widths of which strongly depend on the
field. Theoretical calculations of Stark states in hydrogen [12]
quantitatively reproduce the peaks, which proves that they
are manifestations of highly excited bound states (n ∼ 25)
promoted to positive energies and broadened by the field.

More recent experiments with lithium [13,14], hydrogen
[15], and helium [16] supported by preliminary theoretical
calculations [17–19] have raised a renewed interest in the
subject. These experiments implemented the idea of the
photoionization microscope [20]. The process considered is
again photoionization of atoms in a static electric field, but the
observable is different. The distribution of ionized electrons
in the transverse to the static field plane was measured, which
complements the information provided by the photoionization
cross section. If the frequency of the ionizing field is tuned
in resonance with one of the high-lying Stark states, this
distribution was shown to rapidly change its shape compared to
the off-resonance case and give an image of the wave function
of the state. The static fields ∼1 kV/cm used in Refs. [13–16]
are also weak compared to fields considered in strong-field
physics.

In this paper we consider photoionization in really strong
static fields of order ∼0.1 a.u. The range of fields is dictated
and our interest in the subject is motivated by possible
applications in strong-field physics. In the adiabatic regime,
that is, at sufficiently low frequency and high intensity of
a laser pulse, the interaction of an atom with the electric
field of the pulse proceeds as if the field were static and
equal to its instantaneous value [21]. Irradiating an atom
interacting with such a quasistatic field of a strong pump
pulse by a weak high-frequency probe pulse should enable
one to extend the previous studies of photoionization in an
electric field [1–5,13–16] to much stronger fields. This, in
particular, may provide access to the study of the recently
found static-field-induced states (SFISs) [22], which would
open a new avenue of research in strong-field physics.

Our goal is to find manifestations of SFISs in photoion-
ization of hydrogen in a strong laser field. We approach
this goal in two steps. In the present paper we consider
photoionization in a truly static field. This is needed because
photoionization observables in a quasistatic field within the
adiabatic theory [21] can be expressed in terms of their
static-field counterparts. In the second part of the study to
be reported elsewhere the present static-field results will be
used to describe photoionization in a slowly varying field of
an intense low-frequency laser pulse.

The paper is organized as follows. The theory is presented
in Sec. II. We first discuss how an external static electric field
modifies the spectrum of hydrogen (Sec. II A), giving a brief
review of tunneling states, which are field-free bound states
shifted and broadened by the field, and SFISs, which emerge in
the field-free continuum [22]. Then we introduce observables
for photoionization in a strong electric field (Sec. II B). The
results of illustrative calculations are presented in Sec. III.
Section IV concludes the paper. Some details of our numerical
procedure are discussed in the Appendix.
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II. THEORY

A. Tunneling and static-field-induced states

The Schrödinger equation for a hydrogen atom in a static
uniform electric field F = F ez, F � 0, reads (atomic units are
used throughout)[

−1

2
� − 1

r
+ Fz − E

]
φ(r) = 0. (1)

We are interested in solutions which are regular at the origin
and satisfy outgoing-wave boundary conditions in the asymp-
totic region z → −∞. Such solutions represent hydrogenic
Siegert states (SSs) in an electric field [23]. Equation (1) is
separable in parabolic coordinates [24]

ξ = r + z, 0 � ξ < ∞, (2a)

η = r − z, 0 � η < ∞, (2b)

ϕ = arctan y

x
, 0 � ϕ < 2π. (2c)

The SSs can be found in the form

φ(r) = η−1/2f (η)φ(ξ )
eimϕ

√
2π

, (3)

where m = 0,±1,±2, . . . . The functions φ(ξ ) and f (η)
satisfy

[
d

dξ
ξ

d

dξ
− m2

4ξ
+ 1 − β + Eξ

2
− Fξ 2

4

]
φ(ξ ) = 0, (4a)

φ(ξ )|ξ→0 ∝ ξ |m|/2, φ(ξ )|ξ→∞ = 0, (4b)

and
[

d2

dη2
+ 1 − m2

4η2
+ β

η
+ E

2
+ Fη

4

]
f (η) = 0, (5a)

f (η)|η→0 ∝ η(|m|+1)/2, f (η)|η→∞ ∝ f (η,E), (5b)

where

f (η,E) = 21/2

(Fη)1/4
exp

(
iF 1/2η3/2

3
+ iEη1/2

F 1/2

)
. (6)

The latter function for real E has unit outgoing flux at η → ∞,
which corresponds to z → −∞. Each of Eqs. (4) and (5) is an
eigenvalue problem, so the solutions exist only for a discrete
set of generally complex values of energy E and separation
constant β. The SSs are normalized by [23]∫

φ̄(r)φ(r) dr

= 1

4

∫ ∞

0

∫ ∞

0
η−1f 2(η)φ2(ξ )(ξ + η) dξdη = 1, (7)

where φ̄(r) is given by Eq. (3) with the opposite sign of m. The
function f (η) exponentially diverges at η → ∞ for Im E < 0,
so the integral over η should be regularized by rotating the
integration path into the upper half of the complex η plane
[23]. Our numerical procedure to construct the SSs is outlined
in Sec. 1 of the Appendix.

The separable form (3) suggests that the eigenfunction
φ(r) can be labeled by a set of parabolic quantum numbers
(nξ ,nη,m), with nξ = 0,1,2, . . . and nη = 0,1,2, . . . giving

the numbers of zeros of the solutions of Eqs. (4) and (5),
respectively. This is true for bound states, but does not
generally apply to SSs, because the solutions in this case are
complex and do not have definite numbers of zeros. We note
that the term SS refers to all (infinitely many) solutions of
Eqs. (4) and (5) at any field F . The eigenvalues E for the
majority of SSs lie deep in the complex energy plane. However,
there are situations where for some SSs they are located close
to the real axis. The imaginary part of the solutions in this
case is small compared to their real part, and then quantum
numbers nξ and nη acquire approximate nodal meaning. Only
such SSs are observable individually.

One such situation is met if one considers what happens
with bound-state solutions of Eq. (1) in the presence of a
weak field. The field only slightly disturbs the solutions, so
they approximately preserve their nodal structure and can be
labeled by parabolic quantum numbers of the corresponding
unperturbed bound state [24]. Their eigenvalue presented in
the form

E = E − i

2
	 (8)

defines the Stark-shifted energy E and ionization rate 	 of
the state. The states decay by tunneling through an effective
potential barrier in Eq. (5a). Their energies and rates can be
obtained as asymptotic expansions in F , where the coefficients
are determined by the set (nξ ,nη,m) [24–26]. For each state
there exists a critical field Fc at which the energy E passes
trough the top of the barrier. The expansions hold only in the
tunneling regime F < Fc, so such SSs are called tunneling
states (TSs) [22]; they are also known as Stark states. In the
tunneling regime quantum numbers nξ and nη preserve their
meaning and TSs are characterized by the following properties:
(1) their wave functions are localized in the Coulomb potential
well near the origin, (2) their energies E are negative, (3)
their widths 	 are exponentially small in F and hence
for sufficiently weak fields become smaller than the energy
distance to the neighboring states, and (4) the leading-order
term in the asymptotic expansion of the separation constant is

β|F→0 = 1 − 


(
nξ + |m| + 1

2

)
, (9)

where 
 = √−2E|F=0 = 1/n and n = nξ + nη + |m| + 1 is
the principle quantum number. The energies and ionization
rates of the four lowest TSs originating from bound states
with n = 1 and 2 as functions of F are shown in the lower
part of Fig. 1. These states are well separated in the tunneling
regime. They can be analytically continued to the over-the-
barrier regime F > Fc, where their widths rapidly grow and
they begin to overlap. Quantum numbers nξ and nη still can
be used in this case to label the states, by continuity, but they
lose their nodal meaning.

Another situation in which nξ and nη acquire approximate
meaning occurs when an electron bounces in a “resonator”
formed by the Coulomb potential, on the one side, and the
rising part of the field potential Fz in the region z > 0, on
the other side. Since the resonator does not exist without an
external electric field, the states trapped in it do not exist either,
so they are called static-field-induced states [22]. SFISs decay
by leaking through the Coulomb end of the resonator, because
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FIG. 1. Real parts of the energy eigenvalues, Eq. (8), for a number
of TSs and SFISs relevant for the present discussion as functions of the
field F . Four lowest TSs the photoionization of which is considered
labeled by parabolic quantum numbers (nξ ,nη,m) are shown in the
lower part of the figure. The shadowed areas around the curves
indicate ionization rates 	 of the states. SFISs with quantum numbers
nξ = 2, . . . ,10 (from bottom to top), nη = 0, and m = 0, 1, and 2 are
shown in the upper part of the figure.

of imperfect reflection, while reflection from the field end
is complete. An asymptotic quantization condition for SFISs
based on this physical picture was derived in Ref. [22]. For
hydrogen, this condition reads

k3

3F
+ i

2
(b − a) ln

4k3

F
− i

2
ln

	(b)

	(a)
= π

(
nξ + |m|

4
+ 1

2

)
,

(10)

where k = √
2E, a = i/k − nη, and b = 1 + |m| − a. It

implicitly defines the eigenvalues E as functions of the set
(nξ ,nη,m). The characteristic properties of SFISs distinguish-
ing them from TSs are: (1) their wave functions are localized
in the resonator region which extends towards z > 0 up to
z ∼ E/F , (2) their energies E are positive, (3) their widths
	 are comparable to the energy spacing between them, and
(4) the leading-order term in the asymptotic expansion of the
separation constant in the weak-field case is

β|F→0 = −ik

(
nη + |m| + 1

2

)
, (11)

where k has a nontrivial dependence on F dictated by Eq. (10).
The energies of a number of the lowest SFISs as functions of
F are shown in the upper part of Fig. 1. The widths of SFISs
rapidly grow with nη [22], so we consider only states with
nη = 0. The results are obtained by finding the exact solutions
of Eqs. (4) and (5) near the corresponding solutions of Eq. (10),
which enables us to assign a definite set of quantum numbers
(nξ ,nη,m) to each state. SFISs obtained in this way at a finite F

can be analytically continued to zero field. We have done such
calculations for a number of states. All the SFISs considered
turn into TSs and then bound states as F decreases to zero. In

this case, for each SFIS there exists a boundary field Fb below
which the state is captured by the Coulomb potential, its energy
E becomes negative, and the asymptotic quantization condition
(10) ceases to apply [22]. This means that at F < Fb quantum
numbers nξ and nη lose their meaning and are generally not
conserved, that is, they may change in the evolution of a given
SS from a SFIS to a TS as F decreases. This indeed happens;
for example, the SFIS (1,1,0) turns into the TS (2,1,0) with
an increment of nξ , but we did not find examples of such a
behavior for states with nη = 0. We mention that in the case of
the zero-range potential there exists only one bound state, and
hence only one SFIS turns into the only TS as F decreases.
The eigenvalues E of all the other SFISs coalesce at zero; these
states disappear and do not have counterparts at F = 0 [22].
It is clear that such disappearing SFISs should exist for any
finite-range potential supporting only a finite number of bound
states. They may exist also for the Coulomb potential, although
we could not find them in the calculations, the analysis in this
case being complicated by the infinite number of bound states.

TSs and SFISs do not complete a list of situations where
quantum numbers nξ and nη acquire approximate nodal
meaning. Another situation of this type occurs when the
energy E of an SS lies close to the top of the potential barrier
in Eq. (5a). A uniform semiclassical quantization condition
for such top-of-the-barrier states (TBSs) was derived in Ref.
[27]. This condition and the underlying physical picture differ
from those for both TSs and SFISs. The difference resulting
in different dependencies of the eigenvalues E on quantum
numbers (nξ ,nη,m) and field F is what eventually justifies
the different names of the states. It can be said that TBSs
are encountered on the way from TSs to SFISs as F grows.
The results obtained from the quantization condition for TBSs
[27] for states with n ∼ 25 at field strengths F ∼ 10−6 used in
experiments with hydrogen [3–5] are in good agreement with
accurate calculations [12] which, in turn, closely reproduce
positions and widths of peaks in the experimental photoioniza-
tion cross sections. Using the present terminology, this means
that the peaks observed in Refs. [3–5] are manifestations of
TBSs. The goal of this paper is to investigate whether SFISs
also reveal themselves as distinct peaks in photoionization
observables at stronger fields F ∼ 0.1.

B. Photoionization from a tunneling state

The spectrum of hydrogen modified by a strong static
field F , as discussed above, can be probed by allowing the
system to interact with a weak time-dependent field f(t)
of an electromagnetic pulse. The interaction may result in
photoionization. We are going to analyze photoionization from
the four TSs shown in Fig. 1 in static fields F ∼ 0.1. At such
fields, even the lowest TS originating from the ground state
acquires a non-negligible width, and the widths of the higher
TSs exceed the energy spacing between them. It is natural to
ask whether and how one can prepare such a rapidly decaying
initial state for a photoionization experiment. This important
question must be clarified before we continue. Our answer is:
one probably cannot, if the experiment is to be performed with
a truly static field F , as was the case in Refs. [1–5,13–16].
But intense low-frequency laser pulses provide a means to
prepare such decaying states in a quasistatic field. Indeed, in

043417-3



SHUN OHGODA, OLEG I. TOLSTIKHIN, AND TORU MORISHITA PHYSICAL REVIEW A 95, 043417 (2017)

the adiabatic regime an initial bound state interacting with a
strong laser field turns into the corresponding SS in a static
electric field equal to the instantaneous value of the laser
field and adiabatically follows the field [21]. By applying
an additional probe field f(t), one can study photoionization
from the SS. The static-field results presented in this paper are
needed to describe photoionization in a strong laser field to be
considered elsewhere.

1. Basic equations

The time-dependent Schrödinger equation describing the
interaction with a weak probe field f(t) in the dipole approxi-
mation reads

i
∂ψ(r,t)

∂t
=

[
−1

2
� − 1

r
+ Fz + f(t)r

]
ψ(r,t). (12)

The field is expressed by the Fourier transform

f(t) =
∫

f(ω)e−iωt dω

2π
, f(ω) = f∗(−ω). (13)

The function f(ω) for ω > 0 is presented as

f(ω) = f (ω)e, ee∗ = 1, (14)

where f (ω) is the amplitude and e is the polarization vector
at frequency ω. We will consider linear polarization (LP) and
circular polarization (CP) cases defined by

LP: e = ez, (15a)

CP(±): e = ex ± iey√
2

. (15b)

The eigenvalue and eigenfunction of the initial TS satisfying
Eqs. (4) and (5) are denoted by Ein = Ein − i

2	in and φin(r),
respectively. The solution of Eq. (12) is sought in the form

ψ(r,t) = φin(r)e−iEint +
∫

ψ(r,ω)e−iEint−iωt dω

2π
. (16)

Substituting this into Eq. (12) and treating the term with f(t) as
a perturbation, in the first order we obtain an inhomogeneous
time-independent equation defining ψ(r,ω),[

−1

2
� − 1

r
+ Fz − Ein − ω

]
ψ(r,ω) = −f(ω)rφin(r).

(17)

This function describes electrons released from the atom by
photoionization at frequency ω. Whatever is the polarization of
f(ω), such electrons are eventually driven by the static field and
fly away towards z → −∞, so ψ(r,ω) may have only outgoing
waves in this asymptotic region. The corresponding solution
of Eq. (17) can be obtained with the help of the outgoing-wave
Green’s function satisfying[

−1

2
� − 1

r
+ Fz − E

]
G(r,r′; E) = δ(r − r′) (18)

and is given by

ψ(r,ω) = f(ω)D(r,ω), (19)

where

D(r,ω) = −
∫

G(r,r′; Ein + ω)r′φin(r′) dr′. (20)

Similar equations can be found, e.g., in Ref. [17]. However,
there is one important difference: in our case the initial state
in Eq. (20) is a TS which fully incorporates the effect of the
static field in Eq. (12), while all previous theoretical studies
on the subject [7–11,17–19] treated photoionization from an
unperturbed bound state. This approximation is justified for
the very weak fields considered there, but does not apply in
the present case.

The function (20) defines all photoionization observables.
Two objects are needed to obtain it: the initial TS discussed
in Sec. II A and the Green’s function. We first summarize
equations defining the Green’s function, and then turn to
observables.

2. Green’s function

A method to construct the Green’s function is described
in Ref. [17]. In the present case, we need this function
for generally complex values of its energy argument. Here
we outline the present procedure; details of its numerical
implementation are deferred to Sec. 2 of the Appendix. The
outgoing-wave solution of Eq. (18) can be found in the form

G(r,r′; E) = −2√
ηη′

∑
ν

Gν(η,η′)�ν(ξ,ϕ)�ν̄(ξ ′,ϕ′), (21)

where

�ν(ξ,ϕ) = φν(ξ )
eimϕ

√
2π

(22)

are parabolic channel functions labeled by the multi-index [28]

ν = (nξ ,m), nξ = 0,1, . . . , m = 0,±1, . . . , (23)

and ν̄ = (nξ ,−m). The functions φν(ξ ) are the solutions to the
eigenvalue problem

[
d

dξ
ξ

d

dξ
− m2

4ξ
+ 1 − βν + Eξ

2
− Fξ 2

4

]
φν(ξ ) = 0, (24a)

φν(ξ )|ξ→0 ∝ ξ |m|/2, φν(ξ )|ξ→∞ = 0. (24b)

In contrast to Eq. (4), here E is assumed to be fixed and equal
to the energy argument in Eq. (21) and the separation constant
βν is treated as the corresponding eigenvalue. The different
solutions of Eqs. (24) for given m, E, and F are enumerated
by nξ in descending order of Re βν , as suggested by Eq. (9),
and normalized by

∫ ∞

0
φnξ m(ξ )φn′

ξ m
(ξ ) dξ = δnξ n

′
ξ
. (25)

This leads to the normalization condition for parabolic
channels

∫ ∞

0

∫ 2π

0
�ν̄(ξ,ϕ)�ν ′(ξ,ϕ) dξdϕ = δνν ′ , (26)
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where ν ′ = (n′
ξ ,m

′). The function Gν(η,η′) is the outgoing-
wave solution of[

d2

dη2
+ 1 − m2

4η2
+ βν

η
+ E

2
+ Fη

4

]
Gν(η,η′) = δ(η − η′).

(27)

It can be found in the form

Gν(η,η′) = W−1
ν Rν(η<)Oν(η>), (28)

where η< (η>) is the smaller (larger) of η and η′. The functions
Rν(η) and Oν(η) are the regular and outgoing-wave solutions
of the corresponding homogeneous equation, respectively,
defined by the boundary conditions

Rν(η → 0) = η(|m|+1)/2 (29)

and

Oν(η → ∞) = f (η,E), (30)

where f (η,E) is defined by Eq. (6), andWν is their Wronskian,

Wν = Rν(η)O′
ν(η) − Oν(η)R′

ν(η). (31)

In the asymptotic region the regular solution takes the form

Rν(η → ∞) = e−3iπ/4+iδν 21/2Wν

(Fη)1/4

× sin

(
F 1/2η3/2

3
+ Eη1/2

F 1/2
+ π

4
+ δν

)
,

(32)

where δν is the phase shift in channel ν. The outgoing-wave
solution Oν(η) is generally irregular at η → 0. But it becomes
regular if E coincides with one of the SS eigenvalues; in this
case functions Rν(η) and Oν(η) become linearly dependent,
their Wronskian (31) turns to zero, and G(r,r′; E) as a function
of E has a pole.

3. Observables

We now turn to photoionization observables. They are
determined by coefficients appearing in the asymptotic form
of D(r,ω) at η → ∞. Substituting Eqs. (21) and (28) into
Eq. (20) yields

D(r,ω)|η→∞ = η−1/2f (η,Ein + ω)
∑

ν

dν(ω)�ν(ξ,ϕ), (33)

where

dν(ω) = 2

Wν

∫
η−1/2Rν(η)�ν̄(ξ,ϕ)rφin(r) dr (34)

are the coefficients in question. To clarify their physical
meaning, let us temporarily assume that the field F is very
weak. Then the energy Ein of the initial state is almost real
and f (η,Ein + ω) represents an outgoing wave with unit flux
at η → ∞. Substituting Eq. (33) into Eq. (19) decomposes the
outgoing flux of photoelectrons into orthonormal parabolic
channels, see Eq. (26), with the flux in channel ν given by
|f(ω)dν(ω)|2. This quantity has the meaning of partial rate
of photoionization in channel ν caused by the interaction
with a weak monochromatic field of frequency ω, amplitude
f (ω), and polarization e. To eliminate the dependence on the

amplitude, which is a property of the probe pulse, not the atom,
we divide the rate by |f (ω)|2; the ratio

γν(ω) = |edν(ω)|2 (35)

is called the reduced partial ionization rate in channel ν. Sum-
ming up over all channels gives the reduced total ionization
rate,

γ (ω) =
∑

ν

γν(ω). (36)

In the following, for brevity, we omit the qualification
“reduced”. These rates constitute the first set of observables
to be considered in the calculations. We note that γ (ω)
differs by only an inessential factor from the photoionization
cross section σ (ω) measured in Refs. [3–5] and considered
theoretically in Refs. [7,8,10,11], namely, γ (ω) = c

2π
σ (ω). We

prefer to discuss rates because of the similarity of the structure
of the outgoing flux of electrons in the present problem to that
in the problem of tunneling ionization in a static field [28],
which is made use of below.

The function D(r,ω) in the asymptotic region can be also
presented in the form [28]

D(r,ω)|z→−∞ =
∫

A(k⊥,ω)eik⊥r⊥g(z,k⊥)
dk⊥

(2π )2
, (37)

where r⊥ = (x,y) = (r⊥ cos ϕ,r⊥ sin ϕ), k⊥ = (kx,ky) =
(k⊥ cos ϕk,k⊥ sin ϕk),

g(z,k⊥) = e−iπ/122π1/2(2F )−1/6 Ai(ζ ), (38a)

ζ = 2e−iπ/3

(2F )2/3

[
Ein + ω − Fz − k2

⊥
2

]
, (38b)

and Ai(x) is the Airy function [29]. Equations (37) and
(33) hold in the same region, which enables one to express
A(k⊥,ω) in terms of dν(ω). Reproducing the derivation given
in Ref. [28], we obtain

A(k⊥,ω) = 23/2πi

F 1/2

∑
ν

dν(ω)�ν

(
k2
⊥
F

,ϕk

)
. (39)

The meaning of A(k⊥,ω) is that the product f(ω)A(k⊥,ω)
gives the amplitude of photoionization with the transverse
momentum k⊥ and its absolute value squared gives the
distribution of photoelectrons in k⊥. Similarly to Eq. (35),
we introduce the reduced (this qualification is also omitted
below) transverse momentum distribution (TMD),

P (k⊥,ω) = |eA(k⊥,ω)|2. (40)

This is the second observable to be considered. It is propor-
tional to the distribution of photoelectrons in the transverse
plane discussed theoretically in Ref. [17] and measured in
Ref. [15].

In the weak-field limit assumed above the solutions of
Eq. (24) with E = Ein + ω are almost real, because Ein is
almost real. Substituting Eq. (39) into Eq. (40) and integrating
over k⊥ using Eq. (26), one obtains that in this case the TMD
of photoelectrons and the total photoionization rate are related
by ∫

P (k⊥,ω)
dk⊥

(2π )2
= γ (ω), (41)
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TABLE I. Energies E and widths 	 (in atomic units) of the four TSs shown in Fig. 1 at two static-field strengths considered in the
calculations.

(nξ ,nη,m) E 	 E 	

F = 0.03 F = 0.10
(0,0,0) −0.502 074 0.223 753 × 10−8 −0.527 418 0.145 381 × 10−1

(1,0,0) −0.070 723 0.665 210 × 10−1 0.080 235 0.310 374
(0,1,0) −0.240 147 0.119 640 −0.392 702 0.572 141
(0,0,1) −0.153 357 0.888 472 × 10−1 −0.154 012 0.403 757

which is consistent with their physical meaning. Thus, rates
(35) and (36) and TMD (40) provide two complementary
sets of characteristics of the photoionization process. We
emphasize that the validity of Eq. (41) relies only on the
condition that Ein is real.

In strong fields the initial-state energy Ein acquires a non-
negligible imaginary part. As a consequence, the observables
discussed above lose their immediate physical meaning and
Eq. (41) may hold only approximately. However, these quan-
tities appear in the time-dependent context as characteristics
of photoionization in a strong laser field treated within the
adiabatic theory [21]. To implement Eqs. (35), (36), and (40)
one needs to calculate the coefficients (34). For complex
Ein the functions Rν(η) and φin(r) exponentially diverge
at η → ∞, so the integral over η in Eq. (34) should be
regularized. SinceRν(η) contains both incoming and outgoing
waves at η → ∞, the regularization technique differs from that
used for the normalization integral (7); it is described in Sec. 3
of the Appendix.

III. RESULTS AND DISCUSSION

We illustrate the theory by calculating photoionization rates
(35) and (36) and TMD (40) for the four TSs shown in Fig. 1
at two representative static-field strengths F = 0.03 and 0.1.
The energies and widths of the TSs at these fields are listed in
Table I. For a given initial state with the azimuthal quantum
number min, the sum over ν in Eqs. (36) and (39) substituted
into Eq. (40) contains only channels with m = min, in the
LP case, and m = min ± 1, in the CP(±) cases, respectively
[see Eq. (15)]. Since the observables have different behavior
in the different polarization cases, we consider both linear
and circular polarizations for each initial state. In all the
cases, the TMD (40) does not depend on the direction of
the transverse momentum k⊥ and is denoted by P (k⊥,ω).
The complex energy eigenvalues of SFISs the manifestation of
which in the photoionization observables we seek are denoted
by Enξ nηm = Enξ nηm − i

2	nξ nηm. Only SFISs with m = 0, 1, and
2 shown in Fig. 1 are involved in the discussion; SFISs with
larger m cannot be excited from the initial TSs with min = 0
or 1.

We begin with photoionization from the ground TS (0,0,0)
by a linearly polarized field. The results are presented in
Fig. 2. Let us first consider the lower subpanels. The solid
black line shows the total rate (36). The solid color lines
show the partial rates (35) with ν = (nξ ,0) and nξ = 0 (red),
1 (green), 2 (blue), etc. The leftmost (red) vertical dashed line
with a horizontal bar shows the position and width of the TS
(0,1,0). The other vertical dashed lines with horizontal bars

show the positions and widths of SFISs with nξ = 1,2, . . .

and nη = m = 0 (shown in Fig. 1), their colors coinciding
with the colors of partial rates with the same nξ . The main
feature to be noticed in the lower subpanels is that partial rates
have well-pronounced broad peaks the positions and widths
of which are reproduced by the positions and widths of the
corresponding SFISs, and traces of these peaks, and hence
SFISs, can be seen also in the total rate. Here we mean the main
(leftmost) peaks in each partial rate, which are thus shown
to be manifestations of SFISs with nη = 0. One can notice
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FIG. 2. Characteristics of photoionization from the TS (0,0,0)
in a static field of strength (a) F = 0.03 and (b) F = 0.10 by a
weak monochromatic field of frequency ω in the LP case. The upper
subpanels show the TMD P (k⊥,ω), Eq. (40). In the lower subpanels,
the solid black line shows the total rate γ (ω), Eq. (36); the other solid
lines show partial rates γν(ω), Eq. (35), with ν = (nξ ,0), where red,
green, blue, etc., colors correspond to nξ = 0, 1, 2, etc., respectively;
the leftmost vertical dashed red line shows the TS (0,1,0); the other
vertical dashed lines show SFISs (nξ ,0,0), their colors coinciding
with the colors of partial rates with the same nξ , that is, green, blue,
etc. lines correspond to nξ = 1, 2, etc., respectively. The vertical
dashed lines are located at resonance frequencies ω = Enξ nηm − Ein,
where Enξ nηm is the energy of the corresponding TS or SFIS, and the
horizontal bars indicate the widths of the states.
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that partial rates for channels with nξ � 1 have secondary
lower and broader peaks located at higher frequencies. We
have confirmed that positions and widths of these secondary
peaks agree with those for SFISs with nη = 1 (not shown in
the figure). Thus, SFISs with higher nη manifest themselves in
partial rates, but they are too broad and not visible in the total
rate. The upper subpanels show color maps of the TMD (40).
At low frequencies the TMD has a complex shape determined
by an interference of the contributions from the TS (0,1,0)
and the lowest SFIS (1,0,0). But at higher frequencies its
shape becomes more regular. The TMD as a function of k⊥
at a given ω has a number of oscillations with clearly visible
minima and then vanishes as k⊥ grows further. The number
depends on ω and is incremented by one as ω passes through a
SFIS. The maxima of the TMD seen at such ω at small k⊥ are
manifestations of SFISs. The high contrast of the oscillatory
pattern of the TMD in the present case is explained by the fact
that the initial-state energy Ein is almost real, and hence the
solutions of Eq. (24) with E = Ein + ω are also almost real
and have definite numbers nξ of zeros. As can be seen from
the plots of partial rates, at each ω the TMD amplitude (39)
is given by a superposition of only a few channel functions
φν(k2

⊥/F ), so it has zeros which are seen as minima lines of
the oscillatory pattern. Another consequence of the reality of
the solutions of Eq. (24) is that the relation (41) holds well.
The integral of the TMD appearing on the left-hand side of
this relation is also shown in the lower subpanels of Fig. 2, but
this line is indistinguishable from the solid black line showing
the total rate. All this holds for both field strengths considered.

Figure 3 presents similar results for photoionization from
the same TS (0,0,0), but by a circularly polarized field. In this
case, only partial rates for channels with m = 1 have nonzero
values. They again have peaks the positions and widths of
which are in fair agreement with those for SFISs with nη = 0
and m = 1 (shown in Fig. 1). But the peaks are now too broad
and not visible in the total rate, except for the lowest one which
originates from the TS (0,0,1). Note that the TMD has a node
at k⊥ = 0, which is a consequence of the first of the boundary
conditions (24b).

We now turn to photoionization from an excited TS (1,0,0)
by a linearly polarized field. The results are presented in
Fig. 4. The main difference from the previous cases is the
appearance of vertical ridges in the TMD at the positions of
SFISs (nξ ,0,0) which are especially pronounced in Fig. 4(b).
These ridges have the following origin. As is explained in
the end of Sec. II B 2, the Wronskian Wν in Eq. (34) turns
to zero whenever the condition Ein + ω = Enξ nηm meaning
resonance excitation of a SFIS from the initial TS is satisfied.
Since ω is real, this condition amounts to the two conditions:
Ein + ω = Enξ nηm and 	in = 	nξ nηm. The first one can be
always satisfied by varying ω; the second one depends only
on the field and in some cases (for some initial states) can
be satisfied by varying F . Thus, the complex resonance
condition can be satisfied at certain combinations of ω and
F . When this happens, all the photoionization observables
diverge. We mention that in contrast to the elastic-scattering
cross section, the value of which is limited by unitarity,
the photoionization cross section calculated by treating the
electron-photon interaction in the first order of perturbation
theory is not restricted by such a condition and, in principle,
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FIG. 3. Similar to Fig. 2, but for photoionization from the TS
(0,0,0) in the CP(+) case. In the lower subpanels, solid red, green,
blue, etc., lines show partial rates γν(ω) with ν = (nξ ,1), where nξ =
0, 1, 2, etc., respectively; the leftmost vertical dashed red line shows
the TS (0,0,1); the other vertical dashed lines show SFISs (nξ ,0,1),
their colors coinciding with the colors of the corresponding partial
rates.
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FIG. 4. Characteristics of photoionization from the TS (1,0,0) in
the LP case. The dashed gray line in the lower subpanels shows the
integral on the left-hand side of Eq. (41). The other notation is as in
Fig. 2.
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can diverge. Consider, for example, photoionization from a
bound state in a potential supporting a very narrow shape
resonance of width 	. The photoionization cross section at
the resonance frequency exceeds its off-resonance background
value by a factor of q2 ∝ 	−1, where q is the Fano parameter
[30]. In the limit 	 → 0, when the resonance becomes a bound
state embedded into the continuum, the cross section acquires
a delta-function singularity and diverges. Returning to our
discussion, the complex resonance condition is not satisfied for
the initial TS (0,0,0), because this state is too narrow compared
to SFISs in the interval of fields considered. But this happens
in the case shown in Fig. 4, because the width of the TS (1,0,0),
see Table I, is comparable to those of SFISs. Since we consider
only two discrete values of F , the resonance condition is not
satisfied exactly, but one can see resonance enhancement of
the observables at the positions of SFISs. The value of 	in is
closer to 	nξ nηm for SFISs with higher nξ at the stronger field
F = 0.1, so the resonance enhancement in this case is more
pronounced. Notice that the widths of peaks in partial rates in
Fig. 4(a) correspond to the widths of SFISs, but in Fig. 4(b) the
peaks are much narrower. This is because their actual widths in
the latter case are determined by the resonance enhancement,
that is, by the difference |	nξ nηm − 	in| instead of the SFIS’s
width 	nξ nηm alone. The large width of the present initial state
also explains the disappearance of the oscillatory pattern of the
TMD, which was the dominant feature in Figs. 2 and 3. Some
traces of the pattern still can be seen, but its contrast is greatly
reduced. For the same reason the relation (41) does not hold
well anymore: the dashed gray line showing the integral on
the left-hand side of this relation now is easily distinguishable
from the solid black line showing the right-hand side, and the
difference grows with ω.

Figure 5 presents results for photoionization from the same
TS (1,0,0), but by a circularly polarized field. In this case,
the initial TS is much narrower than SFISs (nξ ,0,1), so no
resonance enhancement occurs. Peaks of partial rates are too
broad and not visible in the total rate. The TMD has almost
no structure; only a low-contrast oscillatory pattern similar to
that in Figs. 2 and 3 can be seen.

Figures 6 and 7 are similar to Figs. 4 and 5, respectively,
but for photoionization from another excited TS (0,1,0). The
resonance enhancement of the manifestations of SFISs in this
case is even more pronounced and can be seen also for the
stronger field in the CP(+) case [see Fig. 7(b)]. This means that
even very broad SFISs can be made visible in photoionization
observables at appropriate frequencies by properly choosing
the field. One new feature can be noticed in Fig. 6(b): the
total rate γ (ω) (solid black line) has a small sharp peak at
ω ≈ 1.4 originating from the partial rate with nξ = 2 (solid
blue line). This peak is explained as follows. The different
separation constant eigenvalues βν of Eq. (24) represent
different branches of a single multivalued analytic function
of E. The branches are connected by branch points. One of
them connecting states with ν = (2,0) and (3,0) is located at
EBP = (1.006 919,−0.285 660). Its imaginary part happened
to be very close to −	in/2 ≈ −0.286 071 at F = 0.1, see
Table I, so at ω = 1.399 621 we have Ein + ω ≈ EBP. Thus,
the sharp peak in Fig. 6(b) is a manifestation of the branch
point of the separation constant βν . Many other such branch
points can be found by varying F .
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FIG. 5. Characteristics of photoionization from the TS (1,0,0) in
the CP(+) case. The dashed gray line in the lower subpanels shows
the integral on the left-hand side of Eq. (41). The other notation is as
in Fig. 3.

We finally consider photoionization from the lowest TS
(0,0,1) with nonzero azimuthal quantum number. The results
in the LP, CP(−), and CP(+) cases are presented in Figs. 8, 9,
and 10, respectively. The figures show partial rates and SFISs
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FIG. 6. Characteristics of photoionization from the TS (0,1,0) in
the LP case. The notation is as in Figs. 2 and 4.
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FIG. 7. Characteristics of photoionization from the TS (0,1,0) in
the CP(+) case. The notation is as in Figs. 3 and 5.

with m = 1, 0, and 2, respectively. The width of the initial
TS in the present case is comparable to those of SFISs with
m = 0, which is why we see strong resonance enhancement
of the manifestations of SFISs in Fig. 9. SFISs with m = 1
are broader, but their traces still can be seen in the total rate
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FIG. 8. Characteristics of photoionization from the TS (0,0,1) in
the LP case. The notation is as in Figs. 3, 5, and 7.
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FIG. 9. Characteristics of photoionization from the TS (0,0,1) in
the CP(−) case. The notation is as in Figs. 2, 4, and 6.

in Fig. 8(b). SFISs with m = 2 are even broader and do not
reveal themselves in Fig. 10.

The most interesting feature of the results presented in
Figs. 2–10 is that peaks manifesting SFISs in photoionization
observables due to the resonance enhancement at some field
strengths become narrow and very well pronounced even for
broad SFISs. To further illustrate this feature and make it more
clear, we return to photoionization from the TS (0,1,0) by a
linearly polarized field (see Fig. 6). We have calculated the
total rate γ (ω) in this case as a function of ω and continuously
varied F ; the results are presented in Fig. 11. The vertical axis
in the figure is related to ω by E = Ein + ω. The cuts of this
figure at F = 0.03 and 0.1 are shown by solid black lines in
Fig. 6. One can clearly see ridges following the positions of
SFISs (nξ ,0,0), along which the values of γ (ω) are resonantly
enhanced. The ridges are much narrower than the SFISs.
The complex resonance condition Ein + ω = Enξ 00 is exactly
satisfied at some points (shown by solid black circles) at the
ridges, and γ (ω) diverges at these points. Note that the other TS
(1,0,0) shown in Fig. 11 also causes resonance enhancement
of the rate, but the exact resonance is never achieved in this
case, because at all fields the TS (0,1,0) remains broader than
the TS (1,0,0).

To conclude the discussion, it is worthwhile to mention that
there exists a different language which may be found useful
for interpreting the above results. In Ref. [8], the field-induced
structure of photoionization cross sections in a static electric
field was interpreted as interference of classical trajectories.
The argumentation proceeds as follows. Suppose there is an
isotropic source of electrons with energy E = k2/2 located at
the origin. For simplicity, we consider only the motion along
the field. Electrons emitted towards z > 0 are reflected by the
field, return to the origin, and interfere with electrons emitted
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FIG. 10. Characteristics of photoionization from the TS (0,0,1)
in the CP(+) case. In the lower subpanels, solid red, green, blue,
etc., lines show partial rates γν(ω) with ν = (nξ ,2), where nξ = 0, 1,
2, etc., respectively; vertical dashed lines show SFISs (nξ ,0,2), their
colors coinciding with the colors of partial rates with the same nξ .
The other notation is as in previous figures.

towards z < 0. The additional action accumulated by the for-
mer electrons is �S = 2k3/3F . The constructive interference
occurs when �S = 2πn, n = 1,2, . . . , so the amplitude of the
outgoing flux as a function of E oscillates attaining maxima
when k3/3F = πn [8]. This argumentation suggests a very
simple and attractive picture which qualitatively explains both
the appearance of peaks in the photoionization cross section
[8] and the principles of operation of the photoionization
microscope [20]. This picture can be also used to interpret
the present results. For example, the absence of structure in
γ (ω) for photoionization from an initial state with min = 0
by a circularly polarized field seen in Figs. 3 and 5 and the
upper panel of Fig. 7 can be interpreted as the absence of
the returning trajectory which exists and interferes with the
direct trajectory in the LP case. However, the applicability
of such an interpretation is limited: the rate γ (ω) may have
peaks even in the absence of the returning trajectory, as is the
case in the lower panel of Fig. 7. The main deficiency of the
picture of interfering trajectories proposed in Ref. [8] is that
it does not account for the atomic potential. The incorporation
of the Coulomb potential into this picture for the case of weak
fields considered in Ref. [11] makes it more adequate, but
at the same time not that simple anymore. The same applies
to strong fields considered in the present paper. Indeed, the
quantization condition for SFISs (10) was derived under the
assumption k3/3F � 1 [22], which corresponds to large nξ . In
this case one can approximately neglect all but the first terms
on the left- and right-hand sides of Eq. (10). The resulting
equation k3/3F = πnξ does not contain any information about
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FIG. 11. Solid green and red lines show real parts of the energies
of the TSs (0,1,0) and (1,0,0), respectively, as in Fig. 1. Dashed lines
show real parts of the energies of SFISs (nξ ,0,0) with nξ = 2, . . . ,10
(from bottom to top) also shown in Fig. 1. The color map shows the
total rate γ (ω) of photoionization from the TS (0,1,0) by a linearly
polarized field, where ω = E − Ein. Solid black circles indicate points
where the complex resonance condition Ein + ω = Enξ 00 is satisfied
for the different SFISs, and therefore the rate diverges.

the potential and coincides with the condition obtained in
Ref. [8]. However, Eq. (10) was shown to closely reproduce
the exact energies of SFISs [22], on the one hand, and the
positions of the peaks of γ (ω) seen in Figs. 4, 6, 7, and 9
are in excellent agreement with the energies of SFISs, on the
other hand. Thus, the potential-dependent terms in Eq. (10)
are essential for describing the peaks quantitatively.

IV. CONCLUSIONS AND PERSPECTIVES

In this paper we have extended previous theoretical studies
of photoionization of hydrogen in a static electric field
[7–11,17] to much stronger fields of order F ∼ 0.1, which
is of interest for strong-field physics. At such fields even the
ground state acquires a non-negligible width, so one should
treat photoionization from a decaying initial TS. We have
defined appropriate photoionization observables—the reduced
photoionization rate and transverse momentum distribution of
photoelectrons. The main conclusion of the paper is that SFISs
found in Ref. [22] do manifest themselves as distinct peaks
in the observables. The widths of the peaks are determined
by the difference between the widths of the SFISs and that
of the initial TS, not by the widths of the SFISs alone. As
a result, the peaks are resonantly enhanced at some fields
and become narrow and very well pronounced even for broad
SFISs. We emphasize that such a resonance enhancement
of the manifestations of SFISs is possible only due to
complexity of the energy of the initial TS; this mechanism
could not be found in the previous studies [7–11,17], which
treated photoionization from an unperturbed bound state. A
decaying TS cannot be probably prepared as an initial state
for photoionization experiment in a truly static field F ∼ 0.1,
because it rapidly decays and such static fields are not currently
available. But it can be prepared by the interaction with a
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strong low-frequency laser field in the adiabatic regime [21].
Within the adiabatic theory [21], photoionization observables
in a quasistatic laser field can be expressed in terms of their
static-field counterparts studied in this paper. Thus, we expect
that SFISs should also manifest themselves in photoionization
by a weak probe pulse in the presence of a quasistatic field of
a strong pump pulse. The study in this direction is in progress.
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APPENDIX: NUMERICAL PROCEDURE

1. Siegert states

To construct hydrogenic SSs one has to solve Eqs. (4)
and (5). We expand the solutions of Eqs. (4) in a basis
consisting of the solutions for F = 0. The basis functions
are known analytically [28] and expressed in terms of the
generalized Laguerre polynomials L

(|m|)
nξ

(ξ ) [29]. Substituting
the expansion into Eq. (4a) turns it into an algebraic eigenvalue
problem with five-diagonal matrix. The same basis is used
for solving Eqs. (5), but prior to expanding the solution the
real η axis is rotated upwards in the complex η plane. The
expansion is applied at the ray arg η = π/3 along which
the outgoing-wave solutions satisfying Eq. (5b) exponentially
decay, and hence can be expanded in a square integrable basis.
Thus, Eq. (5a) is also turned into an algebraic eigenvalue
problem with five-diagonal matrix. Each of these problems can
be solved by means of standard linear algebra packages. Their
simultaneous solutions can be found iteratively, with the initial
guesses for the energy E and separation constant β eigenvalues
at weak fields provided by the field-free hydrogenic energies
and Eq. (9), for TSs, and by the asymptotic quantization
condition derived in Ref. [22] and Eq. (11), for SFISs. Once
a solution is found for one value of F , it can be analytically

continued to stronger or weaker fields by making small steps in
F . The results were controlled by comparing with calculations
by another method, which enables one to construct SSs for
arbitrary spherically symmetric potentials [23].

2. Green’s function

The solutions of Eqs. (24) can be obtained in the same way
as we solve Eqs. (4). This defines the separation constants βν

for a given E. To implement Eq. (34) we additionally need the
regular solutionRν(η) of the homogeneous version of Eq. (27).
To construct this function, we divide the η axis into three parts.
In the inner interval, 0 � η � η0, we expand the solution in
the form

Rν(η) = η(1+|m|)/2
∑

n

anη
n, (A1)

where the coefficients are given by

a0 = 1, a1 = − βνa0

1 + |m| , (A2a)

a2 = −βνa1 + 1
2Ea0

2(2 + |m|) , (A2b)

an�3 = −βνan−1 + 1
2Ean−2 + 1

4Fan−3

n(n + |m|) . (A2c)

In the intermediate interval, η0 � η � η1, we solve the equa-
tion numerically by the standard fourth-order Runge-Kutta
method [31]. In the outer interval, η1 � η, we express the
regular solution in terms of the incoming (−) and outgoing
(+) solutions,

Rν(η) = Wν

2i
[f (−)

ν (η,E) − ie2iδν f (+)
ν (η,E)], (A3)

which are given by the asymptotic expansions

f (±)
ν (η,E) = 21/2

(Fη)1/4
exp

(
± iF 1/2η3/2

3
± iEη1/2

F 1/2

)

×
∑

n

f (±)
n

ηn/2
(A4)

with the coefficients

f
(±)
0 = 1, f

(±)
1 = ±4βν − E2F−1

2iF 1/2
f

(±)
0 , (A5a)

f
(±)
2 = ± (4βν − E2F−1)f (±)

1 ∓ 2iEF−1/2f
(±)
0

4iF 1/2
, (A5b)

f
(±)
n�3 = ± (4βν − E2F−1)f (±)

n−1 ∓ 2iEF−1/2(n − 1)f (±)
n−2 + [(n − 3)n + 9/4 − m2]f (±)

n−3

2inF 1/2
. (A5c)

By matching the solution obtained in the intermediate interval at η1 with that given by Eqs. (A3)–(A5), we find the Wronskian
Wν and the phase shift δν .
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3. The integral in Eq. (34)

Next we describe the numerical technique for calculating the integral in Eq. (34). The initial SS is obtained in the form [see
Eq. (3)]

φin(r) = η−1/2fin(η)φin(ξ )
eiminϕ

√
2π

. (A6)

Substituting this into Eq. (34), we obtain the Cartesian components of dν(ω):

dνx(ω) = 1

4Wν

(δm,min+1 + δm,min−1)
[
I (3/2)
ν J (−1/2)

ν + I (1/2)
ν J (1/2)

ν

]
, (A7a)

dνy(ω) = 1

4iWν

(δm,min+1 − δm,min−1)
[
I (3/2)
ν J (−1/2)

ν + I (1/2)
ν J (1/2)

ν

]
, (A7b)

dνz(ω) = 1

4Wν

δm,min

[
I (2)
ν J (−1)

ν − I (0)
ν J (1)

ν

]
, (A7c)

where

I (k)
ν ≡

∫ ∞

0
ξkφν(ξ )φin(ξ ) dξ (A8)

and

J (k)
ν ≡

∫ ∞

0
ηkRν(η)fin(η) dη. (A9)

The functions φν(ξ ) and φin(ξ ) are given by expansions
in Laguerre basis, so the integrals (A8) can be calculated

analytically. The integration in Eq. (A9) over the inner 0 �
η � η0 and intermediate η0 � η � η1 intervals is performed
along the real axis. The integration over the outer interval
η1 � η is more tricky, because both functions Rν(η) and
fin(η) exponentially diverge as η → ∞ along the real axis.
We regularize this integral as follows. The function Rν(η)
is presented by Eq. (A3). Its incoming (−) and outgoing
(+) parts are integrated along rays obtained by rotating the
real ray [η1,∞) downwards and upwards in the complex η

plane, respectively. The rotation angle is chosen to ensure
convergence and is ∼π/3.
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