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Parametric interference effect in nonresonant pair photoproduction on a nucleus in the field of two
pulsed light waves
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Nonresonant electron-positron pair photoproduction on a nucleus in the field of two pulsed light waves
is studied theoretically. The process is considered in detail within the interference kinematic region, when
stimulated absorption and emission of photons of external pulsed waves by an electron and a positron occurs
in a correlated manner. Within this region, a correspondence between the emission angle and energy of the
produced particles appears. The distribution of the obtained differential cross section over the pair kinetic energy
is characterized by presence of oscillations, within the interference region. Each of the maxima corresponds to
the definite partial process with emission and absorption of an equal number of photons of both waves. It was
shown that the differential cross section within the interference region for certain values of the pair energy may
exceed the cross section in other scattering kinematics in two orders of the magnitude. Obtained results may be
experimentally verified, for example, by scientific facilities at sources of pulsed laser radiation (SLAC, FAIR,
ELI, XCELS).
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I. INTRODUCTION

Photoproduction of a pair of an electron and a positron
in the field of an atomic nucleus is of scientific interest due
to the fact that it is one of the fundamental processes of
interaction of γ photons with matter. The process of Coulomb
photoproduction of pair (CPP) draws attention for quite a long
time. For the first time, the differential cross section in the
quantum electrodynamics (QED) approach was obtained by
Bethe and Heitler in Ref. [1].

Nowadays, the relativistic-regime threshold (when the radi-
ation intensity of the optical laser is higher than 1018 W cm−2)
has been already reached [2], and even exceeded in the world’s
leading scientific laboratories. Electron motion becomes
highly nonlinear as a function of the laser electromagnetic
field, under the relativistic regime, in laser-electron interaction.
Thus, the laser system Vulcan at the Central Laser Facility
(CLF) [3] in the United Kingdom and the Petawatt High-
Energy Laser for heavy Ion eXperiments (PHELIX) [3,4] at the
GSI Helmholtz Centre for Heavy Ion Research in Darmstadt
(Germany) provide field powers of the order of 1 PW. Such
intense electromagnetic fields allows to an electron to reach
relativistic velocities already during the single laser-wave
period. Ultrahigh intensity up to 1024 W cm−2 are envisaged in
the laser facility of the Extreme Light Infrastructure (ELI) [3]
project. The scientific interest to studying of processes of QED
in laser fields of such intensity is caused by the possibility of
testing of different aspects of fundamental physics for the first
time. Experimental verification of QED effects in the laser
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field was carried out at the facility SLAC National Accelerator
Laboratory (Stanford, USA) [5,6].

Nonlinear QED effects in force fields have been an object
of scientific research for a long time already. QED processes
of both the first and second order in the laser field were
studied in Refs. [5–52]. The results have been summarized
in monographs [7–10] and reviews [11–16].

Improvement of laser systems, generally, consists in pro-
duction of increasingly short and intense laser pulses [2,3].
The amplitude of the intensity of the field of powerful
ultrashort pulsed lasers changes greatly in space and time. New
experimental conditions have required constant improvements
in calculations and model development.

The theory of CPP process in the presence of a plane
laser wave was developed in Refs. [19–28]. Borisov et al. in
Ref. [19] studied resonant CPP on a nucleus in the particular
case of ultrarelativistic energy of an electron and a positron,
when an incident photon and a photon of a wave pump
propagate towards each other. Photoproduction of electron-
positron pair on a nucleus in the field of a pulsed wave was
studied in detail in Refs. [24,25]. Nonresonant CPP in the field
of two circularly polarized electromagnetic waves propagating
in the same direction was considered in the general relativistic
case and for arbitrary intensity of an external field in the Ref.
[27].

The parametric interference quantum effect manifests when
QED processes occur in the field of two laser waves. The
specified kinematic region (called the interference region)
appears in such a field, when scattering particles can forcedly
absorb and emit photons of electromagnetic waves in a
correlated manner, i.e., the equal number of photons of
the first and second laser wave [42–44]. The parametric
interference quantum effect in spontaneous bremsstrahlung
(SB) of an electron scattered by a nucleus and in CPP on a
nucleus in the field of two plane monochromatic waves was
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predicted theoretically [27,39–41]. Studying of effects caused
by presence of a second pulsed laser wave is of interest due to
the fact, that probability of stimulated processes in interference
kinematics is generally greater than in the other one. The theory
of QED processes in the field of two laser waves was developed
in [27,28,39–51].

Hence, there is an interest in detailed study of CPP process
in the field of two pulsed laser waves. In this work, we develop
a theory of nonresonant production of electron-positron pair on
a Coulomb center in presence of an external field of two pulsed
electromagnetic waves. The main aim of the work is detailed
analysis of the studied process within the region, where
peculiar properties of stimulated absorption and emission of
waves photons by an electron-positron pair (the parametric
interference effect) appear.

The external pulsed field was chosen as a superposition of
two plane nonmonochromatic waves, propagating in the same
direction along the z axis, with the plane of polarization (xy).
The four-potential of such a field has the form

A(ϕ1,ϕ2) = g1

(
ϕ1

ω1τ1

)
A1(mon) + g2

(
ϕ2

ω2τ2

)
A2(mon), (1)

Aj (mon) = F0j

ωj

(ejx cos ϕj + δj ejy sin ϕj ), j = 1,2 (2)

ϕj = (kjx) = ωjξ, ξ = t − z/c. (3)

Each of the summands in Eq. (1) corresponds to the field of
the first and second pulsed laser wave (the index j labels the
wave) and ϕj is the wave phase and τj is the pulse width.
In Eqs. (1)–(3), c is the light velocity in vacuum; F0j is the
strength amplitude of the electric field in the pulse peak; ωj

is the laser-wave characteristic frequency; kj = (ωj ,kj ) is the
wave four-vector; δj is the wave ellipticity parameter (δj = 0
corresponds to linear polarization, δj = ±1 corresponds to
circular polarization); and ejx = (0,ejx) and ejy = (0,ejy) are
four-vectors of wave polarization, meeting the conditions

e2
jx,jy = −1, (ejx,jykj ) = k2

j = 0. (4)

Hereafter, the standard metric for four-vectors, (ab) = a0b0 −
ab, is used.

In what follows, we consider the case of circular polariza-
tion of external pulsed waves:

δ1 = +1, δ2 = ∓1. (5)

It should be noted that in the case of waves’ close frequency
and same polarization, we have the case of a single wave [43].
Note also that description of a laser field by the potential
(1)–(3) does not take into account the possible phase shift
between laser waves and stipulates that laser pulses’ maxima
coincide.

Functions gj (ϕj/ωjτj ) in Eq. (1) are envelope functions of
the four-potential of pulsed laser waves, that allows to take
into account the pulsed character of a laser field [17]. The
process is studied within the frame of the quasimonochromatic
approximation, when a laser wave performs a lot of amplitude
oscillation, i.e., the following condition is met:

ωjτj � 1. (6)

The condition (6) is satisfied for the majority of modern
lasers [2,3].

Electron and positron interaction with a nucleus is consid-
ered in the frame of the Born approximation, that is, the case
of rather fast particles is studied:

v∓/c � Zα, α = e2/h̄c, (7)

where v− and v+ are velocities of translation movement of an
electron and a positron, respectively; Z is the nucleus charge
number; h̄ is the Planck constant; and α is the fine-structure
constant.

It should be noted that there are several characteristic
parameters in the problem of CPP process in the field of two
pulsed laser waves. The first one is the classical relativistic-
invariant parameter [11]

η0j = eF0j

mcωj

, (8)

which numerically equals to the ratio of the work done
by the field over an electron, on the wavelength, to the
electron rest energy (here, e is an electron charge, m is an
electron mass). The parameter (8) is one of the most important
characteristics of the external electromagnetic field. In the
classical consideration of laser-dressed electron motion, the
parameter η0j defines the characteristic velocity of electron
oscillation in the case if η0j � 1.

The multiplicity of multiphoton processes occurring in
the Coulomb interaction between the particles in the laser
field is also characterized by the Bunkin-Fedorov multiphoton
quantum parameter [18]

γ ′
0j = η0j

mc2

h̄ωj

|p|c
E

. (9)

It is equal to the ratio of the work done by the field at the
distance, passed by a particle during the characteristic time of
wave oscillation ω−1

j , to the energy of an external-field photon.
In Eq. (9), E and p are the particle energy and the particle
momentum, respectively. Parameters γ ′

0j determine stimulated
processes of emission and absorption of photons of the first
and second wave by an electron-positron pair, independently
of each other.

The particular kinematic region, quite narrow and called
the interference region, occurs in the field of two electro-
magnetic waves. The Bunkin-Fedorov quantum parameter is
not manifested within this region. The following multiphoton
parameters manifest within the interference region. The
quantum interference parameter reveals in the field of two laser
waves, propagating in the same direction and with different
frequencies [43]. This parameter is the multiphoton major
parameter out of the Bunkin-Fedorov kinematic region, and
has the form

α′
0 = η01η02

|p|c
h̄ωcom

m2c4

E2
, ωcom ≡ ω1 − δ2ω2. (10)

Parameters α′
0 [Eq. (10)] determine interference processes in

correlated stimulated emission or absorption of photons of
both waves by an electron-positron pair. It is easy to see from
Eqs. (5) and (10) that parameter ωcom = ω1 ± ω2 in the case
of circular polarization.

The problem of CPP on a nucleus will be studied in
the range of moderately strong fields, when outside the
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FIG. 1. Feynman diagram of CPP process in the field of two
pulsed laser waves. Dual incoming and outgoing lines correspond to
wave functions of an electron p− and a positron p+ in the field of two
laser waves (1)–(3), the inner line corresponds to the Green function
of an intermediate electron q− and a positron q+ in the field of two
laser waves. Wavy lines correspond to an incident γ photon ki and a
“pseudophoton” q of a nucleus recoil.

interference region, the intensity meets the conditions

η0j � 1, α′
0 � 1. (11)

Under the conditions (11), γ ′
0j � 1, however, within the

interference region the influence of this parameter does not
manifest by virtue of the special kinematics.

The relativistic system of units, h̄ = c = 1, will be used
throughout this paper.

II. AMPLITUDE OF CPP IN TWO PULSED LASER WAVES

Let us consider production of a pair of an electron and
a positron by a photon on a nucleus in the external field of
two pulsed waves (1)–(3) in the first Born approximation
on interaction of an electron and a positron with a nucleus
Coulomb field. This process is of the second order in the
fine-structure constant, and is described by two Feynman
diagrams [53] (see Fig. 1).

In Fig. 1, ki = (ωi,ki) is the four-momentum of an incident
γ photon; q is the four-momentum transferred to a nucleus;
p− = (E−,p−) and p+ = (E+,p+) are four-momenta of an
electron and a positron, respectively; and q− and q+ are four-
momenta of particles in an intermediate state. We mark that a
particle in an intermediate state is an electron for Fig. 1(a) and
a positron for Fig. 1(b).

We emphasize that an electromagnetic field with the four-
potential (1)–(3) represents a plane wave. Thereby Volkov
functions [54], which are correct for a plane wave of arbitrary
spectral composition, can be used for description of the state of
an electron and a positron in the field of a quasimonochromatic
wave.

The wave function of an incident photon is determined by
the expression

Ai(xj ′ ,ki) =
√

2π

ωi

εi exp(ikixj ′ ). (12)

Here, εi is the polarization four-vector of an incident photon.
The index j ′ = 1,2; it labels the integration variable in the first
and second vertices of the diagram.

The field of a nucleus is described by the Coulomb potential
in the form

A0(|xj ′ |) = Ze

|xj ′ | . (13)

We remind that CPP process is a crossed channel of
bremsstrahlung due to electron scattering by a nucleus
[29–40]. Nonresonant SB of an electron scattered by a nucleus
in the field of two pulsed laser waves was studied in detail in
[39,40]. In consideration of the known calculation procedure,
we may obtain the required amplitude of nonresonant CPP
on a nucleus by the following replacement and redesignation
in expressions for laser-modified SB of an electron by a
nucleus [41]:

pf → p−, pi → −p+, k′ → −ki, (14)

qi → q−, qf → −q+. (15)

Here, pi and pf are four-momenta of an electron in the initial
and final states, k′ is the four-momentum of an emitted photon,
qi and qf are four-momenta of an electron in an intermediate
state for SB process of an electron scattered by a nucleus.

We note that CPP in an external field may occur in a resonant
manner, when a particle in an intermediate state becomes real
[15,16]. The given paper presents studying of the nonresonant
case, when the following condition is met:

q2
∓ − m2 � (k1q∓)

ω1τ1
. (16)

As it was shown in work [24], for CPP on a nucleus, the
resonance condition is realized when the incident-photon
energy exceeds the certain threshold value (ωi � m2/ω1,2);
at that pairs are produced in the narrow cone relatively of a
direction of incident-photon entrance. Therefore, the condition
(16) includes a great kinematic region of nonrelativistic and
relativistic energy and angles of emission of an electron and a
positron.

Hence, the amplitude of nonresonant CPP on a nucleus in
the field of two pulsed laser waves in the moderately strong
field of two pulsed circularly polarized waves (1)–(3), (5), and
(11) is presented in the form of a sum over partial components:

Sf i =
∞∑

l1,l2=−∞
Sl1l2 . (17)

Here, Sls is the partial amplitude of CPP with absorption
(l1,l2 < 0) or emission (l1,l2 > 0) of l1 photons of the first
wave and l2 photons of the second wave by an electron and a
positron:

Sl1l2 = −i
Ze3√π√
2ωiE−E+

ū−
[
B

(a)
l1l2

+ B
(b)
l1l2

]
u+. (18)

Here, ū− = ū(p−) and u+ = u(−p+) are Dirac bispinors,
functions B

(a)
l1l2

and B
(b)
l1l2

correspond to Figs. 1(a) and 1(b) of
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the considered process, respectively:

B
(a)
l1l2

=
∞∑

s1,s2=−∞
4π

�
(a)
l1,2−s1,2,s1,2

(q−,q0)

q2
x + q2

y + (q0 − qz)2 γ̃ 0 q̂− + m

q2− − m2
ε̂i ,

(19)

B
(b)
l1l2

=
∞∑

s1,s2=−∞
4π

�
(b)
s1,2,l1,2−s1,2

(q+,q0)

q2
x + q2

y + (q0 − qz)2 ε̂i

−q̂+ + m

q2+ − m2
γ̃ 0.

(20)

The hat above the four-vector means the scalar product of
the corresponding four-vector with Dirac matrices. Functions
�

(a)
l1,2−s1,2,s1,2

(q−,q0) and �
(b)
s1,2,l1,2−s1,2

(q+,q0) are specified as

�
(a)
l1,2−s1,2,s1,2

(q−,q0)

= τ1

∫ ∞

−∞
dφ exp {iq0τ1φ}

× Il1−s1,l2−s2 (χj ,γj (p−,q−,φ),α(p−,q−,φ))

× Is1,s2 (χj ,γj (q−,−p+,φ),α(q−,−p+,φ)), (21)

�
(b)
s1,2,l1,2−s1,2

(q+,q0)

= τ1

∫ ∞

−∞
dφ exp {iq0τ1φ}

× Is1,s2 (χj ,γj (p−,−q+,φ),α(p−,−q+,φ)) (22)

× Il1−s1,l2−s2 (χj ,γj (−q+,−p+,φ),α(−q+,−p+,φ)),

φ ≡ ϕj

ωjτ1
= ξ

τ1
. (23)

Here, φ is dimensionless variable of a laser field. Quantities
s1, (l1 − s1) and s2, (l2 − s2) are numbers of photons, which
are forcedly emitted or absorbed by an electron-positron pair
from the first and second waves in the first (second) vertex.
Therefore, parameters l1 and l2 are total number of external-
field photons participated in the production process. They can
be measured experimentally. Four-momenta q− and q+, q have
the form

q− = ki − p+ − s1k1 − s2k2

= p− − q + (l1 − s1)k1 + (l2 − s2)k2,

q+ = ki − p− − s1k1 − s2k2

= p+ − q + (l1 − s1)k1 + (l2 − s2)k2,

q = p− + p+ − ki + l1k1 + l2k2. (24)

Integral functions (21) and (22) are smoothly dependent on
the argument φ [Eq. (23)]. They will not be small only if the
relation q0τ1 � 1 is correct, which in fact represents the energy
conservation law:

q0 = E− + E+ − ωi + l1ω1 + l2ω2 � τ−1
1 � ω1. (25)

Special functions In1,n2 in expressions (21) and (22)
determine the probability of partial multiphoton
processes in the field of two pulsed laser waves.
Functions Is1,s2 (χj ,γj (q−,−p+,φ),α(q−,−p+,φ)) and
Is1,s2 (χj ,γj (p−,−q+,φ),α(p−,−q+,φ)) correspond to
the process of pair production by a photon ki in the
field of two pulsed laser waves [8]. Simultaneously,

functions Il1−s1,l2−s2 (χj ,γj (p−,q−,φ),α(p−,q−,φ)) and
Il1−s1,l2−s2 (χj ,γj (−q+,−p+,φ),α(−q+,−p+,φ)) correspond
to scattering of an intermediate electron q− and a positron
q+ by a nucleus in the field of two pulsed waves [45]. These
special functions In1,n2 are studied in detail in Ref. [55].
They can be represented in the form of expansion into series
of integer-order Bessel functions. In the case of laser-wave
circular polarization (5), functions In1,n2 have the form

In1,n2 (χj ,γj ,α) = exp {−i(n1χ1 + n2χ02)}

×
∞∑

r=−∞
Jr (α)Jn1−r (γ1)Jn2+δ2r (γ2). (26)

Arguments of functions (26) are determined as

γ1(p,p′,φ) = g1(φ)γ01(p,p′),

γ2(p,p′,φ) = g2(φτ1/τ2)γ02(p,p′), (27)

γ0j (p,p′) = η0j

m

ωj

√
−Q2

pp′ , Qpp′ = p

(np)
− p′

(np′)
, (28)

tan χ1 = (e1yQpp′)

(e1xQpp′)
, tan χ2 = δ2

(e2yQpp′)

(e2xQpp′)
, (29)

α(p,p′,φ) = α0(p,p′)g1(φ)g2(φτ1/τ2), (30)

α0(p,p′) = η01η02
m2

ωcom

[
1

(np)
− 1

(np′)

]
. (31)

Here, n ≡ (1,n) = kj/ωj , n is a unit vector along the direction
of propagation of laser waves. Using Eqs. (26)–(31), it is easy
to obtain an explicit form of arguments of all the functions
In1,n2 by corresponding replacement. For example, for the
function Il1−s1,l2−s2 (χj ,γj (p−,q−,φ),α(p−,q−,φ)) indices as-
sume values n1 = l1 − s1 and n2 = l2 − s2; quantities p and
p′ assume values p− and q−, respectively.

Notice that arguments γ0j (p,p′) [Eq. (28)] and α0(p,p′)
[Eq. (31)] are essentially quantum in the general case. It is
evident that they can have a different order of the magnitude
with respect to each other, depending on scattering kinematics.
Arguments γ0j (p,p′) [Eq. (28)] are Bunkin-Fedorov parame-
ters, which determine the probability of stimulated processes
in the field of each of wave, independently each wave from the
other, in Coulomb interaction between particles. Parameters
α0(p,p′) [Eq. (31)] are determined by the term that refers
to interference of the first and second waves [42–44]. They
determine the probability of correlated absorption-emission
processes of photons of both waves by an electron and positron
in CPP on a nucleus in the field of two pulsed laser waves.

Also, we underline that the obtained amplitudes (17)–(31)
in the limit case ωjτj → ∞ coincide with the corresponding
amplitude in the field of two monochromatic waves [27]. When
one of the waves is “switched off” (η02 = 0), the amplitudes
(17)–(31) coincide with the expression for the case of a single
pulsed wave [20].

Interference region

Values of multiphoton parameters γ0j (p,p′) [Eq. (28)] and
α0(p,p′) [Eq. (31)] depend greatly on scattering kinematics.
Such a kinematic region (the interference region) can be
distinguished, where quantum parameters γ0j (p,p′) → 0 and
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α0(p,p′) become the major multiphoton parameters. At that,
the parametric interference effect is most pronounced for
circular polarization [42–44]. It was shown in Ref. [27] that
the partial cross section of the studied process within the
interference region can considerably exceed the corresponding
partial cross section in any other geometry, for the case of
monochromatic waves. Therefore, this article will consider
the case of the interference region:

γ0j (p,p′) ≈ 0. (32)

The condition (32) and the explicit form (28) result to
relativistic-invariant relations for amplitudes corresponding to
Figs. 1(a) and 1(b):

Q2
p−q− = Q2

q−p+ = Q2
p−q+ = Q2

q+p+ = 0. (33)

Conditions (33) are satisfied when corresponding vectors Qpp′

are directed along or against the direction of propagation of
waves n, i.e., perpendicular to the wave polarization plane.
Kinematics of CPP process in the field of two laser waves is
identical for the amplitudes at the first and second diagram
[27]. We also note that the following condition is met within
the interference region for the azimuthal angles, along with
the condition (33):

ϕ+ = ϕ− = ϕi. (34)

Equation (33) allows to obtain the required relation of polar
angles and energy of a pair with the angle of entrance of an
incident photon:

a∓ ≡ |p∓|
(np∓)

sin θ∓, a− = a+ = cot
θi

2
, (35)

(np∓) = E∓ − |p∓| cos θ∓. (36)

Here, the angle θi = ∠(n,ki) denotes the polar angle of an
incident photon, θ∓ = ∠(n,p∓) are the polar angles of an
electron (θ−) and a positron (θ+).

From Eqs. (35) and (36), it is easy to determine the velocity
(energy) of an electron and a positron produced by a photon
within the interference region, depending on their polar angles

v∓ = |p∓|
E∓

=
[

cos θ∓ + sin θ∓ tan
θi

2

]−1

. (37)

Equation (37) can be easily presented in the form of an equation
with respect to pair polar angles:

tan
θ∓
2

= v∓
(1 + v∓) cos (θi/2)

[
sin

θi

2
∓

√
1−cos2 (θi/2)

v2∓

]
,

(38)

where the sign “∓” in front of the square root refers both to
an electron and to a positron and indicates symmetry of the
interference condition (35) with respect to electron-positron
replacement. It is important that in the frame of Eqs. (37)
and (38), within the region, where the parametric interference
effect appears, the correspondence between exit angles and
energy of final particles appears. This dependence differs
significantly production process within the interference region
from any other geometry.

It can be seen from Eq. (38) that velocities of translational
motion of an electron and a positron within the interference

FIG. 2. Dependence of angles of emission of an electron and a
positron on their energy within the interference region. The black
curve corresponds to the angle between incident-photon entrance
and the waves’ propagation direction θi = 175◦, the blue curve
corresponds to the angle θi = 160◦.

region are bounded below by a value, which is determined by
the incidence angle of γ photon

vmin ≡ cos (θi/2). (39)

In the case when an electron and a positron are produced with
velocities close to the minimal value (v∓ → vmin), we have

θ∓ → θlim = θi/2 ∓
√

2(1 − vmin/v∓) ≈ θi/2. (40)

That is, an electron-positron pair is emitted within a narrow
cone along the bisector of the angle between the wave vector
k1 and the incident-photon momentum ki . It is peculiar to the
considered process that, with energy growing (far from the
threshold), the direction of electron and positron exit recedes
from the bisector of this angle (see [27]). It can be seen from
Eq. (39) that by specifying angles θi and the photon energy, we
can smoothly change the minimal energy of produced electron
and positron.

If assume that the incident-photon momentum is nearly
antiparallel to the wave vector k1:

�θi = (π − θi) � 1, vmin ≈ �θi/2 � 1. (41)

In this case, the threshold energy for an incident photon has
the form

ωth
i = 2

(
m + mv2

min/2
) + l1ω1 + l2ω2. (42)

The second term in the parenthetical expression on the right-
hand side of Eq. (42) has the meaning of the minimal kinetic
energy of an electron (positron). In the opposite limiting case
when the incident-photon momentum is nearly parallel to the
wave vector k1 (θi � 1), we have the ultrarelativistic minimal
energy of an electron and a positron within the interference
region (35)–(38).

Dependence of angles of emission of an electron and a
positron on their energy within the interference region is shown
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in Fig. 2. Curves differ by angles between incident-photon en-
trance and the waves’ propagation direction. For example, let
us fix both the exit angle and velocity of an electron; these val-
ues meet the selected point on the lower part of the curve. We
obtain in this case that both the positron velocity (absorbed and
emitted field energy is taken into account) and its emission an-
gle correspond to the upper part of the curve. The law of energy
conservation, restrictions with the minimal velocity (39), and
the characteristic range of numbers of photons l1 and l2 define
the section of the curve, where the positron can be produced.

It follows from properties of the Bessel function and
Eq. (26) that n2 = −δ2n1 under the condition (32). Thus,
functions In1,n2 , which determine the amplitude of CPP in two
laser waves, are reduced over one of indices and transform
into Bessel functions within the interference region (33) for
circular polarization:

Il1−s1,l2−s2 (χj ,γj ,α) → e−i(l−s)�Jl−s(α),

Is1,s2 (χj ,γj ,α) → e−is�Js(α), (43)

l ≡ l1 = −δ2l2, s ≡ s1 = −δ2s2. (44)

Here, � = ∠(e1x,e2x) is the angle between vectors of polar-
ization of laser waves. Numbers of photons of both waves (44)
are emitted and absorbed forcedly by an electron-positron pair
within the interference region. Therefore, an electron-positron
pair emits (absorbs) photons of both waves in correlated
manner within the interference region. Formally, it looks
like that an electron-positron pair emits (absorbs) forcedly
as though an integer number of l photons of combination
frequencies ωcom (10).

Nonresonant amplitudes (17)–(22) can be summed over the
index s for moderately strong field (11). Given the properties
of Bessel functions after some uncomplicated calculations,
within the interference region, we obtain

Sf i =
∞∑

l=−∞
Sl, Sl = −i

Ze3√π√
2ωiE−E+

ū−Blu+, (45)

Bl = 4πe−il�H

q2
x + q2

y + (q0 − qz)2 �l(p−,−p+,q0), (46)

H = γ̃ 0 q̂− + m

q2− − m2
ε̂i + ε̂i

−q̂+ + m

q2+ − m2
γ̃ 0, (47)

�l(p−,−p+,q0)

= τ1

∫ ∞

−∞
dφ exp{iq0τ1φ}Jl(α0(p−,−p+)g1(φ)g2(φτ1/τ2)),

(48)

α0(p−,−p+) = m2η01η02

ωcom

[
1

(np−)
+ 1

(np+)

]
. (49)

Here, the values of velocities and polar angles of the pair are
in accordance with Eqs. (37) and (38).

Therefore, expressions (45)–(48) determine the required
nonresonant amplitude of CPP in the field of two pulsed
moderately strong circularly polarized waves, within the
interference region. The energy conservation law (25) within
the interference region takes the form

q0 = E− + E+ − ωi + lωcom � ω1. (50)

Emphasize also that the amplitudes (17)–(22) can be
summed over the index s outside the interference region
as well. In this case, the transition amplitude has the
form of a double sum over numbers of photons of each
of waves l1,l2, and is determined by special functions
Il1,l2 (α±(p−,−p+,φ),γ1(p−,−p+,φ),γ2(p−,−p+,φ)).

III. CROSS SECTION OF CPP PROCESS

Let us obtain the differential cross section for relativistic
energies of an electron and a positron using the amplitudes
(45)–(48) by standard mode [53]

dσ = |Sf i |2
T

d3p−
(2π )3

d3p+
(2π )3 . (51)

Here, the parameter T is some comparatively great time
span. Let us take into account the correlation d3p∓ =
|p∓|E∓dE∓d�∓. Thus, the differential cross section can be
presented as a sum of partial components

dσ =
∞∑

l=−∞
dσl, (52)

where dσl is the partial differential cross section of production
of an electron into the energy range dE− and the solid angle
d�− and a positron into the energy range dE+ and the solid
angle d�+ on a nucleus, with emission (l > 0) or absorption
(l < 0) of |l| photons of the combination frequency ωcom has
the form

dσl

dE−dE+d�−d�+
= Z2αr2

e

(2π )2T

m2|p+||p−|
ωiq4

×|ū−Hu+|2|�l(p−,−p+,q0)|2. (53)

We choose envelopes of the potential of pulsed waves in the
form of Gaussian functions:

g1(φ) = g2(φτ1/τ2) = exp{−φ2}, τ1 = τ2. (54)

Let us not be interested in polarization effects. After ap-
propriate averaging and summation over polarizations of an
incidence photon and produced electron and positron, the
expression for the partial section (53) assumes the form

dσl = dσ ∗
l Wl. (55)

The quantity dσ ∗
l transforms into the cross section of differ-

ential cross section of a free-field CPP on a nucleus (Bethe-
Heitler cross section dσBH) [1,53], when energy corrections
can be negligible. The quantity Wl is the probability of
stimulated emission and absorption of the equal number of
photons of pulsed waves by an electron and a positron:

Wl(p−,−p+) =
∑

r

1

ρ

∫ ρ

0
dφ J 2

r (α)J 2
l−r (γ1)J 2

l+δ2r
(γ2).

(56)
Within the interference region, when particles are produced
with energy and angles in accordance with conditions (38),
then the probability of stimulated absorption and emission
processes is simplified to the form

Wl = 1

ρ

∫ ρ

0
J 2

l (α0(p−,−p+) exp(−2φ2))dφ. (57)
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The quantity ρ = T/τ1 in Eqs. (56) and (57) defines the
averaged interval over a laser pulse. Its value is determined
by the concrete experiment conditions. Thus, if the external
field represents itself the sequence of consecutive pulses, the
parameter ρ assumes the sense of the ratio of the distance
between adjacent pulses to the character pulse width.

Notice that the argument of the Bessel function (57) is the
same order in the magnitude with the quantum interference
parameter α0(p−,−p+) [Eq. (49)]. Therefore, for nonresonant
CPP on a nucleus, electron and positron relativistic energy
and moderately strong pulsed waves, within the interference
region, the probability of stimulated absorption and emission
of equal number of photons of both waves is determined by
the quantum interference parameter (49). We study the process
when η0j � 1, γ0j � 1, and the main multiphoton parameter
is α0 � 1.

Figure 3 presents partial probabilities of emission of an
equal number (l = 0; 1; 2) of external-field photons (56),
depending on the angle of positron emission θ+, near the
interference region (38) for circular polarization. An incident
photon collides with a laser pulse at the angle 5◦ (θi = 175◦).
Figure 3(a) corresponds to pair relativistic energy, and Fig. 3(b)
to pair nonrelativistic energy. The electron polar angle and
its energy are fixed and meet the interference condition
(38).

It can be seen from Fig. 3 that distribution of partial
probabilities over positron polar angle has an obviously
pronounced peak. The provision of the distribution maximum
in Fig. 3 is determined by values of positron polar angle;
these values meet the interference condition (38), (a) θ+ =
167.55◦ and (b) θ+ = 147.15◦. The top of the peak may be
described by Eq. (57). At that, the value of the multiphoton
parameter (49) for Fig. 3(a) α0(p−,−p+) = 134 is slightly
greater, then for Fig. 3(b) α0(p−,−p+) = 123. This situation
explains the slight difference in the height of maxima in
Figs. 3(a) and 3(b). When the number of photons increases, the
height of the peak decreases, and its position slightly shifts rel-
ative to the interference angle of positron exit. From Fig. 3 one
can conclude that partial probabilities within the interference
region may exceed the corresponding probabilities in other
scattering kinematics in two orders of the magnitude. Note
also that the parameter α′

0 ∼ 10 [see Eq. (10)] in the presented
calculations.

Notice that for nonrelativistic energy of an electron and
a positron [Fig. 3(b)], the range of polar angles within
the interference region is wider in comparison with the
relativistic energy case [Fig. 3(a)]. Also, within the range of
angles presented at Figs. 3(a) and 3(b), the distribution of
partial probabilities is practically symmetrical relatively to the
interference angle of positron emission.

All reasonings and laws mentioned above are valid when
considering the distribution over the angle of electron emission
due to the symmetry of main expressions with respect to the
replacement of an electron by a positron.

In the case of electron and positron relativistic energy,
corrections, related to stimulated emission and absorption
of external-field photons, can be neglected in the energy
conservation law, in comparison with electron and positron
energy. Consequently, the partial cross section of nonresonant
CPP process is factorized into the cross section of free-

FIG. 3. Dependence of partial process probabilities on the polar
angle of positron near the interference region at emission of an equal
number of external-field photons (56) and other fixed parameters.
Field parameters: η01 = η02 = 0.02, (I01 = 3.74 × 1015 W cm−2,
I02 = 0.68 × 1015 W cm−2), ω1 = 2.35 eV, ω2 = 1 eV, δ1 = +1,
δ2 = −1, ρ = √

3. The polar angle of incident photon θi = 175◦. (a)
The incident-photon energy ωi = 1.066 MeV (Ti = 0.09), electron
and positron velocities v− = 0.3 and v+ = 0.3, the electron polar
angle θ− = 6.73◦. (b) ωi = 1.025 MeV (Ti = 0.01), v− = 0.1, v+ =
0.1, θ− = 27.12◦.

field CPP on a nucleus (dσ ∗
l ≈ dσBH), and the probability

of stimulated emission (absorption) of a certain number of
external-field photons. In other words, photoproduction of an
electron-positron pair and stimulated emission (absorption)
of external-field photons occur independently of each other.
Notice, for the relativistic energy such a factorization is
realized outside the interference region as well.

The differential cross sections (52), (55), and (56), for
the case of electron and positron relativistic energy, can be
summed over all possible processes of stimulated emission
and absorption of laser-field photons. After uncomplicated
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computations, we obtain

dσ =
∞∑

l=−∞
dσl = dσ ∗

l

∞∑
l=−∞

Wl ≈ dσBH. (58)

Thus, for electron and positron relativistic energy, within the
range of moderately strong fields, all essentially quantum
contributions are compensated after summation of partial
cross sections over all processes of stimulated emission and
absorption of external-field photons. Therefore, the differential
cross section (52) coincides with the differential cross section
of free-field CPP on a nucleus.

We note that, in the limit case of two plane monochromatic
waves, the relation (56) transforms into

Wl = J 2
l (α0(p−,−p+)), (59)

and Eqs. (52), (55), and (59) represent the differential cross
section of photoproduction of a relativistic electron-positron
pair on a nucleus in the field of two monochromatic waves,
within the interference region [27].

It is of interest to consider the nonrelativistic case, when
the contribution of field photons into the energy law cannot be
neglected in comparison with electron and positron energy.

Cross section of CPP for nonrelativistic energy

In this section, we consider the case of nonrelativistic
energy of produced electron and positron

v∓ � 1. (60)

We remind that the classical parameter η0j (8) makes sense the
velocity of electron (positron) oscillation in the external laser
field of moderately strong intensities. We will study nonreso-
nant photoproduction of nonrelativistic electron-positron pair
on a nucleus in the moderately strong field of two pulsed waves
(11), when the velocity of electron and positron oscillations in
a laser pulse is less than or the same order with the velocities
of their translational movement

η01,02 � v∓. (61)

Inasmuch as we consider the process within the Born approxi-
mation, then the value of the energy of an incident photon has
to meet the following condition:

Zα �
√

ωi − 2m

m
� 1. (62)

The energy conservation law (25) in this case assumes the
form

mv2
−

2
+ mv2

+
2

− mTi + l1ω1 + l1ω1 � ω1. (63)

Here, Ti is the dimensionless parameter, which is determined
by the energy of incident γ photon:

Ti = ωi − 2m

m
. (64)

The differential cross section of CPP process for nonrela-
tivistic energy has the form of sum over partial components in

general case of scattering kinematics:

dσ =
∞∑

l1,l2=−∞
dσ

(v∓�1)
l1l2

. (65)

The cross section dσ
(v∓�1)
l1l2

is the partial differential cross sec-
tion of photoproduction of an electron into the nonrelativistic
energy range dE− and the solid angle d�− and a positron
into the range dE+ and the solid angle d�+ on a nucleus,
with emission (l1,l2 > 0) or absorption (l1,l2 < 0) of a certain
number of laser-field photons:

dσ
(v∓�1)
l1l2

dE−dE+d�−d�+
= dσ

∗(v∓�1)
l1l2

Wl1l2

dE−dE+d�−d�+
fδ(q0). (66)

Here, the function fδ(q0) is the wide Dirac delta function. The
cross section dσ

∗(v∓�1)
l1l2

depends on the number of stimulated
photons and transforms into the cross section of a free-field
process dσBH under l1 = l2 = 0:

dσ
∗(v∓�1)
l1l2

dE−dE+d�−d�+
= Z2αr2

e

64π2

v+v−
m

×(v2
+ sin2 θ+ + v2

− sin2 θ−). (67)

The function Wl1l2 defines the probability of stimulated
emission and absorption of laser-field photons by an electron
and a positron:

Wl1l2 =
∑

r

1

ρ

∫ ρ

0
dφJ 2

r (α0 exp(−2φ2))

× J 2
l1−r (γ01 exp(−φ2))J 2

l2+δ2r
(γ02 exp(−φ2)). (68)

Here, Bessel function arguments in the nonrelativistic case are
specified as

γ0j = η0j

m

ωj

√
a2− + a2+ − 2a−a+ cos (ϕ−−ϕ+), (69)

a− = v− sin θ−
1 − v− cos θ−

, a+ = v+ sin θ+
1 − v+ cos θ+

, (70)

α0 = η01η02
m

ωcom
(2 + v− cos θ− + v+ cos θ+). (71)

Note that the parameter (71) for CPP process in one order
of magnitude greater than corresponding parameter for the
process of spontaneous bremsstrahlung of an electron on a
nucleus in two laser waves [41].

With considering of Eq. (71), we estimate the contribution
of field corrections into the conservation law (63):

|l1,2|ω1,2

mv2∓
� α0

ω1,2

mv2∓
∼ η01η02

v2∓
� 1. (72)

Thus, for waves intensities (61), the energy corrections on the
external field cannot be neglected in the energy conservation
law (63), in contrast to the previously considered case of
electron and positron relativistic energies. Note that the
function Wl1l2 [Eq. (68)], strictly speaking, does not make
sense of the probability of stimulated emission or absorption
of laser-field photons, due to dependence of its arguments on
the photon number l1,l2.
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Expressions (65)–(68) determine the differential cross
section of nonresonant photoproduction of a pair of a nonrel-
ativistic electron and a positron on a nucleus, in a moderately
strong field of two pulsed laser waves. Accordingly, the partial
cross section of nonresonant CPP does not factorize into the
cross section of free-field CPP on a nucleus, and the probability
of emission (absorption) of a certain number of laser-field
photons, when the velocity of electron and positron oscillations
in a laser pulse is less than or the same order with the velocities
of their translational movement (61). Such a factorization takes
place for quite weak fields η01,02 � v∓ only [8,27].

We pose the problem to study the distribution of the
differential cross section over electron and positron energy
with the fixed geometry of production process.

In the case of a pulsed laser field, the energy conservation
law is not rigorously fulfilled, however, the essential region of
integration narrows sharply [Eq. (63)] and fδ(q0) → δ(q0), due
to the quasimonochromatic conditions (6). We emphasize that
electron and positron energy in the final state are determined by
the energy of an incident photon ωi and a number of photons of
the first l1 and second l2 wave. The conservation law establishes
correspondences between the five values. Experimentally,
the number of external-field photons, which participated in
CPP process, is hardly determined directly. Therefore, it is
convenient to use the conservation law for the convolution of
one of sums, for example, over l2, in Eq. (65).

Then, for electron fixed energy, it is possible to obtain the
distribution of the differential cross section over the positron
energy in the form

dσ

dE−d�−d�+
= Z2αr2

e

64π2

∞∑
l1=−∞

v+(l1)v−
m

× [v2
+(l1) sin2 θ+ + v2

− sin2 θ−]Wl1l2

dE+
ω2

.

(73)

Here, it should be the integer number instead of the index l2 in
the function Wl1l2 [Eq. (68)]:

l2 ⇒
[
−l1

ω1

ω2
+ (1 − εkin)

mTi

ω2

]
. (74)

In Eq. (74), the quantity εkin is specified as

εkin ≡ v2
+ + v2

−
2Ti

= mv2
+/2 + mv2

−/2

ωi − 2m
. (75)

The quantity εkin makes sense of the ratio of the pair kinetic
energy (the sum of kinetic energy of electron and positron)
to the difference between the energy an incident photon
and the pair rest energy. This dimensionless parameter is
useful in the further study of the differential cross section:
dE+ = mTidεkin. Underline that the value of the parameter
εkin = 1 corresponds to partial processes with the photons
number l1 = l2 = 0 and velocity values for free-field CPP
process.

For quantitative analysis, we consider the ratio of the
obtained differential cross section to the cross section in the
absence of an external field. We derive

R =
∫

dεkin
dσ (εkin)

dσBH
, (76)

FIG. 4. The distribution of the differential cross section of CPP on
a nucleus in the field of two pulsed laser waves (77) depending on the
pair kinetic energy at the fixed geometry of production. An incident
photon with the energy ωi = 1.025 MeV (Ti = 0.01) collides with
laser pulse at the angle 5◦ (θi = 175◦). Field parameters: η01 = η02 =
0.02, (I01 = 3.74 × 1015 W cm−2, I02 = 0.68 × 1015 W cm−2), ω1 =
2.35 eV, ω2 = 1 eV, δ1 = +1, δ2 = −1, ρ = √

3. The velocity and
polar angle of an electron, v− = 0.1 and θ− = 27.12◦, meet the
interference condition (38). The angle of positron emission for the
solid curve in (a) and (b) θ+ = 147.15◦, for the dashed curve in (a)
θ+ = 146.74◦ and (b) θ+ = 158.61◦.

dσ (εkin)

dσBH
= mTi

ω2

√
2Tiεkin − v2−

2Ti − v2−

× (2Tiεkin − v2
−) sin2 θ+ + v2

− sin2 θ−
(2Ti − v2−) sin2 θ+ + v2− sin2 θ−

×
∞∑

l1,r=−∞

1

ρ

∫ ρ

0
dφ J 2

r (α)J 2
l1−r (γ1)J 2

l2+δ2r
(γ2).

(77)
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Figure 4 presents the distribution of the differential cross
section (77) depending on the pair kinetic energy. Figure 4(a)
represents comparison for different angles of positron emis-
sion, within the interference region. Figure 4(b) represents
comparison of distribution over the pair energy for cases of
the interference region and the Bunkin-Fedorov region. For
the case, which is described by the solid curve, the geometry
is chosen in accordance with the interference condition (38)
[α0(p−,−p+) = 123] and for the small values of photon
number.

It is obvious from Fig. 4 the distribution over the pair kinetic
energy is characterized by presence of oscillations, within the
interference region. Each of the maxima corresponds to the
definite partial process with emission and absorption of an
equal number of photons of the both waves [see Fig. 3(b)].
Wherein the energy of an electron-positron pair changes,
therefore each of the peaks is possible to separately be observed
in the distribution in Fig. 4. The height of the corresponding
peak decreases with increasing of the photon number. When
a polar angle of a positron changes slightly [see dashed curve
in Fig. 4(a)], the interference region is shifting in accordance
with the condition (38). In this case, the maxima heights within
the interference region are less, and are determined by positron
polar angle, as well as value of photon number.

When a pair is produced within the Bunkin-Fedorov region
[see the dashed curve in Fig. 4(b)], the distribution of the
differential cross section (77) over the pair energy changes
smoothly and has a maximum. This maximum corresponds
to partial processes with a number of photons l1 = l2 = 0.
Wherein, the differential cross section can be greater or less
than the cross section within the interference region, depending
on the pair energy. But, as Fig. 4 concludes, the differential
cross section within the interference region for certain values of
the pair energy may exceed the cross section in other scattering
kinematics in two orders of magnitude.

It should be emphasized that the parametric interference
effect is manifested in the specified kinematic region. Conse-
quently, the experimental verification of the obtained results is
only possible when measuring the differential characteristics
of the CPP cross section in the field of two pulsed waves. For
this purpose, the pair production process should be necessarily
considered in the plane defined by an initial photon momentum
and the wave vectors of a laser field. An electron and a
positron should be detected at the polar angle (38). Peculiarities
of cross-section distribution within the interference region
can be observed experimentally by using detectors with high
resolution.

Note that the researched process may be considered for
an alternative statement of the problem. For example, the

conditions of pair production can be realized in a collision
of an ultrarelativistic ion beam and x-ray photons. In this case,
of course, the changes of particle’s energy and angle have to be
taken into account according to the Lorentz transformations.

A quantitative analysis was carried out at characteristics
of radiation for the laser system Phelix (FAIR project, GSI,
Germany). This facility can generate laser pulse at two
different photon energies with the values which were used
in the numeric calculations. The scientific program of the
FAIR project involves the study of the interaction of high-
energy ions with different particles and the study of pair
production in collisions of heavy ions. Thus, the experimental
verification of the theoretical results related to a laser-modified
photoproduction of pairs on a nucleus is proposed within
the framework of the FAIR project since all the necessary
conditions may be implemented.

IV. CONCLUSIONS

(1) CPP process in the field of two pulsed laser waves is
characterized by presence of the selected kinematic region (the
interference region), where correlated emission and absorption
of photons of both waves dominate. Within this region, a
correspondence between the polar angle and energy of the
produced particles appears. The particle minimal energy is
determined by the angle of an incident-photon entrance.

(2) Partial probabilities of stimulated emission and ab-
sorption of an equal number of photons of the both waves
within the interference region may exceed the corresponding
probabilities in other scattering kinematics in two orders of the
magnitude. At that, for fixed electron and positron energy, the
maximum of distribution of the probability over the angle of
emission of each of particles corresponds to the interference
polar angle.

(3) The distribution of the obtained differential cross
section on the pair kinetic energy is characterized by presence
of oscillations, within the interference region. Each of the
maxima corresponds to the definite partial process with
emission and absorption of an equal number of photons of
both waves. When a polar angle of a positron changes, the
interference region is shifting in distribution over the energy.
This case corresponds to the obtained conformity between
the polar angle and energy of produced particles. At that, the
differential cross section within the interference region for
certain values of the pair energy may exceed the cross section
in other scattering kinematics in two orders of magnitude.

The obtained results may be experimentally verified, for
example, by the scientific facilities at sources of pulsed laser
radiation (FAIR, SLAC, XFEL, ELI, XCELS).
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062107 (2013).

[27] S. P. Roshchupkin, Phys. At. Nucl. 64, 243 (2001).
[28] S. Augustin and C. Müller, Phys. Rev. A 88, 022109 (2013).
[29] R. V. Karapetian and M. V. Fedorov, Zh. Eksp. Teor. Fiz. 75,

816 (1978) [Sov. Phys. JETP 48, 844 (1978)].
[30] F. Zhou and L. Rosenberg, Phys. Rev. A 48, 505 (1993).
[31] V. P. Krainov and S. P. Roshchupkin, Zh. Eksp. Teor. Fiz. 84,

1302 (1983) [Sov. Phys. JETP 57, 754 (1983)].
[32] S. P. Roshchupkin, Laser Phys. 12, 498 (2002).
[33] A. Florescu and V. Florescu, Phys. Rev. A 61, 033406 (2000).
[34] A. N. Zheltukhin, A. V. Flegel, M. V. Frolov, N. L. Manakov,

and A. F. Starace, Phys. Rev. A 89, 023407 (2014).
[35] S. Schnez, E. Lötstedt, U. D. Jentschura, and C. H. Keitel, Phys.

Rev. A 75, 053412 (2007).
[36] A. A. Lebed’ and S. P. Roshchupkin, Eur. Phys. J. D 53, 113

(2009).
[37] A. Lebed’ and S. Roshchupkin, Laser Phys. Lett. 6, 472

(2009).
[38] A. A. Lebed’ and S. P. Roshchupkin, Phys. Rev. A 81, 033413

(2010).
[39] S. P. Roshchupkin and O. B. Lysenko, Laser Phys. 9, 494 (1999).
[40] S. P. Roshchupkin and O. B. Lysenko, JETP 89, 647 (1999).
[41] A. A. Lebed’, E. A. Padusenko, S. P. Roshchupkin, and V. V.

Dubov, Phys. Rev. A 94, 013424 (2016).
[42] R. L. Gorodnitskii and S. P. Roshchupkin, Laser Phys. 2, 602

(1992).
[43] S. P. Roshchupkin, Zh. Eksp. Teor. Fiz. 106, 102 (1994) [JETP

79, 54 (1994)].
[44] S. P. Roshchupkin, Zh. Eksp. Teor. Fiz. 109, 337 (1996) [JETP

82, 177 (1996)].
[45] A. A. Lebed and S. P. Roshchupkin, Laser Phys. 23, 125301

(2013).
[46] S. P. Roshchupkin and A. A. Lebed’, Phys. Rev. A 90, 035403

(2014).
[47] A. I. Voroshilo and S. P. Roshchupkin, Laser Phys. 7, 466 (1997).
[48] A. I. Voroshilo, S. P. Roshchupkin, and V. N. Nedoreshta,

J. Phys. B: At., Mol. Opt. Phys. 48, 055401 (2015).
[49] S. P. Roshchupkin and V. A. Tsybul’nik, Laser Phys. Lett. 3,

362 (2006).
[50] K. Krajewska and J. Z. Kamiński, Phys. Rev. A 85, 062102
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