
PHYSICAL REVIEW A 95, 043413 (2017)
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Strong-field quantum-state control is investigated, taking advantage of the full—amplitude and phase—
characterization of the interaction between matter and intense ultrashort pulses via transient-absorption
spectroscopy. As an example, we apply the method to a nondegenerate V -type three-level system modeling
atomic Rb, and use a sequence of intense delayed pulses, whose parameters are tailored to steer the system into
a desired quantum state. We show how to experimentally enable this optimization by retrieving all quantum
features of the light-matter interaction from observable spectra. This provides a full characterization of the action
of strong fields on the atomic system, including the dependence upon possibly unknown pulse properties and
atomic structures. Precision and robustness of the scheme are tested, in the presence of surrounding atomic levels
influencing the system’s dynamics.
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I. INTRODUCTION

The advent of laser light and femtosecond pulse-shaping
technology have revolutionized our access to the quantum
properties of matter [1–3], with coherent-control methods
exploiting interference in order to steer a system into a given
state with light [4–8]. Measurement-driven techniques such
as adaptive feedback control are extensively used, especially
when little understanding of the light-matter interaction is
available owing to inaccurately known atomic or molecular
structures, nonideal experimental conditions, or because of
the use of strong, insufficiently characterized laser fields.
Femtosecond pulses are thus utilized to simultaneously control
and interrogate the atomic system, with their shape being
iteratively optimized based on the received experimental
response [5]. However, the associated atomic dynamics remain
concealed in the optimal pulse, often preventing insight into
the underlying physical mechanism. Only recently techniques
were investigated to access the complex reaction pathways
followed by an optimally controlled system [9,10] and in the
strong-field regime, where perturbative approaches fail and the
atomic level structure is dressed by the time-dependent field, a
limited number of effective pulse-shaping strategies have been
identified [11–14].

Major advances in x-ray free-electron lasers (FELs) are
now enabling quantum control also at short wavelengths
[15]. Coherent transform-limited x-ray pulses are produced
via seeding methods at FELs [16,17], opening the field of
x-ray quantum optics [18]. Despite recent advances [19,20],
however, experimental challenges still need to be faced.
Complex spectral-shaping methods are not yet available at
short wavelengths, in particular for hard x rays, and control
schemes, e.g., to manipulate several excited states lying within
the x-ray pulse bandwidth, should preferably rely on optimal
pulse sequences. Methods to measure pulse temporal profiles
are significantly hindered at x-ray frequencies by the absence
of suitable nonlinear crystals. Therefore, measurement-driven
strategies directly accessing the atomic response to intense,
insufficiently characterized pulses should be preferred to
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methods based on theoretical assumptions of the pulse shape.
At the same time, the reduced flexibility at recently established
x-ray FELs renders adaptive feedback still very challenging for
current experiments.

In order to determine an effective route to x-ray quantum
control despite present limitations, we put forward a scheme
to experimentally characterize—in amplitude and phase—the
atomic interaction with intense ultrashort pulses, and use this
information to deterministically guide the system into a desired
state with an optimal pulse sequence [Fig. 1(a)]. Thereby, one
keeps the advantages of a measurement-driven strategy. In
stark contrast to adaptive feedback, however, where optimal
pulse shapes are iteratively determined via a trial-and-error
procedure, our scheme allows access and visualization of the
building blocks constituting the optimal strong-field control
strategy, providing an advantageous means to unravel the
dynamical pathways followed by the system. Furthermore,
for experimental conditions in which feedback may not be
advisable due to, e.g., restricted beam time, our scheme
represents a cost-effective strategy to prepare a given system in
different states: adaptive feedback requires a new sequence of
iterations for every desired state, whereas deterministic strong-
field control could be performed numerically relying on a set of
elementary steps characterized experimentally. Motivated by
recent results [21], the scheme is applied here to control optical
transitions in Rb atoms, but it could be also implemented at
x-ray energies with, e.g., highly charged ions, among the best
candidates for future x-ray quantum-optics applications [18].

The paper is structured as follows. In Sec. II, we take
advantage of a Schrödinger-equation-based formalism to
introduce the interaction operators, which will be used to
characterize the atomic response to intense ultrashort pulses.
We introduce transient-absorption spectroscopy in Sec. III,
and show in Sec. IV how this can be employed to reconstruct
strong-field interaction operators. These extracted operators
are used in Sec. V for deterministic strong-field quantum
control, and the performances of the scheme, also in the
presence of incomplete modeling, are discussed in Sec. VI.
All the results are generalized in terms of a density-matrix
formalism in Sec. VII, in order to fully account for the details
of dissipation. Section VIII concludes the paper. Atomic units
are used unless stated otherwise.
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FIG. 1. (a) Quantum-control scheme based on an optimal se-
quence of experimentally characterized pulses. (b) Interaction of a
quantum system (red, continuous line) with an ultrashort pulse (gray,
dashed line), effectively modeled as an instantaneous effect (orange,
continuous line).

II. INTERACTION OPERATORS

The key quantity we will use to characterize the atomic
response to intense ultrashort pulses is the interaction operator
Û (I ), whose action is represented in Fig. 1(b). Thereby, we
can effectively describe the atomic evolution induced by the
pulse as a δ-like interaction [22,23], where Û (I ) connects the
effective initial and final states of the atomic system, |ψ−〉 and
|ψ+〉, respectively, preceding and following the interaction
with an ultrashort pulse of intensity I :

|ψ+〉 = Û (I )|ψ−〉. (1)

Our deterministic strong-field control method consists in
(a) extracting Û (I ) from experimental spectra and (b) de-
signing the optimal pulse sequence of Fig. 1(a) based on
this reconstructed information, in order to guide the atomic
system into a desired state |ψd〉. In adaptive feedback, a
series of experiments has to be performed for every choice
of |ψd〉, iteratively searching for the optimal combinations
of, e.g., pulse delays, carrier-envelope phases (CEPs), and
intensities. Little knowledge is thereby achieved about the
possible pathways the system could follow and the rules
determining the optimal pulse sequence. In contrast, in
deterministic strong-field control, experiments are first run to
fully characterize the interaction operators Û (I ), providing
a complete experimental mapping of the available control
options and facilitating manipulation and interpretation of the
chosen control strategy. Although interaction operators could
be calculated from theory, our deterministic scheme allows
one to effectively tackle those cases where reliable predictions
are not possible via methods based exclusively on theory, due
to missing knowledge of the atomic structures, pulse shapes,
or the strong-field interaction.

In order to define the interaction operator Û (I ) and extract
it from measurable absorption spectra, we therefore consider
a quantum system in the state |ψ(t)〉 = Û(t,t0)|ψ(t0)〉, where
the evolution operator Û(t,t0), describing the dynamics from
t0 to t , is solution of the Schrödinger equation

dÛ(t,t0)

dt
= −i[Ĥ0 + Ĥint] Û(t,t0), Û(t0,t0) = Î . (2)

We employ a Schrödinger-like approach, where we include
the decay of the excited levels via the complex-valued
atomic-structure Hamiltonian Ĥ0 = ∑

i (ωi − iγi/2)|i〉〈i|,
with energies ωi and linewidths γi of each atomic state |i〉.

In Sec. VII, the results of the paper are generalized via a
density-matrix formalism, in order to fully include the details
of dissipation. In Eq. (2), Î = ∑

i |i〉〈i| is the identity operator

and Ĥint = −[ D̂
− · E+(t) + H. c.] is the electric-dipole (E1)

light-matter interaction Hamiltonian, in the rotating-wave
approximation [24]. Here, D̂

− = ∑
i>j Dij |i〉〈j | is the

negative-frequency part of the dipole-moment operator,
of matrix elements Dij , and E+(t) is the complex
electric field [25]. We assume a quantum-control scheme
based on pulses of the form E(t) = E+(t) + c. c. =
E0 f (t − tc) cos[ωL(t − tc) + φ]êz, centered around tc,
linearly polarized along the êz unit vector, with laser frequency
ωL = 1.59 eV and CEP φ. The envelope function f (t) is
nonvanishing in the interval [−T/2, T /2], with pulse duration
T , and E0 = √

8παI represents the peak field strength, with
peak intensity I and the fine-structure constant α.

The evolution operator Û(t,t0) satisfies the equality
Û(t,t0) = Û(t,s) Û(s,t0), from which it follows that, since
Û(t0,t0) = Î , its inverse is given by Û−1(t,t0) = Û(t0,t). In
the absence of external fields, the known free evolution of the
system under the action of the atomic-structure Hamiltonian
Ĥ0 is given by V̂ (t) = e−iĤ0t , with V̂ −1(t) = V̂ (−t). In
order to effectively describe the action of a pulse on the
atomic system as a function of its intensity, we initially
consider pulses centered on tc = 0 and with vanishing CEP,
associated with the evolution operator Û0(t,t0). The generic
evolution operator Û (t,t0) = Φ̂†(φ) Û0(t − tc,t0 − tc)Φ̂(φ) can
then be written in terms of Û0(t,t0), with the diagonal
operator Φ̂(φ) accounting for the pulse CEP. In the interval
[−T/2, T /2], the time evolution of |ψ(t)〉 = Û0(t,t0)|ψ(t0)〉,
depicted in Fig. 1(b), requires the solution of the Schrödinger
equation (2) in the presence of the external pulse. In
order to operatively describe this strong-field interaction,
we introduce the effective initial and final states |ψ∓〉 =
eiĤ0(∓T/2)|ψ(∓T/2)〉, represented in Fig. 1(b). We there-
fore define Û (I ) = e−iĤ0(−T/2)Û0(T/2, − T/2)eiĤ0(T/2) as the
unique, intensity-dependent operator which connects |ψ+〉
with |ψ−〉 according to Eq. (1).

Endowed with an efficient way to quantify the action of
strong ultrashort pulses, we can summarize our deterministic
quantum-control scheme as follows. To prepare a system in a
desired state |ψd〉, we use the sequence of Np pulses shown in
Fig. 1(a), separated by delays τ̄m = tc,m+1 − tc,m and leading
the system to the state

|ψNp〉 = ˆ̃UNp · · · V̂ (τ̄m) ˆ̃Um · · · V̂ (τ̄1) ˆ̃U1|ψ0〉. (3)

Here, the action of the mth pulse, centered on tc,m, is described

by ˆ̃Um = Φ̂†(φm)Û (Im)Φ̂(φm), with intensity Im and CEP φm,
m ∈ {1, . . . ,Np}.

As a final remark, we notice that, by using a Schrödinger-
equation-based formalism with complex terms added to the
energies of the system, coherences and populations are equally
affected by dissipation, which renders the system open and the
total population nonconserved. Here, however, we assume that
the decay times 1/γi of the system are much larger than the
femtosecond duration of the control pulses and of the pulse
delays τ̄m: the dynamics of the system leading to the final
state |ψNp〉 in Eq. (3) are effectively insensitive to the details of
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the dissipation process, justifying the use of a Schrödinger-like
formalism in the initial sections of this paper. A density-matrix
formalism is presented in Sec. VII.

III. TRANSIENT-ABSORPTION SPECTROSCOPY
FOR MEASUREMENT-DRIVEN CONTROL

To exploit the advantages of a measurement-driven strategy
without employing adaptive feedback, we utilize transient-
absorption spectroscopy (TAS) to reconstruct Û (I ) in ampli-
tude and phase, and use these extracted matrices for quantum-
state control. TAS has been receiving increasing interest for
studies of ultrafast dynamics [26–34]. The experimental setup
is depicted in Fig. 2(a), with pump and probe pulses centered
on tc,pu = 0 and tc,pr = τ , respectively. In a pump-probe setup,
the absorption spectrum S(ω,τ ) of a transmitted weak probe
pulse is observed for varying time delays τ , revealing the
dynamics initiated by the intense pump pulse [35]. At the same
time, recent experiments have employed a probe-pump scheme
(τ < 0), with the probe pulse generating a coherent super-
position of quantum states which is subsequently nonlinearly
excited by the strong pulse [29,36–38]. In this case, absorption
spectral line shapes contain valuable information to quantify
the strong-field dynamics induced by the pump pulse, albeit
requiring schemes to extract information from complex time-
dependent spectra. Characterizing strong-field interactions to
reconstruct Û (I ) with TAS can be straightforwardly imple-
mented experimentally, since the same intense pulse is used
with varying time delays. This minimizes the number of exper-
iments where pulse parameters need be precisely modified, in
contrast to adaptive feedback, where pulse intensities, phases,
and delays are simultaneously and controllably varied at every
iteration to converge to the desired state.

For low densities, where propagation effects can be ne-
glected and the pulses can be assumed to homogeneously
control the sample, the time-delay-dependent spectra result
from the system’s single-particle dipole response,

S1(ω,τ ) ∝ −ωIm

[
êz ·

∫ ∞

−∞
〈 D̂

−
(t,τ )〉e−iω(t−τ )dt

]
, (4)

where 〈 D̂
−

(t,τ )〉 = Tr[ D̂
−
ρ̂(t,τ )] is the expectation value of

the dipole-moment operator D̂
− = ∑

i>j Dij |i〉〈j |, and the
density matrix ρ̂(t,τ ) = ∑

i,j ρij (t,τ )|i〉〈j | describes the time
evolution of the system as a function of time delay. We assume
a weak probe pulse, with full width at half maximum (FWHM)
TFWHM,pr = 15 fs and intensity Ipr = 1 × 108 W/cm2, and

FIG. 2. (a) Transient-absorption-spectroscopy setup used to ex-
perimentally reconstruct strong-field interaction operators. (b) Level
scheme used to model Rb atoms, aiming at the control of the V -type
three-level scheme in the box.

pump pulses of duration TFWHM,pu = 30 fs and intensities Ipu

varying between 0.1 × 1010 W/cm2 and 5 × 1010 W/cm2.
We apply our scheme to Rb atoms [21,39]. Specifically,

we aim at controlling the V -type three-level system formed
by the ground state 5s 2S1/2 ≡ |1〉 and fine-structure-split
excited states 5p 2P1/2 ≡ |2〉 and 5p 2P3/2 ≡ |3〉, with mag-
netic quantum numbers M = ±1/2 and transition energies
ω21 = 1.56 eV and ω31 = 1.59 eV. The E1-allowed transi-
tions |1〉 → |k〉, k ∈ {2,3} [box in Fig. 2(b)] feature �M = 0
and dipole-moment matrix elements D1k = D1k êz [40]. For
such a three-level model, in terms of the atomic coherences
ρ1k(t,τ ), the absorption spectrum results from

S1(ω,τ ) ∝ −ωIm

[
3∑

k=2

D∗
1k

∫ ∞

−∞
ρ1k(t,τ )e−iω(t−τ )dt

]
. (5)

For a system excited by the sole weak probe pulse, mod-
eled as an effectively instantaneous interaction [Fig. 1(b)]
and generating initial coherences ρ1k,0, the ensuing de-
cay of the coherences can be modeled as ρ1k(t,τ ) =
ρ1k,0e

iωk1(t−τ )e−(γk/2)(t−τ )θ (t − τ ), with θ (x) being the Heavi-
side step function. Inserted into Eq. (5), this decay gives rise to
stationary absorption lines, centered on the transition energies
ωk1 and with Lorentzian shapes of width γk . In contrast,
when an intense pump pulse is added, either preceding or
following the probe pulse, the induced strong-field dynamics
ρ̂(t,τ ) result in, e.g., asymmetric Fano-like absorption line
shapes, which carry information about the action of the pump
pulse on the atomic system. The fast oscillations of S1(ω,τ )
as a function of the time delay τ are averaged out in a
noncollinear geometry [21] and cannot be discerned. This
averaged time-delay-dependent spectrum is modeled via a
convolution of the fast oscillating spectrum with a normalized
Gaussian function G(τ,�τ ) of width �τ = 5 × 2π/ωL [21],
thus obtaining

S(ω,τ ) = 〈S1(ω,τ )〉τ =
∫ ∞

−∞
G(τ − τ ′,�τ )S1(ω,τ ′)dτ ′.

(6)

In the following, we will use decay rates γ2 = γ3 =
1/(1500 fs) to model experimental linewidths owing to, e.g.,
collision-induced and Doppler broadening. Radiative decay
times of 27 ns and 25.7 ns, from the excited states |2〉 and |3〉,
respectively, are more than four orders of magnitude larger
than the duration of the femtosecond pulses used for our
control scheme, and spontaneous decay can be neglected for
our system. For femtosecond pulse delays |τ | and femtosecond
pulse durations TFWHM,pu and TFWHM,pr, much shorter than the
decay times 1/γk , the dynamics of the system in between the
two pulses—i.e., for 0 < t < τ in a pump-probe setup, or for
τ < t < 0 in a probe-pump setup—are effectively insensitive
to the details of dissipation. In this time interval, dephasing
is almost completely absent, and the system can be properly
described in the same Schrödinger-like formalism presented
in Sec. II, with the density matrix ρ̂(t,τ ) = |ψ(t,τ )〉〈ψ(t,τ )|
written in terms of the time-delay-dependent state vector
|ψ(t,τ )〉 = ∑

i ci(t,τ )|i〉, such that ρij = cic
∗
j .

Dephasing becomes important only on much longer time
scales. Our Schrödinger-equation-based approach, with a
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complex-valued atomic-structure Hamiltonian, correctly de-
scribes the decay of the coherences in Eq. (5), thereby
modeling the corresponding experimental linewidths. It does
not provide the exact description of the evolution of the
populations following the interaction with the pump and
probe pulses, but this is not relevant for the modeling of
the transient-absorption spectra and, thus, does not affect
our operator-reconstruction method. In Secs. IV–VI, we will
therefore present results based on a Schrödinger-like approach,
with decay rates γk quantifying the slow dephasing of the
system on time scales significantly exceeding |τ |, TFWHM,pu,
and TFWHM,pr. For completeness, and in particular to properly
describe situations in which the details of dissipation are
important on time scales comparable with time delays τ , we
display how our results can be generalized to a more complex
case requiring a density-matrix formulation in Sec. VII.

IV. RECONSTRUCTION OF STRONG-FIELD
INTERACTION OPERATORS

In order to enable the extraction of strong-field interac-
tion (SFI) operators from transient-absorption spectra, we
take advantage of the same instantaneous-interaction model
introduced in Eq. (1) and formally describe the system’s
dynamics in a pump-probe experiment in terms of the operators
Ûpr and Ûpu(I ). By means of Eqs. (5) and (6), we then
derive an analytical fitting model to relate transient-absorption
spectra to the matrix elements Upu,ij of the intensity-dependent
pump-pulse operator Ûpu(I ), and show how this model can be
employed for the experimental reconstruction of Upu,ij . For
weak probe pulses, first-order perturbation theory is used to
model Ûpr, as shown in Appendix B, resulting in

Ûpr ≈

⎛
⎜⎜⎝

1 i ϑ2
2 i ϑ3

2

i
ϑ∗

2
2 1 0

i
ϑ∗

3
2 0 1

⎞
⎟⎟⎠, (7)

where the pulse areas ϑk = ∫ Tpr/2
−Tpr/2 D1kE0,prfpr(t)dt , k ∈ {2, 3},

are defined in terms of duration and peak field strength of the
probe pulse. In contrast, the matrix elements Upu,ij of the
intensity-dependent pump-pulse operator Ûpu(I ) are used as
unknown fit parameters. In Sec. IV A, we provide a detailed
derivation of the analytical fitting model Sfit(ω,τ,Upu,ij ) to
interpret experimental spectra in a probe-pump setup, with
the main result given in Eq. (13). In Sec. IV B, a model
is similarly derived for a pump-probe setup, with the key
formula presented in Eq. (18). Additional remarks for a full
experimental extraction of interaction operators are provided
in Sec. IV C. The Schrödinger-like formalism introduced in
Secs. II and III is used throughout. A generalization of the
scheme with a density-matrix description is presented in
Sec. VII.

A. Probe-pump scheme

For a probe-pump scheme (τ < 0), the weak probe pulse
generates the initial excited state, which is nonperturbatively
modified by the action of the second-arriving intense pump
pulse. In terms of the operators Ûpr and Ûpu(I ), modeling
light-matter interactions as δ-like transformations, the effec-
tive evolution of the time-delay-dependent state |ψfit(t,τ )〉 =∑3

i=1 cfit,i(t,τ )|i〉 from the effective initial state |ψ0〉 = |1〉 is
given by

|ψfit(t,τ )〉=

⎧⎪⎨
⎪⎩

|ψ0〉, if t < τ,

V̂ (t − τ ) Ûpr |ψ0〉, if τ < t < 0,

V̂ (t) Ûpu(I ) V̂ (−τ ) Ûpr |ψ0〉, if t > 0.

(8)

We can analogously define the effective density-matrix el-
ements ρfit,ij (t,τ ) = cfit,i(t,τ ) [cfit,j (t,τ )]∗, in terms of the
components cfit,i(t,τ ) of |ψfit(t,τ )〉. By inserting ρfit,ij (t,τ ) into
Eq. (5), an analytical interpretation model for the probe-pump
spectrum is obtained as

S1,fit(ω,τ,Upu,ij ) ∝ −ωIm

{
3∑

k=2

D∗
1k

[ ∫ 0

τ

ρfit,1k(t,τ )e−iω(t−τ )dt +
∫ ∞

0
ρfit,1k(t,τ )e−iω(t−τ )dt

]}
. (9)

The first integral in Eq. (9) is equal to∫ 0

τ

ρfit,1k(t,τ )e−iω(t−τ )dt = Upr,11 U ∗
pr,k1

∫ 0

τ

V ∗
kk(t − τ )e−iω(t−τ )dt = −i

ϑk

2

1 − ei(ω−ωk1)τ e(γk/2)τ

i(ω − ωk1) + γk

2

, (10)

which, for ω ≈ ωk1, does not feature fast oscillations as a function of the time delay τ . The second integral in Eq. (9) is given by∫ ∞

0
ρfit,1k(t,τ )e−iω(t−τ )dt =

3∑
j,j ′=1

Upu,1j U ∗
pu,kj ′ Vjj (−τ ) V ∗

j ′j ′ (−τ ) Upr,j1 U ∗
pr,j ′1

∫ ∞

0
V ∗

kk(t)e−iω(t−τ )dt

= 1

i(ω − ωk1) + γk

2

3∑
j,j ′=1

Upu,1j U ∗
pu,kj ′ [Vjj (−τ ) V ∗

j ′j ′ (−τ )eiωτ ] Upr,j1 U ∗
pr,j ′1. (11)

Firstly, all terms in the above sum depend upon nonvanishing
elements of the probe-pulse operator Ûpr [Eq. (7)]. In a
collinear geometry all terms in the above sum contribute to the

resulting transient-absorption spectrum, which can be used to
extract SFI matrix-element products such as Upu,1j Upu,kj ′ . In
a noncollinear geometry, however, such as the one utilized in
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Ref. [21], fast oscillating terms due to [Vjj (−τ ) V ∗
j ′j ′ (−τ )eiωτ ] are averaged out and do not contribute to the resulting spectra.

Equation (11) can be employed to recognize and eliminate all terms which, at ω ≈ ωk1, feature fast oscillations in τ . As a result,
in terms of the two functions

A2(τ ) = Upu,11 U ∗
pu,22 + Upu,11 U ∗

pu,23
ϑ3

ϑ2
e−iω32τ e[(γ3−γ2)/2]τ ,

A3(τ ) = Upu,11 U ∗
pu,33 + Upu,11 U ∗

pu,32
ϑ2

ϑ3
eiω32τ e[(γ2−γ3)/2]τ , (12)

average experimental spectra can be modeled by

Sfit(ω,τ,Upu,ij ) = 〈S1,fit(ω,τ,Upu,ij )〉τ

∝ −ωIm

(
3∑

k=2

−iD∗
1k

ϑk

2

i(ω − ωk1) + γk

2

{1 + ei(ω−ωk1)τ e(γk/2)τ [Ak(τ ) − 1]}
)

. (13)

The proportionality symbol ∝ stresses that these spectra depend on a density-dependent multiplication factor K , which we treat
here as a fit parameter, along with the SFI matrix-element products Upu,11 U ∗

pu,22, Upu,11 U ∗
pu,33, Upu,11 U ∗

pu,32, and Upu,11 U ∗
pu,23.

B. Pump-probe scheme

For a pump-probe scheme (τ > 0), in terms of the operators Ûpr and Ûpu(I ), the effective evolution of the time-delay-dependent
state |ψfit(t,τ )〉 from the effective initial state |ψ0〉 = |1〉 can be modeled as

|ψfit(t,τ )〉 =

⎧⎪⎨
⎪⎩

|ψ0〉, if t < 0,

V̂ (t) Ûpu(I ) |ψ0〉, if 0 < t < τ,

V̂ (t − τ ) Ûpr V̂ (τ ) Ûpu(I ) |ψ0〉, if t > τ .

(14)

By including into Eq. (5) the effective evolution of the matrix elements ρfit,ij (t,τ ) from Eq. (14), an analytical interpretation
model for the pump-probe spectrum is derived, which can be split into the following sum:

S1,fit(ω,τ,Upu,ij ) ∝ −ωIm

{
3∑

k=2

D∗
1k

[ ∫ τ

0
ρfit,1k(t,τ )e−iω(t−τ )dt +

∫ ∞

τ

ρfit,1k(t,τ )e−iω(t−τ )dt

]}
. (15)

The first integral in Eq. (15) is equal to∫ τ

0
ρfit,1k(t,τ )e−iω(t−τ )dt = Upu,11 U ∗

pu,k1

∫ τ

0
V ∗

kk(t)e−iω(t−τ )dt = Upu,11 U ∗
pu,k1e

iωτ 1 − e−i(ω−ωk1)τ e−(γk/2)τ

i(ω − ωk1) + γk

2

. (16)

As described in the case of the probe-pump scheme, the fast oscillations at frequencies ω ≈ ωk1 are averaged out in a noncollinear
geometry, and this first integral does not contribute to the associated average absorption spectrum. The second integral in Eq. (15)
is given by ∫ ∞

τ

ρfit,1k(t,τ )e−iω(t−τ )dt =
3∑

j,j ′=1

Upr,1j U ∗
pr,kj ′ Vjj (τ ) V ∗

j ′j ′(τ ) Upu,j1 U ∗
pu,j ′1

∫ ∞

τ

V ∗
kk(t − τ )e−iω(t−τ )dt

= 1

i(ω − ωk1) + γk

2

3∑
j,j ′=1

Upr,1j U ∗
pr,kj ′[Vjj (τ ) V ∗

j ′j ′(τ )]Upu,j1 U ∗
pu,j ′1. (17)

By using Eq. (7) and removing fast oscillating terms due to Vjj (τ ) V ∗
j ′j ′(τ ), which would not appear in a noncollinear geometry,

we conclude that

Sfit(ω,τ,Upu,ij ) = 〈S1,fit(ω,τ,Upu,ij )〉τ

∝ −ωIm

{
D∗

12

i(ω − ω21) + γ2

2

[(
−i

ϑ2

2
|Upu,11|2 + i

ϑ2

2
|Upu,21|2e−γ2τ

)
+ i

ϑ3

2
Upu,31 U ∗

pu,21e
−iω32τ e−[(γ2+γ3)/2]τ

]

+ D∗
13

i(ω − ω31) + γ3

2

[(
−i

ϑ3

2
|Upu,11|2 + i

ϑ3

2
|Upu,31|2e−γ3τ

)
+ i

ϑ2

2
Upu,21 U ∗

pu,31e
iω32τ e−[(γ2+γ3)/2]τ

]}
, (18)

which explicitly depends upon |Upu,11|2, |Upu,22|2, |Upu,33|2, and (Upu,31 U ∗
pu,21). The same multiplication factor K should be used

which was extracted from the probe-pump spectrum [see Eq. (13)].
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C. Additional remarks

Summarizing the results from the above sections, one can
fit probe-pump spectra to quantify Upu,11 U ∗

pu,22, Upu,11 U ∗
pu,33,

Upu,11 U ∗
pu,32, and Upu,11 U ∗

pu,23, and the common multiplication
factor K . Once K is known, it can be employed to fit pump-
probe spectra, and thereby extract |Upu,11|2, |Upu,21|2, |Upu,31|2,
and (Upu,31 U ∗

pu,21).

All elements of the interaction operator Ûpu which can be
retrieved from probe-pump spectra are inferred from product
terms Upu,11U

∗
pu,ij , with |Upu,11| coming from pump-probe

spectra. This has two consequences. Firstly, the phase β of
Upu,11 = |Upu,11|eiβ cannot be accessed, resulting in SFI matrix
elements

Upu,ij = (Upu,11U
∗
pu,ij )∗

|Upu,11| eiβ, (19)

known up to this common phase β. However, this is not a
limitation, since it only implies that the final state can be
measured and controlled up to a nonrelevant phase term,
with access to the information about relevant relative phases.
Secondly, when |Upu,11| is very close to 0, small uncertainties
in its reconstructed value are amplified when the division
in Eq. (19) is performed to retrieve the remaining matrix
elements. For a certain range of pump-pulse intensities, we
verified that this is indeed the main source of uncertainty in
the extraction of Ûpu, yet always below the relative level of 8%.

In a noncollinear geometry, the remaining pump-probe fit
parameter (Upu,31 U ∗

pu,21) can be used to quantify the relative
phase arg (Upu,31) − arg (Upu,21), but not the absolute phases of
Upu,21 and Upu,31—at least up to the same common phase β we
introduced before. However, this can be easily circumvented
by directly observing the absorption spectrum of a single
intense pump pulse. The associated spectral lines are given by

Sfit(ω,Upu,ij) ∝−ωIm

{
M+

3∑
k=2

D∗
1k

∫ ∞

0
ρfit,1k(t)e−iωtdt

}
, (20)

whereM is a fit parameter modeling the broadband (and hence
constant for small frequency intervals) Fourier transform of
ρ1k(t) in the interval [−T/2, T /2], i.e., in the presence of the
pump pulse. The remaining integral∫ ∞

0
ρfit,1k(t)e−iωtdt

= Upu,11 U ∗
pu,k1

∫ ∞

0
e−i(ω−ωk1)t e−(γk/2)t dt

= Upu,11 U ∗
pu,k1

1

i(ω − ωk1) + γk

2

(21)

exploits the effective evolution of the system, given by

|ψfit(t)〉 =
{

|ψ0〉, if t < 0,

V̂ (t) Ûpu(I ) |ψ0〉, if t > 0.
(22)

Up to the same common phase β already mentioned above,
this allows one to retrieve the phases of Upu,21 and Upu,31,
complementing the amplitude information accessible by fitting
pump-probe spectra.

Finally, in order to extract Upu,12 and Upu,13 in a noncollinear
geometry, we exploit the fact that, when the envelope function

f (t) = f (−t) is a symmetric function of time, then the
associated interaction operator Û is a symmetric matrix, as
shown in Appendix C, such that Upu,1k = Upu,k1. We stress
that this is not a disadvantage of the operator-reconstruction
scheme proposed here. As shown by Eq. (11), an independent
extraction of Upu,12 and Upu,13, without additional assumptions
on the envelope f (t), is possible in a collinear geometry.

V. QUANTUM CONTROL GUIDED BY EXPERIMENTALLY
CHARACTERIZED PULSES

The analytical fitting model presented in Sec. IV allows one
to reconstruct the SFI operators ÛR(I ) in amplitude and phase
directly from experimental observables:

Sexp(ω,τ )

Sfit(ω,τ,Upu,ij )

}
−→
fitting

Reconstructed operator ÛR. (23)

Here, we solve the Schrödinger equation (2), with decay
rates γk , and calculate the time evolution of the system interact-
ing with delayed pump and probe pulses in a Schrödinger-like
formalism. The details on the equations of motion are shown
in Appendix A. We then use the obtained solution to simulate
experimental spectra Sexp(ω,τ ) via Eqs. (5) and (6), for
pump pulses of intensities varying between 0.1 × 1010 W/cm2

and 5 × 1010 W/cm2 and for the noncollinear geometry of
Fig. 2(a) [21]. The effectiveness of the SFI reconstruction
method is exemplified in Fig. 3(a), where we display the
SFI matrix ÛR(I ) extracted from the numerical simulation
of absorption spectra S(ω,τ ), for a pump intensity of I =
3.3 × 1010 W/cm2. The same reconstruction scheme could

FIG. 3. (a) Reconstructed SFI operator ÛR(I ) for I = 3.3 ×
1010 W/cm2, with bar heights (colors) exhibiting matrix-element
amplitudes (phases). (b), (c) Two-pulse scheme implemented for
I1 = 3.3 × 1010 W/cm2, I2 = 3.6 × 1010 W/cm2, τ̄ = 198 fs, and
φ̄ = 1.88 rad, with (b) a section of the control landscape as a function
of I1 and I2, for fixed τ̄ and φ̄ and (c) the corresponding evolution
of the populations of state |1〉 (blue, continuous), |2〉 (purple,
dashed), and |3〉 (yellow, dot-dashed), with a reached final state
|ψr〉 = ∑3

i=1 cr,i |i〉 featuring |cr,2|2/|cr,3|2 = 2.07 and cr,1 = 0.00.
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be implemented in an experiment, enabling access to strong-
field light-matter interactions without requiring knowledge of
pump-pulse intensities or the system’s dynamics.

Once SFI operators are reconstructed as a function of pulse
intensities, these are employed to implement our deterministic
control method from Eq. (3). In the following, we focus on
a two-pulse scheme, and use reconstructed SFI operators to
optimize time separation τ̄ , intensities Im, and CEPs φm, m ∈
{1, 2}, to control the populations of the final state |ψ2〉. This
yields a predicted final state

|ψp〉 =
3∑

i=1

cp,i |i〉 = ÛR(I2)Φ̂(φ̄)Ŵ (τ̄ )ÛR(I1) |1〉, (24)

where we neglect phase terms not influencing the fi-
nal populations, and introduce the total phase φ̄ =
φ2 − φ1 − ωLτ̄ , the CEP operator Φ̂(φ) = diag(1,eiφ,eiφ),
and the slowly oscillating operator Ŵ (τ̄ ) = diag(1,

e−[γ2/2+i(ω21−ωL)]τ̄ ,e−[γ3/2+i(ω31−ωL)]τ̄ ).
In order to show how coherently controlled dynamics can

be interpreted in terms of experimentally reconstructed SFI
operators, in Fig. 3 we present results for a sequence of two
strong pulses aiming at the desired state |ψd〉 = ∑3

i=1 cd,i |i〉,
of amplitudes (cd,1,cd,2,cd,3) = Aeiγ (0,

√
2/3,eiδ

√
1/3), such

that the ground state is completely depopulated, while the
excited state |2〉 is twice as much populated as |3〉, despite
a less favorable coupling to the ground state. The total final
population A2 and the phases γ and δ are free parameters.
Optimal pulse properties are determined via minimization of
the cost function [1]

g(I1,I2,τ̄ ,φ̄) =
√√√√ 3∑

i=1

∣∣|cd,i |2 − |cp,i |2
∣∣2

, (25)

calculated for a discrete set of parameters and ensuring that
|〈ψd|ψd〉|2 = |〈ψp|ψp〉|2 = A2.

Techniques from quantum optimal control theory have
been developed to analyze quantum-control landscapes [1]
and determine how a desired state can be optimally reached
with pulse shaping. Similar methods could be implemented in
our case in order to identify the volume in the Hilbert space
spanned by the vector states |ψp〉 in Eq. (24) and whether
the desired final state |ψd〉 lies in this volume. Thereby,
a sequence of pulses can be optimally designed in order
to minimize the cost function g(I1,I2,τ̄ ,φ̄) and, thus, guide
the system to |ψd〉. In contrast to quantum optimal control
theory, however, deterministic strong-field control enables this
numerical optimization based on experimentally reconstructed
SFI operators.

A section of the control landscape [1], associated with
global minima of the cost function g, is displayed in Fig. 3(b),
confirming that it is a smooth function of its parameters,
and small uncertainties in the pulse intensities do not lead
to final states significantly differing from those expected.
Figure 3(c) shows the resulting dynamics of the system
[Eq. (2)], when excited with the sequence of pulses determined
via minimization of g, exhibiting very good agreement with the
desired final state. The displayed dynamics could be directly
inferred from the reconstructed SFI operators. The state
reached after the first intense pulse in Fig. 3(c) is completely

encoded in the matrix elements plotted in Fig. 3(a), such
that deterministic strong-field control provides an experiment-
based visualization of the building blocks exploited by optimal
control to reach a desired state. Rabi oscillations induced
by strong ultrashort pulses are apparent in Fig. 3(c), but
knowledge of their explicit time dependence is not necessary
to control the reached final state. Although we focus on
the control of final populations, this nevertheless requires
phase knowledge of ÛR(I ). In addition, Φ̂(φ̄) and V̂ (τ̄ ) allow
one to independently control the phase acquired by the two
excited states |2〉 and |3〉 in the time delay τ̄ between the two
pulses [2].

VI. PERFORMANCES OF THE SCHEME IN THE
PRESENCE OF INCOMPLETE MODELING

To verify the precision of the scheme, in Figs. 4(a)
and 4(b) we display final populations reached by the three-
level system when integrating Eq. (2) for the sequences of
pulses determined through the minimization of Eq. (25). The
extracted SFI operators have an intrinsic uncertainty, and we
therefore display results averaged among the first N best
sets of optimization parameters (with standard deviation)
as a function of N . Very good control performances are
exhibited: complete depopulation of the ground state is reached
[Fig. 4(a)], and the mean value of the ratio |c2/c3|2 is equal to 2
for the first best sets of optimization parameters, with relative
uncertainty of ∼3% [Fig. 4(b)].

Finally, we test our scheme in a realistic scenario,
characterized by the presence of incomplete modeling or
perturbations. To derive Sfit(ω,τ,Upu,ij ) from Eq. (6), basic
knowledge of the atomic transitions responsible for the

FIG. 4. [(a),(c)] Reached ground-state population and [(b),(d)]
ratio of the populations of the two excited states |2〉 and |3〉, averaged
over the N best sets of optimization pulse parameters {I1,I2,τ̄ ,φ̄},
as a function of N . Mean values are displayed as dashed lines;
the surrounding regions (bounded by continuous lines) have an
amplitude given by the corresponding standard deviation. Desired
final population and ratios are exhibited by black, dotted lines.
Reached final populations and ratios are calculated for [(a),(b)] a
three-level-only system and [(c),(d)] a five-level system. The best
optimization parameters are obtained via minimization of the cost
function (25), calculated with SFI operators ÛR(I ) reconstructed
from transient-absorption spectra numerically simulated for [(a),(b)]
a three-level and [(c),(d)] a five-level model.
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absorption lines appearing in the spectrum is necessary.
A robust control scheme should enable the manipulation
of the states of interest also when additional, moderately
contributing levels are present, which may not be known
or experimentally discernible. As an example, we employ
the analytical fitting model Sfit(ω,τ,Upu,ij ) to extract 3 × 3
SFI operators ÛR from transient-absorption spectra in Rb
atoms, stemming from the complete numerical simulation of
the dynamics of the five-level system displayed in Fig. 2(b).
The E1-allowed transitions |2〉 → |4〉, |3〉 → |4〉, and |3〉 →
|5〉, with �M = 0, with transition energies ω42 = 1.63 eV
and ω53 = 1.60 eV, are resonantly excited by the optical
pulses, albeit more weakly than the |1〉 → |k〉 transitions,
k ∈ {2, 3}, owing to smaller dipole-moment matrix elements
Dkl = Dkl êz, l ∈ {4, 5} [41,42]. To ensure that this resonant
coupling contributes moderately, we assume large linewidths
γ4 and γ5, here set equal to 1/(100 fs) [43], such that only
the two lines associated with the |1〉 → |k〉 transitions can be
clearly distinguished in the absorption spectra. Photoionization
in the presence of an optical pulse is also accounted for [44].
SFI operators ÛR(I ) are extracted from these numerically
calculated spectra, and used to control the three-level system
in the box of Fig. 2(b) via minimization of the cost function
g. The very good performances displayed in Figs. 4(c)
and 4(d) confirm that the method is robust and only marginally
influenced by additional levels not accounted for explicitly in
Sfit(ω,τ,Upu,ij ). Furthermore, in contrast to methods based
exclusively on theory, maximal information on the strong-
field interaction is extracted from the experimental spectra,
including the background effect of unknown additional levels
on the SFI operators ÛR(I ) of interest.

Adding chirp may increase the probability to populate the
excited states |4〉 and |5〉 [45] and would render it necessary
to extract the SFI operator associated with the full five-level
system. This would require a full analytical fitting model to
interpret transient-absorption spectra from the associated five-
level system as a function of the pump-pulse intensity and
chirp. However, it would enable more general control schemes,
based on sequences of intense chirped pulses, in order to create
desired final states which are a superposition of all five levels.

VII. DETERMINISTIC STRONG-FIELD QUANTUM
CONTROL WITH DENSITY-MATRIX

INTERACTION OPERATORS

Our deterministic strong-field control method has been thus
far discussed in a Schrödinger-like formalism, in terms of state
vectors |ψ〉 and the associated SFI operators Û (I ) defined in
Sec. II. The equations of motion (Appendix A), assuming
a decay-rate model with a complex-valued atomic-structure
Hamiltonian, were used to simulate transient-absorption spec-
tra, and the analytical fitting model developed in Sec. IV was
used in Secs. V and VI to reconstruct SFI operators Û (I ). For
our implementation with Rb atoms, this is a proper treatment,
in the light of the very different time scales in which the strong-
field dynamics and the relaxation of the system take place. For
more general cases, however, a density-matrix formulation
of our operator-reconstruction and quantum-control scheme
is possible, as we show in the following. In this section, we
will focus on the case of a three-level system, although the

equations can be easily generalized to higher numbers of levels
if necessary.

A. Density-matrix interaction operators

We describe the system in terms of a 3 × 3 density
matrix ρ̂(t) = ∑

i,j ρij (t)|i〉〈j |, with a diagonal element ρii(t)
associated with the population of the ith level, and off-diagonal
matrix elements for the atomic coherences. A density-matrix
formulation may be necessary, e.g., to explicitly account for
the spontaneous decay of the two excited levels |2〉 and |3〉 into
the ground state |1〉, at rates given by γ22 and γ33, respectively.
Similarly, it is necessary to account for decoherence processes
differently affecting the atomic coherences ρ12, ρ13, and ρ23,
than the populations ρ22 and ρ33. In this section, we introduce
the decoherence rates γ21, γ31, and γ23, to quantify the
dephasing of ρ12, ρ13, and ρ23, respectively. The time evolution
of ρ̂(t) is determined by the solution of the master equation

dρ̂(t)

dt
= i[ρ̂(t),Ĥ0 + Ĥint] + L[ρ̂(t)], ρ̂(t0) = ρ̂0 = |1〉〈1|,

(26)

with the atomic-structure Hamiltonian now given by Ĥ0 =∑
ωi |i〉〈i|, the same E1 light-matter interaction Hamiltonian

Ĥint introduced in Sec. II, and the superoperator L[ρ̂(t)] de-
scribing dissipation. The explicit form of the set of differential
equations

dρij (t)

dt
=

∑
i ′j ′

Mij,i ′j ′ (t)ρi ′j ′ (t), (27)

satisfied by the elements ρij (t) of the density matrix ρ̂(t)
in terms of the elements Mij,i ′j ′ (t) of the operator M̂(t),
i,j,i ′,j ′ ∈ {1,2,3}, is given in detail in Appendix D. In analogy
to the discussion provided in Sec. II, the state ρ̂(t) at time t can
be related to the state ρ̂(t0) at time t0 via the evolution operator
Û(t,t0), such that ρij (t) = ∑

i ′j ′ Uij,i ′j ′(t,t0)ρi ′j ′(t0), where

dUij,i ′j ′(t,t0)

dt
=

∑
i ′′j ′′

Mij,i ′′j ′′ (t)Ui ′′j ′′,i ′j ′(t,t0),

Uij,i ′j ′ (t0,t0) = δii ′δjj ′ . (28)

In order to highlight the difference between the present
density-matrix formulation and the Schrödinger-like formal-
ism used in the previous sections, we write explicitly the
equations of motion (27) satisfied by the elements of the
density matrix in the absence of external fields:

dρ11

dt
= γ22ρ22 + γ33ρ33,

dρkk

dt
= −γkkρkk,

dρ1k

dt
= −γk1ρ1k + iωk1ρ1k,

dρ23

dt
= −γ23ρ23 + iω32ρ23, (29)

with k ∈ {2,3} and ρij = ρ∗
ji . Here, population decay from

the excited states back to the ground state is explicitly
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accounted for, ensuring that the total population ρ11(t) +
ρ22(t) + ρ33(t) = 1 is conserved; furthermore, we employ
different decay rates for coherences and populations. From
the above equations, the free evolution of the system is given
by

ρ11(t) = ρ11(t0) + ρ22(t0)(1 − e−γ22(t−t0))

+ ρ33(t0)(1 − e−γ33(t−t0)),

ρkk(t) = ρkk(t0)e−γkk (t−t0),

ρ1k(t) = ρ1k(t0)e−γk1(t−t0)eiωk1(t−t0),

ρ23(t) = ρ23(t0)e−γ23(t−t0)eiω32(t−t0). (30)

The coefficients in the above set of equations define the
elements of the operator V̂(t), which can be used to de-
scribe the free evolution of the density matrix as ρij (t) =∑

i ′j ′ Vij,i ′j ′(t − t0)ρi ′j ′(t0).

In analogy to the derivation of the SFI operators Û (I )
in Sec. II, also in this case we focus on pulses centered on
tc = 0 and with vanishing CEP, associated with the evolution
operator Û0(t,t0). The generic evolution operator Û(t,t0)
then has components Uij,i ′j ′ (t,t0) = �∗

ij,ij (φ)U0;ij,i ′j ′ (t − tc,

t0 − tc)�i ′j ′,i ′j ′(φ), where the operator �̂(φ) accounts for the
pulse CEP and its components �ij,i ′j ′(φ) = Φii ′(φ)Φ∗

jj ′(φ)

are defined in terms of the diagonal operator Φ̂(φ) =∑
i Φii(φ)|i〉〈i| introduced in Sec. II. For a pulse non-

vanishing in the interval [−T/2, T /2], we can then in-
troduce effective initial and final density matrices ρ∓

ij =∑
i ′j ′ Vij,i ′j ′(±T/2)ρi ′j ′(∓T/2), and the unique density-

matrix interaction operator Û(I ) connecting them,

ρ+
ij =

∑
i ′j ′

Uij,i ′j ′ (I )ρ−
i ′j ′ , (31)

whose components are given by Uij,i ′j ′(I ) = ∑
i ′′j ′′

∑
i ′′′j ′′′

[Vij,i ′′j ′′ (−T/2)U0;i ′′j ′′,i ′′′j ′′′ (T/2,−T/2)Vi ′′′j ′′′,i ′j ′ (−T/2)]. The
deterministic quantum-control method outlined in Eq. (3) in
a Schrödinger-like formalism can then be generalized to the
case in which a density-matrix description is required. For
example, for two control pulses of intensities I1 and I2,
CEPs φ1 and φ2, and separated by a time delay τ̄ , the state
reached by the system is described by a density matrix ρ̂2 of

components

ρ2;ij =
∑
i ′j ′

∑
i ′′j ′′

∑
i ′′′j ′′′

Ũ2;ij,i ′j ′ Vi ′j ′,i ′′j ′′ (τ̄ ) Ũ1;i ′′j ′′,i ′′′j ′′′ ρ0;i ′′′j ′′′ ,

(32)

with the initial state given by the density matrix ρ̂0 =
|1〉〈1| and the components Ũm;ij,i ′j ′ = �∗

ij,ij (φm)

Uij,i ′j ′ (Im)�i ′j ′,i ′j ′(φm) of the mth-pulse operator ˆ̃Um,
m ∈ {1, 2}, accounting for the effect of the CEP of the
associated pulse.

B. Reconstruction of density-matrix strong-field
interaction operators

In order to extract density-matrix SFI (DM-SFI) operators
from TAS, an analytical fitting model has to be developed,
relating the spectra given by Eqs. (5) and (6) to the operators
Ûpu(I ) and Ûpr, associated with a pump pulse of intensity I

and a probe pulse, respectively.
For ultrashort pulses, acting on a time scale much shorter

than the time scale of the decay processes, it is valid to assume
that Û = Û ⊗ Û ∗, i.e., Uij,i ′j ′ = Uii ′ U

∗
jj ′ , for both pump and

probe pulses. This assumption does not affect the numerical
integration of the equations of motion (27) and the simulation
of transient-absorption spectra in Sec. VII C. In contrast to
Sec. IV and Appendix A, however, here we fully account
for the details of the relaxation of the system during its free
evolution, modeling the dynamics in between pump and probe
pulses in terms of the free-evolution operator V̂(t). A similar
approach can be used to model quantum systems also in the
presence of a more structured reservoir, provided that the free
evolution of the system is known and can be used to define the
operator V̂(t). This will be exemplified in Sec. VII C, where
spectra are numerically simulated based on the evolution of
the density matrix, and used to extract the associated DM-SFI
operators.

For a TAS experiment in a probe-pump setup, we can
describe the effective evolution of the time-delay-dependent
density matrix ρ̂fit(t,τ ) from the effective initial state ρ̂0 =
|1〉〈1| as

ρfit;ij (t,τ ) =

⎧⎪⎨
⎪⎩

ρ0;ij if t < τ,

Vij,i ′j ′(t − τ ) Upr;i ′j ′,i ′′j ′′ ρ0;i ′′j ′′ if τ < t < 0,

Vij,kl(t) Upu;kl,k′l′(I ) Vk′l′,i ′j ′(−τ ) Upr;i ′j ′,i ′′j ′′ ρ0;i ′′j ′′ if t > 0,

(33)

where summation over repeated indices is implicit. By inserting ρfit,ij (t,τ ) into Eq. (5), an analytical interpretation model for the
probe-pump spectrum is obtained consisting also in this case of two integrals. The first integral reads∫ 0

τ

ρfit,1k(t,τ )e−iω(t−τ )dt =
∫ 0

τ

3∑
i,j=1

V1k,ij (t − τ ) Upr;ij,11e
−iω(t−τ )dt = −i

ϑk

2

1 − ei(ω−ωk1)τ eγk1τ

i(ω − ωk1) + γk1
, (34)

where we have used the fact that V1k,ij (t) = e−γk1t eiωk1t δ1iδkj [Eq. (D9)]. The second integral is similarly given by∫ ∞

0
ρfit,1k(t,τ )e−iω(t−τ )dt =

3∑
i,j=1

3∑
i ′,j ′=1

3∑
i ′′,j ′′=1

Upu;ij,i ′j ′ Vi ′j ′,i ′′j ′′ (−τ ) Upr,i ′′j ′′,11

∫ ∞

0
V1k,ij (t)e−iω(t−τ )dt

= 1

i(ω − ωk1) + γk1

3∑
i ′,j ′=1

3∑
i ′′,j ′′=1

Upu,1i ′U
∗
pu,kj ′ [Vi ′j ′,i ′′j ′′ (−τ )eiωτ ] Upr,i ′′1U

∗
pr,j ′′1. (35)
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By including explicitly the values of Vi ′j ′,i ′′j ′′ (−τ ) from Eq. (D9), one obtains an equation in which, in contrast to Eq. (11),
different decay rates for coherences and populations are present and additional terms appear due to the spontaneous decay from
the excited states to the ground state. In order to model spectra from a noncollinear geometry, fast oscillating terms due to
[Vi ′j ′,i ′′j ′′ (−τ )eiωτ ] can be eliminated, resulting in the average spectrum

〈Sfit(ω,τ,Upu,ij )〉τ ∝ −ωIm

{
3∑

k=2

D∗
1k

1

i(ω − ωk1) + γk1

[
− i

ϑk

2
(1 − ei(ω−ωk1)τ eγk1τ )

− i
ϑ2

2
Upu,11 U ∗

pu,k2e
i(ω−ω21)τ eγ21τ − i

ϑ3

2
Upu,11U

∗
pu,k3e

i(ω−ω31)τ eγ31τ

]}
. (36)

In a pump-probe setup, the same formalism can be used, resulting in an effective evolution given by

ρfit;ij (t,τ ) =

⎧⎪⎨
⎪⎩

ρ0;ij if t < 0,

Vij,i ′j ′(t) Upu;i ′j ′,i ′′j ′′ (I ) ρ0;i ′′j ′′ if 0 < t < τ,

Vij,kl(t − τ ) Upr;kl,k′l′ Vk′l′,i ′j ′ (τ ) Upu;i ′j ′,i ′′j ′′ (I ) ρ0;i ′′j ′′ if t > τ,

(37)

where, also in this case, summation over repeated indices is implicit. By following the same procedure outlined for the probe-pump
case, and after removing the fast oscillating terms, one obtains the average spectrum given by

〈Sfit(ω,τ,Upu,ij )〉τ ∝ −ωIm

{
D∗

12

i(ω − ω21) + γ21

[(
−i

ϑ2

2
|Upu,11|2 + i

ϑ2

2
|Upu,21|2(2e−γ22τ − 1) + i

ϑ2

2
|Upu,31|2(e−γ33τ − 1)

)

+ i
ϑ3

2
Upu,31 U ∗

pu,21e
−iω32τ e−γ23τ

]
+ D∗

13

i(ω − ω31) + γ31

[(
−i

ϑ3

2
|Upu,11|2 + i

ϑ3

2
|Upu,31|2 (2e−γ33τ − 1)

+ i
ϑ3

2
|Upu,21|2 (e−γ22τ − 1)

)
+ i

ϑ2

2
Upu,21 U ∗

pu,31e
iω32τ e−γ23τ

]}
. (38)

Also in this case, in contrast to Eq. (18), we notice different
decay rates and the presence of additional terms to account for
the decay into the ground state |1〉. The above expression can
be further simplified by taking into account that

|Upu,11|2 = 1 − |Upu,21|2 − |Upu,31|2 (39)

for a system which is not open and whose total population is
conserved.

Finally, the absorption spectrum of a single intense pulse
can be modeled as

Sfit(ω,Upu,ij )

∝ −ωIm

{
M +

3∑
k=2

D∗
1k

i(ω − ωk1) + γk1
Upu,11U

∗
pu,k1

}
, (40)

which generalizes Eq. (20) to the present case employing a
density-matrix formalism.

In conclusion, analytical fitting models are developed
to express transient-absorption spectra in terms of the ele-
ments of the density-matrix interaction operator Ûpu(I ). We
assume that pump and probe operators are well approxi-
mated by Upu;ij,i ′j ′ (I ) = Upu,ii ′ (I )U ∗

pu,jj ′ (I ) and Upr;ij,i ′j ′ =
Upr,ii ′U

∗
pr,jj ′ , which is valid for femtosecond pump and probe

pulses much shorter than the decay time of the system.
However, the relaxation of the system during its free decay
in between the two pulses is modeled in terms of the
free-evolution operator V̂(t) �= V̂ (t) ⊗ V̂ ∗(t), fully accounting
for the different rates at which populations and coherences
decay, and for the conservation of the total population. By
employing Eq. (39) to ensure population conservation during
the interaction with a pump pulse, and by further taking

advantage of the symmetry properties of Û(I ) discussed in
Appendix C, the analytical models presented in this section
can be employed to fit experimental spectra and, thereby, fully
reconstruct DM-SFI operators ÛR(I ) in those cases in which a
density-matrix description of the free evolution of the system
is required.

C. Density-matrix quantum control based on strong-field
interaction operators

The analytical fitting models presented in Sec. VII B allow
the reconstruction of the DM-SFI operators ÛR(I ) in amplitude
and phase from experimental transient-absorption spectra:

Sexp(ω,τ )

Sfit(ω,τ,Upu;ij,i ′j ′)

}
−→
fitting

Reconstructed operator ÛR. (41)

Here, in contrast to Sec. V, we solve the master equation
(26) and calculate the time evolution of the density matrix
ρ̂(t,τ ) when the system interacts with pump and probe
pulses separated by a time delay τ . We assume decay rates
γ21 = γ31 = γ23 = 1/(12 ps) and γ22 = γ33 = 1/(720 ps), in
order to model experimental collision-induced and Doppler
broadening [39]. We notice that all assumed decay rates,
both for decoherence and population decay, are much larger
than those for spontaneous decay in Rb, which is therefore
neglected. At the same time, all decay times are much longer
than the femtosecond duration of the pump and probe pulses
employed. Details on the equations of motion used are pro-
vided in Appendix D. The solution of the equations of motion
(27) is included into Eqs. (5) and (6), in order to numerically
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simulate, with a full density-matrix formalism, experimental
absorption spectra in the noncollinear geometry of Fig. 2(a)
[21]. As already discussed in Sec. V, the spectra are calculated
for pump-pulse intensities ranging from 0.1 × 1010 W/cm2 to
5 × 1010 W/cm2. The analytical model of Sec. VII B is then
employed to fit the numerically simulated spectra and extract
ÛR(I ). We stress that the fit parameters thereby extracted differ
from those obtained in Sec. V, where spectra were used, which
were calculated via a Schrödinger-like approach.

The reconstructed DM-SFI operators can then be employed
to implement deterministic strong-field control based on
Eq. (32). In analogy to Sec. V, we use a two-pulse scheme, and
take advantage of the reconstructed DM-SFI operators ÛR in
order to control the populations ρ2,ii , i ∈ {1, 2, 3}, of the final
state ρ̂2, by optimizing the intensities Im and the CEPs φm of
the two control pulses, m ∈ {1, 2}, and the pulse separation τ̄ .
The reached final state thereby predicted ρ̂p has components
given by

ρp;ij =
∑
i ′j ′

∑
i ′′j ′′

UR
ij,i ′j ′ (I2)�i ′j ′,i ′j ′(φ̄)Wi ′j ′,i ′′j ′′ (τ̄ )UR

i ′′j ′′,11(I1).

(42)

In Eq. (42), we have used the initial state ρ̂0 = |1〉〈1|, we have
neglected phase operators not influencing the final populations,
and defined the total phase φ̄ = φ2 − φ1 − ωLτ̄ . Furthermore,
we have introduced the slowly oscillating operator Ŵ(τ̄ ) such
that �ij,ij (φ̄)Wij,i ′j ′ (τ̄ ) = �ij,ij (φ2)Vij,i ′j ′ (τ̄ )�∗

i ′j ′,i ′j ′(φ1),
with �ij,ij (φ) = Φii(φ)Φ∗

jj (φ).
To exemplify the effectiveness of our deterministic strong-

field control method also when a density-matrix formalism is
required, we focus on the same example discussed in Sec. V,
and determine sequences of two strong pulses aiming at the
desired final populations (ρd,11, ρd,22, ρd,33) = (0, 2/3, 1/3).
In this case, with a formalism directly based on density-matrix
elements instead of quantum-state amplitudes, we do not need
to introduce the free phase parameters δ and γ , as necessary
in Sec. V. Also the free parameter A, associated with the
total final population A2 of the desired final state, does not
have to be introduced here, since a density-matrix formalism
ensures the conservation of the total population of the system
ρ11 + ρ22 + ρ33 = 1. The pulse properties which optimally
lead the system to the desired final state are determined by
minimizing the cost function

gρ(I1,I2,τ̄ ,φ̄) =
√√√√ 3∑

i=1

|ρd,ii − ρp,ii |2, (43)

which we calculate for a discrete set of parameters.
Figure 5(a) shows the resulting dynamics of the system
[Eq. (27)], when excited with the sequence of pulses deter-
mined via minimization of gρ , exhibiting very good agreement
with the desired final state.

In order to compare these results, obtained with a density-
matrix formalism, with those we previously discussed based
on a Schrödinger-like approach, we display in Fig. 5(b) the
dynamics of the system, solution of the equations of motion
for the density matrix [Eq. (27)], when excited with the same
sequence of pulses used in Fig. 3(c). That sequence of pulses
was determined by minimizing the cost function g, based

FIG. 5. Time evolution of the populations ρ11(t) (blue, contin-
uous), ρ22(t) (purple, dashed), and ρ33(t) (yellow, dotdashed), of a
three-level system modeling Rb atoms excited by a two-pulse control
sequence, based on the reconstruction of density-matrix strong-field
interaction operators. (a) Optimal pulse parameters are determined
via minimization of Eq. (43), I1 = 2.9 × 1010 W/cm2, I2 = 3.2 ×
1010 W/cm2, τ̄ = 150 fs, and φ̄ = 1.13 rad, with reached final
populations ρr,11 = 0.00, ρr,22 = 0.67, and ρr,33 = 0.33. (b) The same
pulse parameters are used as in Fig. 3(c), I1 = 3.3 × 1010 W/cm2,
I2 = 3.6 × 1010 W/cm2, τ̄ = 198 fs, and φ̄ = 1.88 rad, with reached
final populations ρr,11 = 0.01, ρr,22 = 0.67, and ρr,33 = 0.32.

on a Schrödinger-like approach. Figure 5(b) displays very
good agreement with the desired final state and with the
results previously displayed in Fig. 3(c). This confirms the
insensitivity of our operator-reconstruction and deterministic-
control method to the details of dissipation, and justifies the
Schrödinger-like approach developed and discussed in the
previous sections for control time scales much shorter than
the decay times of the system.

VIII. CONCLUSION

In conclusion, we have designed an optimized sequence
for quantum-state control based on intensity-dependent opera-
tors extractable from observable transient-absorption spectra.
Schemes consisting of a higher number of pulses are pos-
sible to further enhance the control precision or to achieve
additional control goals simultaneously. The method was
mainly discussed for a three-level scheme modeling Rb atoms,
but this could be generalized to higher numbers of states,
potentially including the experimental characterization of the
effect of chirp in terms of SFI operators, albeit with a scaling
in complexity. By increasing the number of free control
parameters, such as, e.g., chirp, additional experiments would
have to be performed in order to characterize from TAS
the dependence of the SFI operators on those supplemental
variables. Furthermore, a higher number of excited states
would imply several beating frequencies ωij , all contributing to
the time-delay-dependent oscillations displayed by associated
transient-absorption spectra. Hence, more complex analytical
fitting models would have to be calculated, in order to distin-
guish contributions associated with different matrix elements
of larger-dimensional SFI operators. Attention should also be
paid in the presence of degenerate levels: however, in case
these levels are characterized by different angular-momentum
quantum numbers M , the polarization vector of the pulse could
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be utilized as an additional degree of freedom for coherent
control.

Our results are expected to trigger the development of
related techniques for interaction-operator reconstruction of
more complex systems such as molecules, for which strong-
field absorption-line-shape control was recently demonstrated
[34]. The advances in coherent x-ray sources open up interest-
ing prospects especially for the application of our method at
short wavelengths. Quantifying the effect of strong broadband
pulses from experimentally accessible spectra would then
enable quantum control based on designed sequences of the
available, ultrashort x-ray pulses, with added benefits such as
site specificity near core transitions.
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APPENDIX A: NUMERICAL SIMULATION OF THE
QUANTUM DYNAMICS FOR A THREE- AND FIVE-LEVEL

MODEL WITH A SCHRÖDINGER-LIKE APPROACH

We model Rb atoms as three- or five-level systems, as
shown in Fig. 2(b), and solve the corresponding Schrödinger
equation (2). For our calculations, pump and probe pulses
are modeled via envelope functions of the form f (t) =
cos2 (πt/T ) R(t/T ). Here, R(x) = θ (x + 1/2) − θ (x − 1/2)
is defined in terms of the Heaviside step function θ (x),
such that T = πTFWHM/[2 arccos ( 4

√
1/2)], with TFWHM being

the full width at half maximum of f 2(t). In this appendix,
we employ a Schrödinger-equation-based formalism, with
decay rates γ2 = γ3 = 1/(1500 fs) modeling experimental
linewidths and included in the atomic-structure Hamiltonian

Ĥ0 = ∑
i (ωi − iγi/2)|i〉〈i|. In Sec. VII and Appendix D, we

display how our results can be generalized to a more complex
case requiring a density-matrix formulation.

To avoid repetitions, in the following we immediately
refer to the more general case of a five-level scheme. The
state of the system |ψ (5)(t,τ )〉 = ∑5

i=1 c
(5)
i (t,τ )|i〉 has a vector

representation given by c(5) = (c(5)
1 ,c

(5)
2 ,c

(5)
3 ,c

(5)
4 ,c

(5)
5 )T. The

free-evolution operator is given by

V̂ (5)(t) = diag(1,e−[(γ2/2)+iω21]t ,e−[(γ3/2)+iω31]t ,e−[(γ4/2)+iω41]t ,

e−[(γ5/2)+iω51]t ). (A1)

Here, the two highest-lying excited states are almost degen-
erate, with transition energies ω41 = ω51 = 3.19 eV. For the
E1-allowed transitions depicted in Fig. 2(b), we introduce
the time-dependent Rabi frequencies �ij (t) = DijE0f (t), with
dipole-moment matrix elements D̂ij = Dij êz aligned along
the pulse polarization vector [41,42]. We calculate the time
evolution of the atomic system interacting with a pump
pulse centered on tc,pu = 0 and a probe pulse centered on
tc,pr = τ . Both pulses are transform limited, and no chirp
is included. We assume a weak probe pulse, with duration
TFWHM,pr = 15 fs and intensity Ipr = 1 × 108 W/cm2, and
pump pulses of duration TFWHM,pu = 30 fs and intensities
Ipu varying between 0.1 × 1010 W/cm2 and 5 × 1010 W/cm2.
For (t − tc) ∈ [−T/2, T /2], the time evolution of c(5) in the
rotating-wave approximation is given by

dc(5)

dt
= [Φ̂(5)(φ)]†[Λ̂(5)(t − tc)]†M̂ (5)(t − tc)Λ̂(5)(t − tc)

× Φ̂(5)(φ)c(5)(t), (A2)

with the phase of the pulse accounted for by
Φ̂(5)(φ) = diag(1,eiφ,eiφ,e2iφ,e2iφ) and Λ̂(5)(t) =
diag(1,eiωLt ,eiωLt ,e2iωLt ,e2iωLt ), while

M̂ (5)(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 i �12(t)
2 i �13(t)

2 0 0

i
�∗

12(t)
2 − γ2

2 − iω21 0 i �24(t)
2 0

i
�∗

13(t)
2 0 − γ3

2 − iω31 i �34(t)
2 i �35(t)

2

0 i
�∗

24(t)
2 i

�∗
34(t)
2 − γ4+γP,4(t)

2 − iω41 0

0 0 i
�∗

35(t)
2 0 − γ5+γP,5(t)

2 − iω51

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A3)

Photoionization of states |4〉 and |5〉 in the presence of an
optical pulse has also been included as an effective loss of
amplitude at the rate γP,l(t) = σl(ωL)IL(t), with photoioniza-
tion cross sections σl(ωL) calculated with [44], and optical flux
IL(t) = IL(t)/ωL defined in terms of the time-dependent pulse
intensity IL(t) = [E0 f (t)]2/(8πα).

The dynamics of the five-level system are associated
with the 5 × 5 evolution operator Û (5)(t,t0) and the related
interaction operator

Û (5) = V̂ (5)(−T/2) Û (5)
0 (T/2,−T/2) [V̂ (5)(T/2)]−1

=
(

Û
(5)
3×3 Û

(5)
3×2

Û
(5)
2×3 Û

(5)
2×2

)
. (A4)

The time evolution of the five-level system, calculated from
Eq. (A2), is used to numerically simulate transient-absorption
spectra S (5)(ω,τ ) via Eqs. (4) and (6).

For a three-level model associated with the state
|ψ (3)(t,τ )〉 = ∑3

i=1 c
(3)
i (t,τ )|i〉, the dynamics of the

system are described in terms of the operators
V̂ (3)(t) = diag(1,e−[(γ2/2)+iω21]t ,e−[(γ3/2)+iω31]t ), Φ̂(3)(φ) =
diag(1,eiφ,eiφ), Λ̂(3)(t) = diag(1,eiωLt ,eiωLt ), while

M̂ (3)(t) =

⎛
⎜⎜⎝

0 i �12(t)
2 i �13(t)

2

i
�∗

12(t)
2 − γ2

2 − iω21 0

i
�∗

13(t)
2 0 − γ3

2 − iω31

⎞
⎟⎟⎠, (A5)
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resulting in a 3 × 3 evolution operator Û (3)(t,t0)
and a related interaction operator Û (3) =
V̂ (3)(−T/2) Û (3)

0 (T/2,−T/2)[V̂ (3)(T/2)]−1. It is important to
stress that the 3 × 3 matrix Û

(5)
3×3 is different from Û (3), since

Û
(5)
3×3 is influenced by the presence of states |4〉 and |5〉, which

could not be taken into account if one solved the Schrödinger
equation for a three-level system exclusively. By using TAS to
extract SFI operators by means of the analytical fitting model
presented in Sec. IV, one has thus access to Û

(5)
3×3, in contrast

to methods based exclusively on a theory which could only
provide Û (3).

APPENDIX B: INTERACTION OPERATOR FOR WEAK,
SHORT PROBE PULSES

In order to interpret results from TAS, the interaction
operator Ûpr was introduced in Eq. (7), modeling the action
of a weak probe pulse, with FWHM of 15 fs and intensity
of 1 × 108 W/cm2. In order to derive Eq. (7), we consider a
Dirac-δ-like peak

f̃pr(t) = δ(t)
∫ Tpr/2

−Tpr/2
fpr(t

′)dt ′, (B1)

where fpr(t) is the actual envelope of the short (broadband),
weak probe pulse used in our numerical simulations, and Tpr

is the associated pulse duration.
An explicit solution of Eq. (2) for the pulse envelope in

Eq. (B1) provides

Ûpr(t,t0) = V̂ (t)eB̂[θ(t)−θ(t0)]V̂ (−t0), (B2)

where θ (x) is the Heaviside step function, V̂ (t) is the free-
evolution operator, and

B̂ =

⎛
⎜⎜⎝

0 i ϑ2
2 i ϑ3

2

i
ϑ∗

2
2 0 0

i
ϑ∗

3
2 0 0

⎞
⎟⎟⎠ (B3)

is defined in terms of the pulse areas ϑk = ∫ Tpr/2
−Tpr/2 �pr,1k(t)dt of

the probe-pulse Rabi frequencies �pr,1k(t), for k ∈ {2, 3}. Tak-
ing advantage of the weak probe-pulse intensity, the probe op-
erator Ûpr = V̂ (−Tpr/2) Ûpr(Tpr/2, − Tpr/2)V̂ −1(Tpr/2) reads

Ûpr = eB̂ ≈ Î3 + B̂ =

⎛
⎜⎜⎝

1 i ϑ2
2 i ϑ3

2

i
ϑ∗

2
2 1 0

i
ϑ∗

3
2 0 1

⎞
⎟⎟⎠. (B4)

APPENDIX C: SYMMETRIC STRONG-FIELD
INTERACTION OPERATORS

In order to independently extract Upu,12 and Upu,13 in a
noncollinear geometry, we here show that, when the envelope
function f (t) = f (−t) is a symmetric function of time, then
the associated interaction operator Û = V̂ (−T/2)Û0(T/2,

− T/2)V̂ −1(T/2) is a symmetric matrix. By using Eq. (A2)
for a three-level system and by recalling that the time evolution
of Û0(t,t0) is calculated for a pulse with φ = 0 and tc = 0, we

obtain that

dÛ0(t,t0)

dt
= [Λ̂(3)(t)]†M̂ (3)(t)Λ̂(3)(t) Û(t,t0),

Û(t0,t0) = Î . (C1)

The assumption of a symmetric envelope, f (t) = f (−t),
implies that also M̂ (3)(t) is symmetric in time.

We thus introduce the operator Ẑ(t,t0) = Û0(−t,−t0),
which is solution of the differential equation

dẐ(t,t0)

dt
= −Λ̂(3)(t)M̂ (3)(t)[Λ̂(3)(t)]−1Ẑ(t,t0),

Ẑ(t0,t0) = Î , (C2)

where Λ̂(3)(−t) = [Λ̂(3)(t)]−1 and M̂ (3)(−t) = M̂ (3)(t). Both
Λ̂(3)(t) = [Λ̂(3)(t)]T and M̂ (3)(t) = [M̂ (3)(t)]T are symmetric
matrices. As a result,

dẐ−1(t,t0)

dt
= Ẑ−1(t,t0)Λ̂(3)(t)M̂ (3)(t)[Λ̂(3)(t)]−1,

Ẑ−1(t0,t0) = Î (C3)

and

d(Ẑ−1)T(t,t0)

dt
= [Λ̂(3)(t)]−1M̂ (3)(t)Λ̂(3)(t)[(Ẑ−1)T(t,t0)],

(Ẑ−1)T(t0,t0) = Î . (C4)

Since this equation corresponds to Eq. (C1), the evolu-
tion operators (Ẑ−1)T(t,t0) and Û0(t,t0) are solutions of
the same differential equations and are therefore identi-
cal, and hence Û0(T/2,0) = Û−1

0 (0,T /2) = Ẑ−1(0,−T/2) =
ÛT

0 (0,−T/2). As a result,

Û0(T/2,−T/2) = Û0(T/2,0) Û0(0,−T/2)

= ÛT
0 (0,−T/2) Û0(0,−T/2) (C5)

and

ÛT
0 (T/2,−T/2) = ÛT

0 (0,−T/2) Û0(0,−T/2)

= Û0(T/2,−T/2), (C6)

i.e., Û0(T/2,−T/2) is a symmetric matrix. Since V̂ (t) is a
diagonal (and therefore symmetric) matrix, it follows that Û =
V̂ (−T/2)Û0(T/2,−T/2)V̂ −1(T/2) is symmetric.

We hence use the above result for the operator Ûpu

reconstructed from strong-field TAS, and fix Upu,1k = Upu,k1.

APPENDIX D: EQUATIONS OF MOTION
WITH A DENSITY-MATRIX FORMALISM

In this appendix, we provide the explicit form of the set
of differential equations (27) satisfied by the 3 × 3 density
matrix ρ̂(t), modeling the evolution of the three-level system
in the blue box in Fig. 2(b) interacting with pump and probe
pulses. Here, the pulses are modeled via envelope functions
of the form f (t) = cos2 (πt/T ) R(t/T ), where R(x) = θ (x +
1/2) − θ (x − 1/2) is defined in terms of the Heaviside step
function θ (x), such that T = πTFWHM/[2 arccos ( 4

√
1/2)], with

TFWHM being the full width at half maximum of f 2(t).
We write the equations of motion explicitly in matrix

form. For this purpose, we first introduce the vectors
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�ρi = (ρi1,ρi2,ρi3)T, i ∈ {1, 2, 3}, whose components are the
elements of the ith row of the density matrix ρ̂. This allows us
to introduce the nine-dimensional vector

⇒
ρ =

⎛
⎜⎝

�ρ1

�ρ2

�ρ3

⎞
⎟⎠. (D1)

For any operator Â acting on the elements of the density
matrix as, e.g.,

∑
i ′j ′ Aij,i ′j ′ρi ′j ′ , we analogously define the

3 × 3 matrices

Āii ′ =

⎛
⎜⎝

Ai1,i ′1 Ai1,i ′2 Ai1,i ′3

Ai2,i ′1 Ai2,i ′2 Ai2,i ′3

Ai3,i ′1 Ai3,i ′2 Ai3,i ′3

⎞
⎟⎠, (D2)

i,i ′ ∈ {1,2,3}, which we use to introduce the 9 × 9 matrix

=
A =

⎛
⎜⎝

Ā11 Ā12 Ā13

Ā21 Ā22 Ā23

Ā31 Ā32 Ā33

⎞
⎟⎠. (D3)

In the presence of a pulse centered on tc and with duration T ,
i.e., for (t − tc) ∈ [−T/2, T /2], the equations of motion (27)
can be written in matrix form as

d
⇒
ρ (t)

dt
=

=
M(t)

⇒
ρ (t), (D4)

=
M(t) = [

=
�(φ)]†[

=
�(t − tc)]†

=
M(t − tc)

=
�(t − tc)

=
�(φ), (D5)

generalizing Eq. (A2) to a density-matrix formalism. Specifi-
cally,

=
�(φ) = diag(1,e−iφ,e−iφ,eiφ,1,1,eiφ,1,1) (D6)

and

=
�(t) = diag(1,e−iωLt ,e−iωLt ,eiωLt ,1,1,eiωLt ,1,1), (D7)

whereas

=
M(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −i
�∗

12(t)
2 −i

�∗
13(t)
2 i �12(t)

2 γ22 0 i �13(t)
2 0 γ33

−i �12(t)
2 −γ21 + iω21 0 0 i �12(t)

2 0 0 i �13(t)
2 0

−i �13(t)
2 0 −γ31 + iω31 0 0 i �12(t)

2 0 0 i �13(t)
2

i
�∗

12(t)
2 0 0 −γ21 − iω21 −i

�∗
12(t)
2 −i

�∗
13(t)
2 0 0 0

0 i
�∗

12(t)
2 0 −i �12(t)

2 −γ22 0 0 0 0

0 0 i
�∗

12(t)
2 −i �13(t)

2 0 −γ23 + iω32 0 0 0

i
�∗

13(t)
2 0 0 0 0 0 −γ31 − iω31 −i

�∗
12(t)
2 −i

�∗
13(t)
2

0 i
�∗

13(t)
2 0 0 0 0 −i �12(t)

2 −γ23 − iω32 0

0 0 i
�∗

13(t)
2 0 0 0 −i �13(t)

2 0 −γ33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(D8)

The free-evolution operator V̂(t) is associated with the matrix

=
V(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 − e−γ22t 0 0 0 1 − e−γ33t

0 e−γ21t eiω21t 0 0 0 0 0 0 0

0 0 e−γ31t eiω31t 0 0 0 0 0 0

0 0 0 e−γ21t e−iω21t 0 0 0 0 0

0 0 0 0 e−γ22t 0 0 0 0

0 0 0 0 0 e−γ23t eiω32t 0 0 0

0 0 0 0 0 0 e−γ31t e−iω31t 0 0

0 0 0 0 0 0 0 e−γ23t e−iω32t 0

0 0 0 0 0 0 0 0 e−γ33t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(D9)
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Assuming that the density-matrix probe-pulse operator Ûpr = Ûpr ⊗ Û ∗
pr can be factorized in terms of the operator (7) calculated

in first-order perturbation theory in Appendix B, Ûpr is associated with the matrix

=
Upr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −i
ϑ∗

2
2 −i

ϑ∗
3

2 i ϑ2
2 0 0 i ϑ3

2 0 0

−i ϑ2
2 1 0 0 i ϑ2

2 0 0 i ϑ3
2 0

−i ϑ3
2 0 1 0 0 i ϑ2

2 0 0 i ϑ3
2

i
ϑ∗

2
2 0 0 1 −i

ϑ∗
2

2 −i
ϑ∗

3
2 0 0 0

0 i
ϑ∗

2
2 0 −i ϑ2

2 1 0 0 0 0

0 0 i
ϑ∗

2
2 −i ϑ3

2 0 1 0 0 0

i
ϑ∗

3
2 0 0 0 0 0 1 −i

ϑ∗
2

2 −i
ϑ∗

3
2

0 i
ϑ∗

3
2 0 0 0 0 −i ϑ2

2 1 0

0 0 i
ϑ∗

3
2 0 0 0 −i ϑ3

2 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D10)
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