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ionization dynamics of Xe atoms

Koudai Toyota (& [1)2.K),"" Sang-Kil Son (¥>4}+72),!:' and Robin Santra'>*
I Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
2Department of Physics, University of Hamburg, 20355 Hamburg, Germany

(Received 2 March 2017; published 14 April 2017)

In this paper, we theoretically study x-ray multiphoton ionization dynamics of heavy atoms taking into account
relativistic and resonance effects. When an atom is exposed to an intense x-ray pulse generated by an x-ray
free-electron laser (XFEL), it is ionized to a highly charged ion via a sequence of single-photon ionization and
accompanying relaxation processes, and its final charge state is limited by the last ionic state that can be ionized
by a single-photon ionization. If x-ray multiphoton ionization involves deep inner-shell electrons in heavy atoms,
energy shifts by relativistic effects play an important role in ionization dynamics, as pointed out in Phys. Rev.
Lett. 110, 173005 (2013). On the other hand, if the x-ray beam has a broad energy bandwidth, the high-intensity
x-ray pulse can drive resonant photoexcitations for a broad range of ionic states and ionize even beyond the
direct one-photon ionization limit, as first proposed in Nat. Photon. 6, 858 (2012). To investigate both relativistic
and resonance effects, we extend the XATOM toolkit to incorporate relativistic energy corrections and resonant
excitations in x-ray multiphoton ionization dynamics calculations. Charge-state distributions are calculated for
Xe atoms interacting with intense XFEL pulses at a photon energy of 1.5 keV and 5.5 keV, respectively. For
both photon energies, we demonstrate that the role of resonant excitations in ionization dynamics is altered due
to significant shifts of orbital energy levels by relativistic effects. Therefore, it is necessary to take into account

both effects to accurately simulate multiphoton multiple ionization dynamics at high x-ray intensity.

DOI: 10.1103/PhysRevA.95.043412

I. INTRODUCTION

The interaction between x-ray photon and matter is char-
acterized by photoionization and accompanying relaxation
processes. X-ray photoionization predominantly creates a hole
in an inner shell of atoms, which subsequently relaxes via
Auger decay or fluorescence. A series of decay processes, a so-
called decay cascade, can occur if the hole is formed in a deep
inner shell [1-5]. The interaction with x rays becomes rather
complex when the sample is exposed to the unprecedentedly
high fluence generated by x-ray free-electron lasers (XFELs)
[6-9]. Beyond the one-photon saturation fluence, which is the
inverse of the single-photon ionization cross section [10], a
single atom can absorb more than one photon sequentially
after or during decay cascades, and then it becomes a highly
charged ion. In this sequential multiphoton ionization model,
the final charge is determined by the last ionic state that can
be ionized by one-photon ionization. This is called “direct
one-photon ionization limit.”

The straightforward sequential multiphoton ionization
model has been solved with a rate-equation approach [11,12]
and verified with a series of XFEL experiments on gas-phased
atoms: light atoms such as Ne [11,13] and Ar [14], and heavy
atoms such as Kr [15] and Xe [14,16,17]. For example, the
calculated charge-state distribution (CSD) of Xe at 2 keV
showed an excellent agreement with experimental data [16].
For Xe at 1.5 keV, however, the highest charge of the
experimental CSD exceeded by far the theoretical prediction
of the direct one-photon ionization limit [16]. To explain this
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discrepancy, it has been proposed that multiple resonant excita-
tions followed by Auger-like decays, combined with the broad
energy bandwidth of SASE XFEL pulses [6], can drive further
ionization beyond the direct one-photon ionization limit.
This is called resonance-enabled or resonance-enhanced x-ray
multiple ionization (REXMI) [15,16] and this mechanism has
been implemented in Refs. [18,19]. Also the importance of
single resonant excitation was found in the study of the Ne
atom experimentally [11] and theoretically [20].

When an x-ray photon with higher energy interacts with
a heavy atom such as xenon, a deeper inner-shell electron
is ionized. It induces not only more complicated ionization
dynamics, but also it is expected that deep inner-shell energy
levels are shifted and split due to relativistic effects. A recent
study of Xe at 5.5 keV hinted at this, showing fairly good
agreement between theory and experiment, but the theoretical
prediction underestimated the yields of highly charged ions
due to lack of relativistic effects [17].

Here we present how relativistic energy corrections and
resonant excitations influence x-ray multiphoton ionization
dynamics. For this purpose, we extend the XATOM toolkit
[21-23]. Our implementation allows us to turn on and off
the relativistic effect and the resonance effect, separately. This
allows us to explore the interplay between both classes of
effects on x-ray multiphoton ionization dynamics.

This paper is organized as follows. In Sec. II, we introduce
our basic equations and notations, and then we formulate
relativistic energy corrections, cross sections, and rates. We
also discuss how to simulate x-ray multiphoton ionization
dynamics by using a Monte Carlo approach [24], emphasizing
the numerical challenge to handle an extremely large con-
figurational space when resonant excitations are included. In
Sec. III, we present calculations of CSDs for Xe at 1.5 keV and
5.5 keV, which correspond to XFEL experiments conducted
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at LCLS [16] and SACLA [17], respectively, and discuss
both relativistic and resonance effects on x-ray multiphoton
ionization dynamics. In Sec. IV, we conclude and give future
perspectives.

II. THEORY AND NUMERICAL DETAILS

In this section, we start with the nonrelativistic Hartree-
Fock-Slater (HFS) equation and provide relativistic energy
corrections to the orbital energy levels. These are used to calcu-
late photoionization cross sections, Auger rates, fluorescence
rates, and resonant photoexcitation cross sections including
relativistic effects. This relativistic framework is implemented
as an extension of the XATOM toolkit [21-23]. The basic
framework can be found in Ref. [25]. All formulas below can
be derived with standard angular-momentum algebra [26]. At
the end of this section, we will discuss numerical challenges to
simulate x-ray multiphoton ionization dynamics when taking
into consideration relativistic and resonance effects.

A. Nonrelativistic Hartree-Fock-Slater equation

We start from a nonrelativistic treatment based on the
Hartree-Fock-Slater (HFS) method. The effective one-electron
Schrodinger equation for an atom is

(=3 V2 + VOly @) = ey ). M
Atomic units are used unless specified otherwise. The potential
V(r) is written as

z
V(r)=—7+/d3’|:)()|+V() )

where Z is the nuclear charge of the atom, and the exchange
potential Vi(r) is approximated by the Slater exchange
potential [27],

373 17
V() = —2 [—,O(r)] : 3)
T
The electronic density p(r) is given by
Ne]ec
p(r) = > Yl @), &)

where 1;(r) represents the spin orbital of the ith electron,
and the summation runs over the number of electrons Ngjec.
We employ a spherically symmetric electronic density, i.e.,
p(r) — p(r), then the potential becomes also spherically
symmetric: V(r) — V(r). In addition, we use the Latter tail
correction [28] to obtain the proper long-range potential for
both occupied and unoccupied orbitals. Hence the spherically
symmetric potential is given by

Vi) = { LA = L)

r

forr < re,

forr > re,
®)
where r. is determined such that V (r) is continuous at r = r..
Let us consider a spin-orbital ¥;(r) given in nlm;my
representation, where n, [, m;, and m, are the principal
quantum number, the orbital angular momentum quantum
number, the associated projection quantum number, and the
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spin magnetic quantum number, respectively. It is then written
as

unl(r)

wnlmlmx (I’) Ylm;(Q)Xm; (6)

where Y},,,(€2) is a spherical harmonic and y,,, is a Pauli two-
component spinor. The function u,,;(r) satisfies the radial part
of the HFS equation of Eq. (1),

1d> Il+1)
-+
|: 2dr? 2r2

To solve the HFS eigenvalue problem of Eq. (7), we

employ the generalized pseudospectral (GPS) method based

on the Legendre polynomials [29]. Let ryax be the maximum

radius in the numerical calculation. The spatial coordinate

r € [0,rmax] is then mapped onto the finite range x € [—1,1]
by the following relation:

+ V(V):| Up (1) = ety (r). (N

Y . S— (®)
1 —x 4 2L/ Fmax

where L is a mapping parameter to tune the distribution of
the grid points. A small value of L gives us dense grid points
near the origin, and a large value of L gives a more uniform
distribution of grid points in the interval [0, 7y« ]. The solutions
are required to satisfy the boundary conditions u,;(0) =
Uy (rmax) = 0. The wave functions of initially occupied orbitals
are localized near the origin. On the other hand, multiple
resonant excitations can excite several electrons to high-n
Rydberg states that tend to have large amplitudes away from
the origin. An optimal L needs to be chosen to accurately
describe both of them.

B. Relativistic energy corrections

We treat relativistic effects within first-order degenerate
perturbation theory [30]. The effective one-body relativistic
Hamiltonian for two-component spinors is given by [31]

ﬁ = ﬁO + I:Imass + ﬁda.r + 1:1507 (9)

where Hj is the nonrelativistic Hamiltonian given in Eq. (1)
as the unperturbed term,

Hy=—iV*+ V(). (10)

The rest (H' = Huass + Haar + Ho) are the leading-order

relativistic corrections, which we treat as perturbations. The

relativistic energy corrections are calculated with these pertur-

bative terms and the nonrelativistic spin orbitals of Eq. (6).
The first is the mass term,

A o?

4

Hmass - 8 p ’

where p is the canonical momentum operator and « is the

fine-structure constant (@ = 1/c, where c is the speed of light).

The mass term represents the relativistic mass correction for

an electron orbiting at a speed close to ¢. The second is the
Darwin term,

(11a)

" o?dV d

dar = ——

R 11b
4 dr dr (11b)
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TABLE I. Comparison of orbital energy levels of neutral Xe atom (in eV). “Nonrel” refers to nonrelativistic calculations obtained from
Eq. (7), and “Rel” means relativistic calculations using Eq. (15). DFS indicates the Dirac-Fock-Slater results taken from Ref. [33] and Expt. is

the experimental data taken from Ref. [35].

Orbital Nonrel E nass Eg.r E,, Rel DFS [33] Expt. [35]
sy —33102.77 —7070.30 5565.00 0 —34608.06 —34555.26 —34561
2512 —5057.17 —972.53 587.98 0 —5441.71 —5417.15 —5453
2pip _ _ _ —199.98 —5141.09 —5104.13 —5107
2p3p 4771.10 168.53 2:46 99.49 —4842.60 —4774.49 —4786
3512 —1045.69 —205.99 117.54 0 —1134.15 —1122.22 —1148.7
3pip _ B _ —37.84 —1003.94 —989.73 —1002.1
3p3p 92275 42.87 046 18.92 —947.18 —926.51 —940.6
3ds), _ B B —8.08 —711.71 —690.88 —689.0
3ds), 692.12 121 0-28 5.39 —698.24 —677.35 —676.4
4s1/2 —192.78 —46.02 25.82 0 —212.99 —208.50 —213.2
4pip _ _ _ —7.65 —165.52 —160.81 —146.7
4pip 148.44 9:32 0.09 3.82 —154.03 —148.00 —145.5
4ds) —1.28 —74.93 —69.85 —69.5
4ds) i —21 —0.04 0.85 ~72.79 —67.77 —67.5
5812 —21.78 —6.84 3.82 0 —24.80 —23.65 —233
5pip _ . _ —0.84 —13.30 —12.39 —134
S5p3p 11.39 105 0.01 0.42 —12.03 —10.97 —12.1
which may be interpreted in terms of Zitterbewegung [32]. 0 for j = %
The last is the spin-orbit coupling term, © w111 dv ] .
, Agyy; = 515 b for j =143, (l4c)
N a-1dV . 2 1av ; 1
o=——-—1I"3. (11c) —C(+1)(;4¥F), forj=1—3
2 rdr

Let the operator j be the sum of the orbital angular mo-
mentum operator [ and the spin angular momentum operator
§, then j =+ 5. In the following, we introduce the nljm
representation of a spin orbital,

Guijm(r) =Y Csj; mmem)Pumm, (x),  (12)

mpmg

to calculate relativistic energy corrections and rates. Here the
symbol C(Isj;mymsm) represents a Clebsch-Gordan coeffi-
cient (s = %). The spin orbital ¢,;;,(r) is a simultaneous
eigenfunction of /2, §2, j2, and j.. Let O be an operator that is
independent of angular degrees of freedom. Then,

/ &r ) 0Pty (®) = (O)ud S, (131)

<0)ill = fwdrrz(m>é<uill(r))’
0 r r

and u,;(r) is an eigenfunction of Eq. (7). We evaluate the
matrix elements of Eqgs. (11) in the nljm representation of
Eq. (12) with the use of Eq. (7). Then, the relativistic energy
shifts are given by

where

(13b)

2

Aep™ = T (e = VW (142)
o2 |dV d

Ayt = ——(———) . 14

=Ty < dr dr >n, (14b)

Therefore, an orbital energy level including relativistic
energy corrections in the nljm representation is given by

Euj = &m + Aep™ + Acl + Agl. (15)

Table I compares the orbital energy levels of neutral
Xe including relativistic energy corrections calculated using
Eq. (15) with those obtained by Lu et al. solving the Dirac-
Fock-Slater (DFS) equation [33]. Our results shown in the table
were obtained using N = 150, ry,x = 50 a.u., and L = 10,
where N is the number of grid points used in the GPS
method. With this parameter set, our calculated values of the
mass term in Eq. (11a) and the Darwin term in Eq. (11b)
for the 151/, orbital deviate 6.3% and 8.0% from those (not
shown) in Ref. [30], respectively. Substituting these values
into Eq. (15), the relativistic 1s;,, orbital energy agrees with
that in Refs. [30,33,34] to within 0.2%. Overall, our calculated
orbital energies agree with the reference values to within better
than 10%. The same set of numerical parameters is used in the
following subsections for calculating cross sections and rates.

C. Photoionization cross section
The photoionization cross section of a subshell i at incident
photon energy wj, is given by
I
2 +1

r|unili> 2

|<”E,,l,, )

4,
op(i, in) = 5 inNi
(I, win) 371 oaw Z
la=|l;i£1]
(16)
where N; is the number of electrons in the subshell i, and /..

is the greater of /; and /,. The energy E,(> 0) of a final state
ais givenby E, = E,; j, + o, where the quantity £, is an
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TABLE II. Comparison of photoionization cross sections of
neutral Xe atom at 5455 keV (in kbarns). “Nonrel” refers to
nonrelativistic calculations using Eq. (6) in Ref. [22], and “Rel” is
relativistic calculations using Eq. (16). DES results are taken from
Ref. [38].

Orbital Nonrel Rel DEFES [38]
2512 23.96 28.05 23.37
3512 5.49 5.76 5.54
3]71/2 5.31 5.75
3p3p 15.14 10.25 10.34
3ds), 3.36 3.56
3ds,, 8.28 4.99 4.95
4512 1.24 1.25 1.26
4pip 0.99 1.13
4ds)» 134 0.54 0.57
4ds), 0.80 0.79
5pip 0.10 0.12

orbital energy level including relativistic energy corrections,
Eq. (15). Here, ug,, is the continuum state with the positive
energy E,, which is computed using the fourth-order Runge-
Kutta method on a uniform grid [36,37]. The selection rules
are

(17a)
(17b)

Table II compares our results with the values calculated by
using DFS [38]. The deviations between them are found to be
larger for deep inner shells. Since relativistic energy correc-
tions lower orbital energy levels, relativistic photoionization
cross sections summed over different j’s become bigger than
those in the nonrelativistic case. Note that Table II shows
photoionization cross sections of the ground configuration of
neutral Xe atom only. For most multiple-hole states arising
as a consequence of strong x-ray exposure, as discussed in
Sec. I G, one cannot simply consult the literature.

Ja = JirJi £ 1,
=1 +1.

D. Auger rate

The Auger rate at which an initial hole in a subshell i is
refilled by an electron from a subshell g or ¢’ accompanied by
the emission of an Auger electron from the subshell ¢ or ¢’ is
given by [39]

LtlgHly LAy iy

Tigq = 27N Nyg Z Z Z 2ja +

1,=0 Ja=lla 77\‘/ ljg— Jq|
x (2J + DM, (aiqq"). (18)

The kinetic energy of the Auger electron is given by E, =

Enij, + Eng,j, + Engi,j,- The constant N/ is the number
of initial holes in the subshell i. Let N, be the number of
electrons in the subshell g; then the quantity N, is defined

PHYSICAL REVIEW A 95, 043412 (2017)

by
NyNy (inequivalent electrons),
Nyg = 21[,+1 19)
Ny(N; — 1) (equivalent electrons).
The function M, (aiqq’) is defined by
Z,’+lq+[q/
Mj(aiqq) =1 Y [Rilaiqq)Acs(aiqq)
k=0
+ (=)’ Rilaiq'q)Avs(@iq'q)], (20a)
where the coefficient 7 is given by
1 (inequivalent electrons),
T=1 . (20b)
WG (equivalent electrons).
The function Ry(aiqq’) is defined by
Ri(aiqq') = / a / dr' u,, (i (r')
0 0
rk ,
X =gt (P, (), (20¢)
rs

where r. (r_) is the greater (lesser) of r and ', and the function
Ayy(aiqq’) is defined by

N Ja jq k llI s jq lq, § jq,
Ak](aqu ) - {jq/ j,' J} {Ja k la }{Jl k li

X AL 1Crlllg )L 11 Cilllgr) (20d)
where the braces are 6 symbols, and
I'N1Celll) = 2k + 1C(kI"; 000). (20e)

E. Fluorescence rate

The fluorescence rate at which an initial hole in a subshell
q is refilled by an electron from a subshell ¢’ accompanied by
the emission of a photon is given by

4 ully s g ’
qur = §O{ (Enq/lq’jq/ ﬂq li-lll) l N N {]q l ZZ

g 1)

2 |<M”I/]1/ r |u”q’14’ )

where Ny and N, qH represent the number of electrons and holes
in the subshells ¢’ and ¢, respectively. Here it is assumed that
the emitted photon is not polarized. The selection rules are

(22a)
(22b)

Ja=JgJg £ 1,
lg =1y £1.

Table III compares our numerical results for Auger (Coster-
Kronig) and fluorescence rates with the recent data obtained
with the multiconfiguration Dirac-Fock method [40]. It is
important to realize that the Coster-Kronig channels of
Ly, — L3X and M, — M3X are completely missing in the
nonrelativistic case, because they are energetically forbidden
without the spin-orbit energy splitting.
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TABLE III. Comparison of fluorescence (L — X or M — X),
Auger (L — XY or M — XY), and Coster-Kronig (L — LX or
M — MX) rates for M- and L-shell vacancies of Xe (in a.u.).
“Nonrel” refers to the nonrelativistic calculation and “Rel” is obtained
from Eq. (18) or (21). DF refers to the multiconfiguration Dirac-Fock
calculations [40]. Note that the Coster-Kronig channels of L, — L3 X
and M, — M;X are energetically forbidden in the nonrelativistic case.

Group Nonrel Rel DF [40]

Li—X 6.33 x 1073 8.03 x 1073 6.33 x 1073
L, — XY 6.07 x 1072 5.63 x 1072 6.50 x 1072
Ly —LxX 8.19 x 1072 6.76 x 1072 5.83 x 1072
L,—X 1.04 x 1072 1.32 x 1072 5.35 x 1073
L, — XY 9.38 x 1072 8.70 x 1072 4.86 x 1072
L, — Ls:X Forbidden 2.01 x 1072 6.82 x 1073
Ly—X (=L, — X) 1.08 x 1072 1.01 x 1072
Ly — XY (=L, — XY) 9.28 x 1072 1.10 x 10~!
M, —X 1.72 x 10~* 2.27 x 10~* 1.72 x 104
M, — XY 1.85 x 1072 1.73 x 1072 1.91 x 1072
M, — M»X 4.74 x 107! 3.46 x 107! 3.72 x 107!
M, — MysX 8.97 x 1072 8.06 x 1072 8.38 x 1072
M, — X 1.61 x 10~* 2.19 x 10~* 1.75 x 104
M, — XY 2.09 x 1072 1.97 x 1072 2.10 x 1072
M, — M3 X Forbidden 5.39 x 1073 6.20 x 10~*
M, — MysX 2.05 x 107! 1.54 x 107! 1.64 x 107!
M;—X (=M, — X) 1.75 x 1074 1.73 x 107*
M; — XY (=M, — XY) 2.06 x 1072 2.22 x 1072
M; — MysX (=M, — MysX) 1.88 x 107! 1.76 x 107!
M, —X 1.02 x 1073 1.05 x 1073 1.21 x 1073
M, — XY 2.25 x 1072 2.23 x 1072 2.46 x 1072
Ms—X (=M, — X) 1.03 x 1073 1.05 x 1073
Ms — XY (=M, — XY) 2.26 x 1072 2.16 x 1072

F. Resonant photoexcitation cross section

We consider the cross section of a resonant excitation for
a bound-to-bound transition from an initial to a final orbital,

i— f,
4, wlli s i ?
or(i = f,w) = —m awl-N;N7 3"} !
2
x }<u”.fl,f|r|u”’li>| 8(w — AEyi), (23a)
where the § function represents the energy conservation law.
The quantity AE ;; represents the transition energy given by
AEysi = Ey1,j, — Enyji- (23b)
Assuming that the photon energy spectrum is given by a
Gaussian function,

[ CALP ey

flw;wn) = 2oV x (24)

where Awy, is the full width at half maximum (FWHM) of
the photon-energy distribution function. Convolving the cross
section with the spectral distribution profile of Eq. (24), we
obtain

4 ) . 2
O’R(i — f,win) = gn’zo{AEﬁl>NiN;1{Jl.; i IJ}}

% |t ||ttt ) FAE sz ). (25)
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Replacing the subscript @ with f in Eq. (17), we obtain the
selection rules.

G. Rate equations for ionization dynamics

We employ a rate-equation approach to simulate x-ray
multiphoton ionization dynamics [11,12]. The eigenfunctions
and energies of the HFS equation in Eq. (1) are used to calculate
the cross sections of Egs. (16) and (25) and rates of Egs. (18)
and (21). Time-dependent photoionization and photoexcitation
rates at a given time are calculated by their respective cross
sections times the photon flux at that time. All calculated rates
are plugged into a set of coupled rate equations,

dP allconfig
5= 2 M P =T P D). (26)
I'#1

where P; is the population of the Ith electronic configuration
and I';_,  is the transition rate from [ to I’.

The dimension of the rate-equation system of Eq. (26)
becomes enormously large for heavy atoms. For example, let
us consider a neutral Xe atom, which has 54 electrons, and
construct all possible electronic configurations that may be
formed by removing zero, one, or more electrons, from the
neutral ground configuration. All possible configurations of
Xe ions, Xe?™, in the nonrelativistic case are written as

Xedt: 1s™ 25™2p™ 3543 p"s3d"6 45" 4p"$4d"0 Ss™05 p™

where n; is chosen from zero to the maximum occupation num-
ber (n]"™) of the ith subshell,i.e.,n; = 0,1,2,n3 =0,1,...,6,
and so on. The sum of {n;} gives the total number of electrons:
> i ni =54 —q. The number of all possible configurations,
which is equal to the number of coupled rate equations that
must be solved, is given by Neong = [[;(n™™ + 1). For the Xe
case, it gives 3 X B3 x7) x B3 x7x 1) x 3 x7x11) x
(3 x 7) =70596 603. When relativistic effects are taken into
account, Neonfig 18 further increased by about 200 times because
of the spin-orbit splittings (pi,2/p3/2 and dz/z/dsy2), so the
number of rate equation becomes 15069 796 875. If resonant
bound-to-bound excitations are considered, Nconig €xplodes
(see Table I in Ref. [19]), even without consideration of
relativistic effects.

Directly solving such a gigantic number of coupled rate
equations is thus impractical. Instead, we extend XATOM to
employ the Monte Carlo method to solve Eq. (26) with precal-
culated tables of cross sections and rates, as previously demon-
strated in Ref. [24]. Furthermore, the electronic structure, cross
sections, and rates are calculated on the fly, only when a
Monte Carlo trajectory visits a new electronic configuration
[17]. This Monte Carlo on-the-fly scheme dramatically saves
computational effort, enabling us to explore very complicated
ionization dynamics of heavy atoms. A detailed Monte Carlo
description for x-ray multiphoton ionization dynamics is
found in Ref. [24]. A Monte Carlo convergence is checked
out at every 100 trajectories. When the absolute differences
of charge state populations between current and previous
checking points become less than 10~ (107> for the 5.5 keV
case in Sec. Il A), the program terminates the Monte Carlo
calculation.
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FIG. 1. Comparison of CPU times for calculating x-ray multi-
photon ionization dynamics of Xe at 1.5 keV with a bandwidth of
15 eV as a function of fluence. The open circles (red) and open
squares (green) represent nonrelativistic and relativistic calculations
excluding resonant excitations. The filled circles (orange) and filled
squares (blue) represent nonrelativistic and relativistic calculations
including resonant excitations.

H. Comparison of computational times

Now we compare computational times for calculating
x-ray multiphoton ionization dynamics, turning on and off
relativistic and resonance effects. Thus we have four different
cases: (a) nonrel, no res: without relativistic effects and without
resonant excitations; (b) nonrel, res: without relativistic effects
and with resonant excitations; (c) rel, no res: with relativistic
effects and without resonant excitations; and (d) rel, res: with
relativistic effects and with resonant excitations. Figure 1
shows the CPU time for each case as a function of fluence,
calculating the charge-state distribution (CSD) of Xe atom at
1.5 keV. A photon energy bandwidth of 15 eV FWHM is used
when resonant excitations are included. The pulse duration is
fixed at 80 fs FWHM.

First, let us examine the cases excluding resonances,
(a) and (c). The relativistic calculations (green, open squares)
take longer CPU time by one order of magnitude than the
nonrelativistic calculations (red, open circles). In both cases,
the computational time saturates as the fluence increases,
because the direct one-photon ionization is no longer possible
beyond a certain charge state without resonant excitations
and all of the Monte Carlo trajectories are stuck at the direct
one-photon ionization limit (Xe*** at 1.5 keV). On the other
hand, for the cases including resonances, (b) and (d), as plotted
with filled circles and filled squares, the CPU time keeps
increasing as the fluence increases. This is because resonant
excitations open up new ionization channels beyond the direct
one-photon ionization limit and Monte Carlo trajectories take
more time to arrive at their final charge state as the fluence
increases. At the highest fluence (~2 x 10'! photons/um?)
used in our calculations, the CPU time of the resonant cases
is more than one order of magnitude longer than that of
the nonresonant cases. Overall, at the highest fluence, the
relativistic calculation with resonant excitations takes ~100
times more CPU time than the nonrelativistic calculation
without resonant excitations.
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TABLE IV. Computational parameters used for ionization dy-
namics calculations.

N L (a'u') rmax (a'u') nmax lmax

Xe at 1.5 keV

Nonrel, no res 150 10 50

Nonrel, res 150 10 100 21 6

Rel, no res 150 10 50

Rel, res 150 10 100 19 7
Xe at 5.5 keV

Nonrel, no res 150 10 50

Nonrel, res 150 10 100 15 6

Rel, no res 150 10 50

Rel, res 150 10 100 12 7

It is worthwhile to discuss how to choose computational
parameters, especially for calculating the resonant cases. Res-
onant excitation involves an electronic transition to a Rydberg
state. The maximum radius rp,x, the mapping parameter L, and
the number of grid points N must be large enough to provide
an accurate description of high-n Rydberg states. Thus they
must be varied and checked to obtain converged CSDs. At the
same time, it is also necessary to restrict 7y, and /ax When
calculating Rydberg states. In principle, the orbital angular
momentum quantum number / is given by 0 </ < n — 1, but
in practice /i ,x can be chosen much smaller than (7 — 1)
for two reasons. First, single resonant excitation will increase
(or decrease) [ by £1. Second, REXMI [16] involves multiply
excited states and their autoionization, which could potentially
give a high-/ state. For example, a doubly excited state with
two [ = 3 excited electrons can decay into an / = 6 state, and
another electronic decay from this state can increase [ further.
A rule of thumb is to choose I,x higher than two times the
highest [ of the initially occupied subshells. Eventually /.«
as well as nyx should be chosen as convergence parameters.
We found that ny,,x = 21 and [,,,x = 6 are necessary to get
converged results for the nonrelativistic resonant case in the
fluence regime used in Fig. 1. Note that those are larger than
the values (nmax = 10 and [,,x = 4) used in Refs. [18,19].
In Table IV, we list all computational parameters (N, L, Fyax,
Pmax» and [ax ) that we used for the x-ray multiphoton dynamics
calculations presented in the following sections.

III. RESULTS
A. X-ray multiphoton ionization dynamics of Xe at 5.5 keV

We investigate x-ray multiphoton ionization dynamics of
Xe at 5.5 keV, where theory predicted lower populations for
high charge states in comparison with experimental data [17].
It was speculated that this underestimation might be attributed
to the lack of relativistic effects and shake-off processes in
the theoretical model used. A 5.5 keV photon can ionize
L-shell electrons, where the relativistic correction is a few
hundred eV and the spin-orbit splitting of 2p is about 300 eV
(see Table I). Figure 2 shows the L-shell orbital energies of the
ground configuration of Xe ions as a function of charge state.
The nonrelativistic calculations (2s and 2p) are plotted with
lines and symbols, while the relativistic calculations (2sy,2,
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FIG. 2. L-shell orbital energies of the ground configuration of Xe
ions with and without relativistic effects.

2p12, and 2p3p) are plotted with lines only. For the whole
range of charge states, the 25/, orbital energies are lower by
about 400 eV than the 2s orbital energies, and the 2p orbital
energies are split into the 2p;,, and 2p3,, by about 300 eV.
Therefore, relativistic energy corrections may affect ionization
dynamics in the following ways. First, the photoionization
cross section of neutral Xe at 5.5 keV becomes higher because
the ionization potential of 25y ; is closer to the photon energy.
Second, the spin-orbit splitting allows decay channels that
are completely absent in the nonrelativistic calculations, for
example, the L, — L3 X and M, — M3X channels in Table II1.
Both effects may enhance the degree of multiple ionization.
Third, the sequence of ionization events in the relativistic case
stops earlier than that in the nonrelativistic case. As shown
in Fig. 2, 2s photoionization at 5.5 keV stops at Xe!”" in
the nonrelativistic case, whereas 25y, photoionization stops at
Xe>* in the relativistic case. Note that this effect suppresses the
yields of higher charge states, unless we consider resonance-
driven processes beyond the direct one-photon ionization limit.

We plot the mean charge of Xe at 5.5 keV as a function of
fluence for the four different cases (with/without relativistic
effects and with/without resonance effect) in Fig. 3. The pulse
duration is 30 fs FWHM. The spectral bandwidth of the
x-ray pulse is assumed to be 1% (55 eV) for the resonance
calculations. All computational parameters used are listed
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<
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Fluence (1010 photons/pmz)

FIG. 3. Mean charge of Xe at 5.5 keV as a function of fluence.
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FIG. 4. Charge-state distributions of Xe at 5.5 keV, after volume
integration with a peak fluence of 5.3 x 10'° photons/um?.

in Table IV. One can see that the relativistic calculations
(green and blue squares) yield higher mean changes than
the nonrelativistic calculations (red and orange circles). The
difference in the mean charges is due to the difference in
photoionization cross sections of neutral Xe at 5.5 keV:
0.166 Mb in the nonrelativistic case and 0.186 Mb in the
relativistic case.

On the other hand, one can see counterintuitive results
when the CSDs are examined. Figure 4 shows Xe CSDs
at 5.5 keV for the four different cases. A peak fluence of
5.3 x 10'° photons/um? is used for volume integration [11],
assuming a Gaussian beam profile. All results are similar
to each other, except the relativistic calculation without
resonances. Note that the mean charge enhancement of the
relativistic case in Fig. 3 is not clearly shown in the CSDs
because of the logarithmic scale of the ion yields. It is surpris-
ing to see that, without resonances, the relativistic calculation
(green, open squares) underestimates the yields of highly
charged ions in comparison with the nonrelativistic calculation
(red, open circles), which is opposite to the expectation from
Refs. [17,24] that those for the relativistic calculation would
be enhanced. Since direct one-photon ionization closes at 45
in the relativistic case, which is much earlier than 417 in the
nonrelativistic case, the ion yields in higher charge states are
suppressed, even though the mean charge is enhanced.

Next, let us compare the nonrelativistic results without
resonances (red, open circles) and with resonances (orange,
filled circles) in Fig. 4. It is worthwhile to note that resonance-
driven multiple ionization here is resonance-enhanced [15]
(both photoionization and resonant excitation are allowed),
not resonance-enabled [16] (which would be the case if only
resonant excitation were possible). In the nonrelativistic case,
when resonant photoexcitation from 2s starts at Xe'!’™, all 2p
electrons are still available for photoionization. Since the 2p
photoionization cross section (0.11 Mb) is much larger than the
2s — np resonant photoexcitation cross section (~1 kb), the
2 p photoionization is the predominant process for ionization.
Therefore, resonant excitation only enhances the ionization
yields a bit, in addition to photoionization. Even when 2p
photoionization closes at +23, many valence electrons are
still available for photoionization, and their cross section is
similar to the resonant excitation cross section. Thus one can
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FIG. 5. M-shell orbital energies of the ground configuration of
Xe ions with and without relativistic effects.

see from Fig. 4 that the resonance effect at 5.5 keV at the
given peak fluence is almost negligible for the nonrelativistic
calculations.

The situation is somewhat different when both relativis-
tic and resonance effects are taken into account. Let us
compare the relativistic results without resonances (green,
open squares) and with resonances (blue, filled squares)
in Fig. 4. Since the direct one-photon ionization in the
relativistic calculations stops much earlier than that in the
nonrelativistic calculations, the enhancement effect due to
resonant excitation becomes more visible. One can clearly see
that the resonance effect enhances the yields of high charge
states in the relativistic case, in contrast to the nonrelativistic
case. It turns out that the relativistic, resonant results (blue,
filled squares) coincidentally overlap with the nonrelativistic
results (red and orange circles).

B. X-ray multiphoton ionization dynamics of Xe at 1.5 keV

At a photon energy of 1.5 keV, M-shell electrons of neutral
Xe can be ionized. The M-shell photoionization stops as the
charge increases when the M -shell ionization potential of the
charge state is higher than the photon energy. After this point,
resonant photoexcitation can occur and Xe ions can further
ionize via REXMI [15,16]. Figure 5 shows the M-shell orbital
energies of the ground configuration of Xe ions as a function
of charge state. The nonrelativistic results are plotted with
lines and symbols, while the relativistic results are plotted
with lines only. The relativistic 3s;,, orbital energy is lower
than the nonrelativistic 3s orbital energy by about 100 eV. The
spin-orbit splitting for 3 p is about 100 eV, but the relativistic
effects on 3d are less than 20 eV up to Xe***. For the M-
shell orbital energies, there are no dramatic changes due to
relativistic effects, in contrast to the L-shell case in the previous
subsection.

Figure 6 depicts the mean charge of Xe at 1.5 keV as
a function of fluence. The pulse duration is 80 fs FWHM.
The x-ray energy bandwidth is 1% (15 eV) for the resonance
calculations. All computational parameters used are listed in
Table IV. The fluence spans up to 2 x 10'! photons/um?,
which is higher than the one-photon absorption saturation
fluence of neutral Xe at 1.5 keV (~1.1 x 10'° photons/um?).
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FIG. 6. Mean charge of Xe at 1.5 keV as a function of fluence.

In the low fluence regime, the relativistic calculations (green
and blue squares) are a bit higher than the nonrelativistic
calculations (red and orange circles). But the mean charges
with resonances (orange filled circles and blue filled squares)
exceed those without resonances in the high fluence regime,
due to REXMI [15,16]. At this photon energy with higher
fluences, it is expected that the resonance effect is more
pronounced than the relativistic effect.

The calculated CSDs of Xe at 1.5 keV are shown in Fig. 7.
A peak fluence of 1.3 x 10" photons/um? is used for volume
integration, assuming a Gaussian beam profile. Let us compare
the nonrelativistic cases with and without resonances (red open
circles versus orange filled circles). Without resonances, the
predicted highest charge state is 427, because the direct one-
photon ionization from M shell is closed at Xe**. Note that
production of charge states higher by +1 or +2 is possible
via multiple-core-hole states, but their yields are quite low.
Including the REXMI mechanism dramatically enhances the
yields of high charge states, similar to Ref. [18]. Next, we
consider the relativistic effect without resonance (red open
circles versus green open squares). As expected, there is no
significant change in the relativistic calculation compared to
the nonrelativistic calculation (see Fig. 5).

However, our calculation with both relativistic treatment
and resonant excitation illustrates that there is an interplay

0
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FIG. 7. Charge-state distributions of Xe at 1.5 keV, after volume
integration with a peak fluence of 1.3 x 10'! photons/um?.
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FIG. 8. Charge-state distribution of Xe at 1.5 keV and 5.5 keV
compared with experimental data [16,17].

between the two effects. The relativistic calculation with
resonances (blue filled squares) clearly shows higher pop-
ulations than the nonrelativistic calculation with resonances
(orange filled circles) for highly charged ions beyond the direct
one-photon ionization limit (426). In the relativistic case, the
REXMI mechanism starts earlier and the spin-orbit splittings
increase chances to hit resonances. Therefore, relativistic
effects can further enhance the REXMI effect, producing more
high charge states.

IV. CONCLUSION AND PERSPECTIVE

In this paper, we have extended the XATOM toolkit to a
relativistic version in order to further study x-ray multiphoton
ionization dynamics of Xe atoms in XFEL beams. This

PHYSICAL REVIEW A 95, 043412 (2017)

extension is considered to be important because relativistic
effects on ion CSDs could become significant in heavy atoms.
Our approach is to introduce leading-order relativistic energy
corrections via perturbation theory, and cross sections and rates
are correspondingly reformulated. We have confirmed that the
calculated energy corrections, cross sections, and rates are in
good agreement with the literature. Also we have extended
XATOM to include resonant photoexcitation processes in both
nonrelativistic and relativistic treatments.

We have calculated CSDs of Xe atoms after interacting with
intense x-ray pulses at 5.5 keV and 1.5 keV, respectively. At the
former photon energy, the ionization dynamics are influenced
by relativistic effects, because deep inner-shell electrons are
initially ionized. On the other hand, at the latter photon energy,
the resonance effect plays a particularly important role in
the ionization dynamics at high x-ray intensity. By using the
extended XATOM toolkit, we have examined the relativistic
effect and the resonance effect separately, and have found a
synergy effect when both of them are applied together in our
calculations. We have demonstrated that, generally speaking,
both effects must be taken into account in x-ray multiphoton
ionization dynamics calculations. But do these effects resolve
all discrepancies with experiment?

In Fig. 8, we compare the experimental and present
theoretical Xe CSDs, at 1.5 keV [16] and 5.5 keV [17],
respectively. The theory results shown include both relativistic
and resonance effects. For this comparison we have performed
the volume integration based on the x-ray beam parameters
that were determined in each experiment. Our theoretical
prediction still underestimates the yields of highly charged
ions in the CSD at both photon energies. This might be due to
our mean-field approach and a lack of higher-order many-
body processes such as shakeoff processes and/or double
Auger decays in our theoretical approach. The discrepancy
between theory and experiment might also be attributed to
uncertainties in the x-ray beam parameters, such as the spatial
beam profile and spectral bandwidth. Therefore, for a more
quantitative understanding of x-ray multiphoton ionization
dynamics, it is desirable to improve the theoretical treatment
for x-ray-induced processes and the calibration of the x-ray
beam parameters in experiment.
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