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Mode conversion of Mie plasmons at the surface of metallic atomic clusters
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The dynamics of the Mie plasmon is described in the framework of the self-consistent quantum Vlasov theory
by a reduced single-state model. The single-state model is validated by many-electron calculations for Na clusters.
In this framework, collisionless damping of the Mie plasmon can be investigated for a wide range of cluster
parameters by linear perturbation theory. The characteristic scaling of the damping rate with the inverse cluster
radius is demonstrated. The basic damping mechanism of the Mie plasmon can be explained by a conversion of
surface modes into volume modes due to the scattering by the self-consistent potential of the electron-electron
interaction at the cluster boundary.
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I. INTRODUCTION

Atomic clusters form a bridge between atoms or molecules
and bulk matter. While the electron density is typically of the
same order of magnitude as in solids, quantum confinement
becomes relevant as the cluster size approaches the scale of
the Fermi wavelength [1].

Clusters are of special interest in the field of laser-matter
interaction. The efficient coupling of high laser intensities to
matter is favored on the one hand by high electron densities and
on the other hand by the absence of energy transport losses in
bulk matter. Both requirements are usually fulfilled for atomic
clusters, which typically consist of a few tens up to a few
million atoms [2].

The inner ionization of clusters in high-intensity laser fields
can lead to a dense plasma state with high electron tempera-
tures [3]. Together with the background ions, inner ionization
causes large space charges that result in an expansion of the
cluster. Thermal and Coulomb explosions of the cluster can
lead to highly energetic particles, where kinetic energies up to
500 keV in the case of electrons [4,5] and 1 MeV for ions [6]
were observed.

The decrease of the electron density during the expansion
enables the excitation of the characteristic dipole oscilla-
tion, known as Mie oscillation [7]. The Mie frequency is
given by ωM = ωp/

√
3, where ωp =

√
4πn0e2/me is the

plasma frequency in Gaussian cgs units, e the elementary
charge, me the electron mass, and n0 the electron density.
Specifically, for large Na clusters with a bulk density of
n0 = 2.65 × 1022 cm−3, the Mie plasmon occurs at the energy
h̄ωM = 3.49 eV.

The Mie resonance can be theoretically obtained most
simply by treating a small homogeneous dielectric sphere in a
homogeneous time-dependent electric field [8]. This treatment
goes back to the work of Lord Rayleigh on the scattering of
small spherical particles [9]. The more complete Mie theory
applies to scattering by dielectric spheres of arbitrary size with
a full account to the electromagnetic radiation field [10].

For small clusters, one can observe a dependence of the
plasmon frequency on the cluster radius. As the cluster size
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approaches the nanoscale, the so-called spill-out effect of the
electron density becomes relevant. It describes the occurrence
of a nonvanishing electron density outside the cluster and
is a pure quantum effect in degenerate electron gases with
temperatures below the Fermi energy. The influence of the
electronic spillout on the surface plasmon frequency has
been investigated theoretically using time-dependent density
functional theory (DFT) [11–15] and experimentally [16–19].
In particular, the jellium approximation, in which the ionic
background is treated as a homogeneously charged sphere,
is a well-known approach to describe simple metal clusters.
This model has proven to show good results for alkali metal
clusters with closed subshells [20–23]. A common feature of
experiments on the Mie resonance of alkali metal clusters is
a redshift of the Mie plasmon frequency with respect to the
value of ωM = ωp/

√
3 [24]. However, the inverse trend can

be observed for noble metal clusters due to the reduced s-d
screening, which leads to an exclusion of the 4d electrons from
the surface region. In particular, it was found experimentally
for Ag clusters in the gas phase that the Mie resonance is
blueshifted [25].

In general, the Mie oscillation in clusters is damped. Several
physical mechanisms for plasmon relaxation are known to be
of basic importance. As in bulk matter, collisional damping
results from electron-ion collisions. The electron-ion collision
frequency is independent of the cluster size and decreases
with increasing temperature [24,26]. The emission of dipole
radiation leads to radiation damping, which is known to
become dominant for large clusters [24,27]. Apart from these
elementary collisional and radiative processes, damping of the
Mie plasmon can result from the collisionless dynamics of the
electrons. As in homogeneous systems, Landau damping is a
basic collisionless damping mechanism. It is a kinetic effect
related to the velocity distribution function and is described
by the Lindhard dielectric function [28]. In inhomogeneous
systems, like a finite-size atomic cluster, damping of the
collective electron motion can also result from surface scat-
tering [29–31]. The surface scattering mechanism is roughly
proportional to the fraction of surface electrons leading to
a characteristic 1/R scaling of the damping rate. Surface
scattering has been discussed occasionally in the literature.
However, a self-consistent treatment is quite demanding, es-
pecially for large clusters. Theoretical work on the collisionless
damping of the Mie plasmon has been performed in the
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random-phase approximation (RPA) [32–34]. However, the
authors faced a lack of information on the electron equilibrium
and the confining potential of the electrons at the cluster
surface. Therefore, these approaches were basically limited
to a homogeneous sphere for the electron equilibrium. The
RPA approach was generalized by Zaremba and Persson [31],
who considered more realistic approximations of the confining
electron potential in terms of a step potential or a Lang-Kohn
potential [35]. In particular, they point out that due to the
sensitivity of their result to the confining model potential, a
self-consistent treatment is necessary. Other work has been
based on hydrodynamic approaches with ad hoc boundary
conditions at the surface of the sphere [36].

The excitation of Mie oscillations in clusters has been
treated previously by classical particle simulations. In one of
these works, the relaxation of an impulsively excited dipole
was calculated at temperature zero with Thomas-Fermi-Vlasov
simulations [37]. Due to the absence of a significant fraction of
spill-out electrons in this model, the dominant damping effect
resulted from bulk collisions. In later work, classical cluster
simulations have been substantially improved by microscopic
particle-in-cell (MicPIC) methods [38,39]. In this framework,
the importance of both bulk and surface collisions as well
as that of radiation damping has been demonstrated in laser-
driven clusters. In addition, plasma wave dynamics within the
interior of the cluster following recollisions of electrons at
the cluster surface has been observed. Finally, we mention
that nonlinear laser-cluster interactions lead to additional
collisionless damping effects like, e.g., harmonic generation
and outer ionization of the cluster [40–42].

In this work, we will present a feasible theoretical model,
the single-state Vlasov model (SSVM) that allows one to
calculate collisionless damping for small and moderately large
weakly excited clusters in the quantum regime of Fermi-
degenerate electrons. The basic problem to be considered is
the linear response of the dipole moment of a small spherical
cluster if the electrons are slightly shifted out of the equilibrium
state. The relaxation of the surface plasmon by surface
scattering requires a proper self-consistent kinetic treatment
of the electron spillout and of the surface inhomogeneity.
As a major result of the present work, it is found that the
well-known surface plasmon decays in the collisionless non-
radiative regime into volume plasmons which are associated
with plasma wave excitations inside the cluster [38,39]. It is
demonstrated that plasma waves are excited even in the linear
regime due to surface inhomogeneities and that they contribute
significantly to the damping of the Mie plasmon. In contrast
to Landau damping in a homogeneous system, the surface
mode is not damped by single-particle excitations. Instead,
it appears that surface scattering represents a wave-wave
conversion process. Mode conversion allows for the spread
of energy from the surface to the volume by collective
excitations. In an intermediate stage, the energy is completely
converted to volume modes. The energy of these volume modes
will ultimately be transferred to single-particle excitations
by Landau damping or it will be irreversibly dissipated by
collisions. It is noted that the surface and volume modes only
exist independently in an infinitely extended system, where
the surface effect can be ignored. A necessary condition for
mode conversion is the presence of spill-out electrons at the

surface and of a related self-consistent scattering potential of
the electron-electron interaction. The damping mechanism by
mode conversion will be analyzed in detail in this work, and
the damping rate as well as its scaling with the cluster radius
and the number of spill-out electrons will be derived. As a
result, the damping rate and the fraction of spill-out electrons
in the equilibrium state can be represented by two simple and
closely related 1/R laws.

In the present work, the electron system is described
as an ideal or weakly coupled quantum plasma, describing
metallic clusters with delocalized electrons in the high-density
and low-temperature regime. Such systems are commonly
described in the framework of the self-consistent quantum
Vlasov theory for the single-particle density operator [43],
where exchange and correlation effects are neglected. The
quantum Vlasov theory can be derived from the general
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierar-
chy, which determines the time evolution of reduced statistical
operators [44]. More general kinetic equations can account for
correlations and exchange effects [45–48]. The Vlasov theory
corresponds to a quantum-mechanical multistream model that
will be introduced in Sec. II. It offers a computationally
efficient method to treat quantum plasmas, since the plasma
can be described by a finite set of wave functions. While this
reduces the numerical effort drastically, the collective behavior
of the electron system is still covered. It is a crucial point
of this work to analyze how far the collective dynamics is
already captured in a description with only a few representative
electron states. It is noted that the concept of representative
electron states in the quantum Vlasov theory corresponds to
the quantum-mechanical analog of the quasiparticle concept
in classical particle-in-cell simulations [49].

The multistream model has been applied to a 1d quantum
plasma, where subexponential phase relaxation [28] and
nonlinear wave breaking of plasmon excitations [50] were
observed. In the present work, this theory is applied to a finite-
size system, an atomic cluster in the jellium approximation.

In Sec. III, the equilibrium states of the electron system are
calculated. The spill-out region of the electron density is of
particular importance for the description of plasmon damping.
This fact motivates a more detailed analysis of the surface
region of the electron equilibrium. We demonstrate that the
SSVM is capable of describing the spill-out region of Na
clusters to a very good approximation. For the interpretation of
the SSVM results, comparison is made between the SSVM and
many-electron Vlasov equilibria of Na clusters. To investigate
the effect of exchange and correlation interactions on the
spill-out density, further comparison is made with previous
DFT results [48].

In Sec. IV, cluster excitations are treated in linear perturba-
tion theory using a partial wave expansion of the underlying
Vlasov-Poisson system. A complete set of wave functions
for the radial parts of the perturbation in the corresponding
self-consistent potential is obtained.

In Sec. V A, the focus is put on the surface plasmon
resonance. For the analysis of the Mie plasmon, the dipole
motion of the electron system is studied based on the time-
propagated electron wave functions. By studying the time
dependence of the dipole oscillation, one can calculate the
resonance frequency and damping rate of the Mie plasmon as
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a function of the cluster radius. The result of the simple SSVM
is compared with many-electron calculations we performed for
Na clusters up to a radius of 1.2 nm. Using Ehrenfest’s theorem,
the equation of motion of the center of mass is derived,
including a damping term due to the electron dynamics in
the region exterior to the cluster system. We finally present
a detailed analysis of the damping mechanism based on the
dynamics of the electron density, which allows for a more
precise interpretation of surface scattering in terms of a mode
conversion process.

In Sec. V B, the focus is put on the volume plasmon
resonance. For the identification of volume plasmons, it turned
out to be instructive to study the Fourier transform of the
time-propagated density at a fixed position inside the cluster.
Since each mode generates a Lorentzian profile in frequency
space, this allows for a calculation of the damping constants
and resonance frequencies by a fitting procedure. It is found
most notably for small clusters that the resonance frequencies
are redshifted with respect to the ones in the large cluster limit,
where the redshift increases as a function of the mode number.

II. MULTISTREAM MODEL

In the present model, the ions are treated as a homo-
geneously charged sphere with radius R, volume Vion =
(4/3)πR3, and charge density en0, where ni = n0/Z is the
density of ions with average charge state Z. The following units
are used for a plasma with density n0 and plasma frequency
ωp =

√
4πn0e2/me:

r =
√

meωp

h̄
r�, t = ωpt�, n = n�

n0
, E = E�

h̄ωp

,

q = q�

e
, ϕ = ϕ�

(
h̄

meωp

) 3
2

, (1)

where h̄ is the reduced Planck constant. Here, r is the position,
t time, n density, E energy, q charge, and ϕ the wave function
in dimensionless units. Dimensional quantities are denoted by
a star. In some figures we use the length scale L = √

h̄/(meωp).
The units (1) are commonly used for a harmonic oscillator with
frequency ωp. Since ωp is the plasma frequency, these units
depend on the density n0 and are chosen for the numerical
evaluation, since n0 and all other constants besides the cluster
radius R can be eliminated from the underlying equations. It
is noted that the cluster radius Rpl in terms of these plasma
units and the radius Rat in atomic units are related by

Rat = C

(
rs

aB

) 3
4

Rpl, C = 1
4
√

3
≈ 0.76. (2)

Here, rs = [3/(4πn0)]1/3 denotes the Wigner-Seitz radius and
aB the Bohr radius.

The electron system is described by a statistical ensemble
of Ns single-particle states |ϕk〉 and corresponding wave
functions ϕk(r,t), which will be called representative electron
states. The probability to find a single electron in the state
k is denoted by wk . The single-particle states |ϕk〉 define the

single-particle statistical operator

ρ =
Ns∑
k=1

wk|ϕk〉〈ϕk|. (3)

In general, the time evolution of the S-particle statistical
operator (S = 1,2, . . . ,N ) is coupled to the dynamics of the
(S + 1)-particle statistical operator via the BBGKY hierar-
chy [44], which can be derived from the well-known von
Neumann equation for the full N -particle statistical operator
by partially tracing out N − S particle spaces. In the case of
an uncorrelated electron system, the hierarchy decouples and
the time evolution of the single-particle statistical operator is
governed by the quantum Vlasov-Poisson system:

i∂tρ = [H,ρ], H = − 1
2� − φ − φext,

�φ = Tr(ρn̂) − nion, n̂(r) = δ(r − r̂). (4)

Here, n̂(r) is the particle-density operator. The potential
φext(r,t) describes the interaction with an external field. The
system (4) is equivalent to the self-consistent Schrödinger-
Poisson system,

i∂t ϕk = [ − 1
2� − φ − φext

]
ϕk, (5a)

�φ =
Ns∑
k=1

wk |ϕk|2 − nion, (5b)

where nion(r) = θ (R − r). In the dimensionless represen-
tation (5), the single-particle states are normalized to the
ionic volume, 〈ϕk|ϕk〉 = Vion. The probability interpretation
of the wave function associates with each wave function ϕk a
probability current. In this context, the system (5) is called a
multistream model. Multistream models of quantum plasmas
have been used in the past by various authors [43,50–52].

A large computational simplification can be gained by a
reduction of the number of representative electron states in
comparison to cluster calculations with Ns = Ne/2, where
Ne is the number of electrons and each state is occupied by
two electrons with opposite spin. Specifically, in this work
we consider a reduced single-state Vlasov model. Here, the
number of representative states is reduced to a single wave
function Ns = 1. It will be demonstrated that the SSVM can
accurately describe the spill-out density of Na clusters and the
related surface damping of the Mie plasmon. As a validation of
the SSVM approach, the SSVM results will be compared with
the many-electron calculations we performed for moderately
large Na clusters.

The representation (5) of the Vlasov theory is closely related
to the well-known Hartree theory, which can be derived from
the Rayleigh-Ritz variational method assuming that the total
wave function is a product state. However, both models differ
by the fact that the self-energy interaction term in the Poisson
equation (5b) is not included within the Hartree theory. In
Sec. III, we will compare the Vlasov results for the cluster
equilibria with previous results in DFT which consider the
local-density approximation [53] for the exchange-correlation
potential φxc. For the comparison with the Vlasov results,
we have reproduced these DFT results by adding φxc to the
self-consistent potential φ in (5b). In this case, the Vlasov
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equations (5) agree with the well-known Kohn-Sham equations
in DFT [54].

In the present work, the time evolution of the electron
states is treated by the quantum Vlasov approach (5). In
the following, we consider a microcanonical description with
Ns representative states and equal population probabilities
wk = w = 1/Ns .

III. ELECTRON EQUILIBRIUM

Prior to the interaction with the external field φext, the
cluster is assumed to be in or close to the equilibrium state.
Equilibria with a time-independent electron density n(0)(r) are
characterized by a set of stationary wave functions ϕ

(0)

k (r)
satisfying the time-independent Schrödinger-Poisson system:

H (0)ϕ
(0)

k = εk ϕ
(0)

k , H (0) = −1

2
� − φ (0), (6a)

�φ(0) = n(0) − nion, n(0) =
Ns∑
k=1

w
∣∣ϕ(0)

k

∣∣2
. (6b)

In the following, spherically symmetric equilibria are
considered which are characterized by three quantum numbers
(nlm). The equilibrium wave functions can be separated into a
radial part Rnl(r) and the spherical harmonics Ylm(θ,φ) in the
form

ϕ
(0)

nlm(r) = Rnl(r) Ylm(θ,φ). (7)

With this ansatz, the eigenvalues εnl are independent of the
quantum number m and the degree of degeneracy of the
eigenvalue εnl is given by 2l + 1. It will be assumed that
all states with |m| � l are occupied. In this case, spherical
symmetry of the density in (6b) follows from the addition
theorem:

l∑
m=−l

|Ylm|2 = 2l + 1

4π
. (8)

To determine the equilibrium quantum numbers for a given
number of representative states Ns , one has to assign to each
electron state quantum numbers (nlm). Since there are many
possible configurations for a given Ns , one has to choose
the configuration which minimizes the total energy. For the
calculation of the equilibrium states defined in (6), a relaxation
method is chosen [55]. This method is briefly described.

Since equilibrium wave functions can be classified accord-
ing to the quantum numbers n,l, and m, an ansatz

ϕnlm(r,t) = Nnl(r,t)Ylm(θ,φ) (9)

is chosen for the single-particle states. In this case, the system
of equations (5) reduces to a set of equations for the radial
wave functions Nnl . This system is solved in imaginary time
t = −iτ . The resulting equations read

− ∂τ Nnl = −
[

1

2
�l + φ

]
Nnl,

�r φ =
∑
l,n

w
2l + 1

4π
|Nnl|2 − nion. (10)

TABLE I. Electron configuration of a Na cluster with R = 10.8
and Ns = 99.

l Nl n = 1 n = 2 n = 3 n = 4

0 4 s2 s2 s2 s2

1 3 p6 p6 p6

2 3 d10 d10 d10

3 2 f 14 f 14

4 2 g18 g18

5 1 h22

6 1 i26

7 1 k30

For the imaginary-time propagation, we choose initial states
of the form

Nnl(r,0) ∼ exp

(
−(r − rl)

2

)
, rl = l

lmax

R. (11)

Since the imaginary-time propagation neither conserves the
norm of a wave function nor the angle between two electron
states, it is necessary to normalize the wave functions after
each time step of wave propagation in order to stick to the
subspace of neutrally charged clusters. Furthermore, to ensure
the orthogonality of the wave functions, a Gram-Schmidt
process is applied to the wave functions Nnl which correspond
to the same quantum number l after each time step. For large
times τ , the solutions Nnl(r,τ ) converge to the energetically
lowest-lying equilibrium states defined by Eqs. (6) and (7):

lim
τ→∞ Nnl(r,τ ) = Rnl(r). (12)

As a reference example, we will consider a sodium cluster with
a well-known equilibrium state [48]. The parameters of the
sodium cluster are a bulk Wigner-Seitz radius of rs = 3.93 aB

[56] and an electron number of Ne = 198. In the jellium
model, the negative charge of the electrons is compensated by
a positive charge, distributed homogeneously over a sphere of
radius R. The radius of the sphere is R = N

1/3
e rs , yielding the

numerical values Rat = 22.9 in atomic units and Rpl = 10.8
in the present plasma units, which corresponds to a sodium
cluster with radius 1.2 nm. The electron configuration of
this equilibrium state can be found in [48] and is shown in
Table I using the common spectroscopic notation of atomic
physics. Due to the spin degeneracy, two electrons can be
assigned to a single spatial wave function. One therefore
requires Ns = Ne/2 = 99 electron states. These can be labeled
by the orbital quantum numbers (nlm). For each quantum
number l, there is a set of Nl occupied states with different
n numbers n = 1,2 . . . ,Nl and a set of 2l + 1 occupied states
with different m numbers m = 0, ±1, . . . , ± l. All together,
the number of electron states can be written as

Ns =
lmax∑
l=0

(2l + 1)Nl. (13)

For the sodium cluster, the sequence of electron orbitals
representing the order of filling of electron states up to
Ne = 198 is given by

1s2 1p6 1d10 2s2 1f 14 2p6 1g18 2d10 1h22 3s2 2f 14 1i26

3p6 1k30 2g18 3d10 4s2.
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FIG. 1. Equilibrium density of a Na cluster with R = 10.8 and
Ns = 99 in the Vlasov model. The figure shows the total electron
density n(0)(r) as well as the electron densities n

(0)
l (r) of different

electron shells.

In the following, we briefly discuss the structure of the
equilibrium density. Figure 1 shows the calculated equilibrium
density. Besides the total electron density n(0)(r), the electron
densities n

(0)

l (r) of electrons with a fixed angular momentum l

are plotted:

n
(0)

l (r) =
Nl∑

n=1

w
2l + 1

4π
|Rnl|2. (14)

As shown, the cluster equilibrium exhibits a shell struc-
ture [23], where electrons with higher angular momentum
are located closer to the cluster surface. The electron density
decays exponentially outside the cluster. This behavior, known
as the spill-out effect, is a pure quantum-mechanical effect at
T = 0. In the case of a classical system, the spillout is a thermal
effect which depends on T and which vanishes at T = 0. For a
quantum system, the spill-out effect is essentially independent
of the temperature for T � EF . It leads to an effective lack of
electrons on the inner side of the cluster surface. The resulting
positive surface charge is screened by electrons inside the
cluster, which leads to a local maximum of the electron density
close to the cluster surface (see Fig. 1).

We now compare the equilibrium density of the present
Vlasov calculations with previous DFT calculations and with
reduced SSVM calculations. The DFT results are recalcu-
lations of the work of Ekardt [48] for the same parame-
ters. The difference to the present Vlasov calculations is
an additional exchange-correlation potential in local-density
approximation, taken from Gunnarsson and Lundqvist [53].
The SSVM calculations are Vlasov calculations with only one
spherically symmetric equilibrium wave function, ϕ

(0)
100(r) =

R10(r)Y00, corresponding to the quantum numbers n = 1,
l = 0, m = 0.

Figure 2 shows the equilibrium density n(0)(r) of the
reference Na cluster as well as the equilibrium density in
the SSVM. In addition, to investigate qualitatively how
exchange and correlation effects modify the spill-out region of
the electron density, the DFT result for the electron density in

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

n
(0

)
/
n

0

r/R

DFT (Ekardt)
Multistream model
Single-state model

FIG. 2. Equilibrium density n(0)(r) of a Na cluster. The equilib-
rium consists of Ne = 198 electrons neutralized by a homogeneous
ion sphere with radius R = 10.8 in plasma units and Rat = 22.9 in
atomic units. The DFT result was first calculated by Ekardt [48]
with the exchange-correlation potential introduced by Gunnarsson
and Lundqvist [53]. It is compared to the present multistream Vlasov
model, neglecting exchange-correlation effects, and with the reduced
single-state Vlasov model. The density of the spill-out electrons can
be rather accurately described by the single-state approach.

the local-density approximation is plotted. Indeed, one can see
that the SSVM gives rise to a very good approximation of the
many-electron density outside the ion sphere. Furthermore,
the inclusion of exchange and correlation effects modifies
the spill-out region only weakly. The close agreement of the
density profiles in the spill-out region indicate that the SSVM
is a good starting point for the analysis of the surface plasmon
resonance.

It is noted that the quantum spill-out effect becomes
dominant for small clusters, where electrons are weakly bound.
This is shown in Fig. 3. The equilibrium densities of the SSVM
are plotted for a large cluster with R = 250 and a small cluster
with R = 10. As shown, the broadening of the electron density
close to the cluster surface leads to an inhomogeneous surface
potential. The local minimum of the self-consistent potential at
the surface generates the binding and is a well-known feature
of an electron gas at the surface of a metal [35]. For large
clusters, the relative number of spill-out electrons is strongly
reduced and the density approaches the classical behavior of a
homogeneous sphere.

IV. PERTURBATION THEORY

In this work, the excitation of the electron equilibrium is
considered in linear perturbation theory. In the following, we
briefly describe the basic formalism of the perturbation theory.

Since the electron system is considered to be close to the
equilibrium state, each electron stream ϕk(r,t) can be charac-
terized by a set of equilibrium quantum numbers k = (nlm).
In the perturbative description, the time-propagated single-
particle states and the self-consistent potential are assumed to
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FIG. 3. Equilibrium densities n(0)(r) of atomic clusters (SSVM
calculation). Results are shown for cluster sizes R = 250 and R = 10.
In addition, the corresponding self-consistent potentials φ(0)(r) in the
equilibrium state are shown. It is demonstrated that the spill-out effect
becomes significant for small clusters. The broadening of the electron
density close to the cluster surface leads to an inhomogeneous surface
potential.

be of the form

ϕnlm(r,t) = [
ϕ

(0)

nlm(r) + ϕ
(1)

nlm(r,t)
]
e−iεnl t ,

φ(r,t) = φ(0)(r) + φ(1)(r,t),

n(r,t) = n(0)(r) + n(1)(r,t),

(15)

where the quantities with a superscript 1 describe small
perturbations of the equilibrium quantities ϕ

(0)

nlm, φ (0), and
n(0). The equations (5) are linearized with respect to the
perturbations ϕ

(1)

nlm and φ(1). Then, the time evolution of the
perturbed wave functions ϕ

(1)

nlm is governed by the linearized
Schrödinger-Poisson system:

i∂t ϕ
(1)

nlm = [H (0) − εnl]ϕ
(1)

nlm − [φext + φ(1)]ϕ(0)

nlm, (16a)

�φ(1) = n(1) =
lmax∑
l=0

l∑
m=−l

Nl∑
n=1

2w Re
{
ϕ

(0) ∗
nlm ϕ

(1)

nlm

}
. (16b)

In the following, we restrict attention to azimuthally symmetric
excitations of the electron system in a given sector l′ of the
electron density,

n(1) = n
(1)

l′ (r,t)Yl′0(θ ), φ(1) = hl′(r,t)Yl′0(θ ),

φext = −νl′ (r,t) Yl′0(θ ). (17)

This allows for an isolated study of the multipole excitations
in sector l′. In particular, a perturbation with l′ = 1 is related
to the dipole oscillation of the electron system.

The perturbation theory is set up with a partial wave
expansion of the perturbed wave functions ϕ

(1)

nlm in terms of
spherical harmonics Ylm(θ,ϕ),

ϕ
(1)

nlm(r,t) =
∑
l̄∈Ml′ l

gnl l̄ (r,t) Cl′0 lm l̄ Yl̄m(θ,φ), (18)

where the possible quantum numbers l̄ of this expansion are
restricted to the set

Ml′l = {|l′ − l|,|l′ − l| + 2,|l′ − l| + 4, . . . ,l′ + l}. (19)

The constants C are given in terms of the well-known Clebsch-
Gordan coefficients by the relation

Cl′m′ lm l̄ =
√

(2l′ + 1)(2l + 1)

4π (2l̄ + 1)

×〈l l′ m m′ | l̄ m〉〈l l′ 0 0 | l̄ 0〉. (20)

The cardinality of the set (19) is given by |Ml′l| = min(l,l′) +
1. In summary, the time evolution of a single-electron
perturbation ϕ

(1)

nlm is determined by |Ml′l| radial wave functions
gnl l̄ which are independent of the quantum number m. The time
evolution of the radial wave functions and the radial part of the
potential is governed by the following system of equations:

i∂t gnl l̄ = H
(0)

nl l̄
gnl l̄ + Rnl(νl′ − hl′), (21a)

�l′ hl′ =
lmax∑
l=0

Nl∑
n=1

∑
l̄∈Ml′ l

2wDl′ l̄ l Re{R∗
nl gnl l̄}, (21b)

where the equilibrium Hamiltonian H
(0)

nl l̄
is given by

H
(0)

nl l̄
= −1

2
�l̄ − φ(0) − εnl, �l = �r − l(l + 1)

r2
. (22)

Here, �r is the radial part of the Laplacian. The coupling
constants D are given by

Dl′ l̄ l =
l∑

m=−l

(−1)m Cl(−m) l̄m l′ Cl′0 lm l̄ . (23)

All dynamical quantities in this work will be calculated based
on the time-propagated wave functions gnl l̄ . For a given
electron equilibrium and a perturbation in sector l′ of the
electron density, the linear perturbation theory requires a time
propagation of in total

Np =
∑

l

Nl(min(l,l′) + 1) (24)

radial wave functions based on time-dependent Schrödinger
equations in one dimension and a single Poisson equation
for the radial part hl′ of the self-consistent potential. The
Schrödinger equations (21a) are solved with an implicit
Crank-Nicolson scheme [57,58].

V. PERTURBATION RESULTS

A. Surface plasmon resonance

In this chapter, the excitation of the cluster equilibrium
is investigated based on the perturbation theory presented in
Sec. IV. In the first part, the main focus will be put on the
surface plasmon resonance and, in particular, on the dipole
sector l′ = 1.

As a prestep of the investigation, it is analyzed which region
of the electron density is responsible for the surface effects of
the Mie plasmon. Here, it turned out to be instructive to derive
the equation of motion for the center of mass (c.m.). This
provides a deeper insight of how the c.m. motion is affected
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by electrons located outside the ion sphere in the equilibrium
state. With the help of Ehrenfest’s theorem, the equation of
motion for the c.m.,

R(t) = 1

Ns

Ns∑
k=1

〈ϕk(t)|r|ϕk(t)〉
〈ϕk(t)|ϕk(t)〉 , (25)

reads

R̈ + ω2
M

R = 1

Ns

Ns∑
k=1

〈ϕk|Fsc|ϕk〉
〈ϕk|ϕk〉 , ωM = 1/

√
3,

Fsc = −ω2
M

r
(

R3

r3
− 1

)
θ (r − R), (26)

where the electron-electron interaction cancels due to the
action-reaction law. The motion of the c.m. corresponds to
that of a harmonic oscillator with an additional force that is
determined by the ensemble average of the operator Fsc. This
operator contributes only outside the ion sphere and takes into
account the surface effects of the dynamics. The surface term
in (26) couples to the spill-out density

nout(r,t) = n(r,t) θ (r − R) (27)

of the electron system,

1

Ns

Ns∑
k=1

〈ϕk|Fsc|ϕk〉
〈ϕk|ϕk〉 ∼

∫
R3

nout Fsc d3r

= 1

Ns

Ns∑
k=1

2Re
∫
R3

ϕ
(0) ∗
k θ (r−R)ϕ(1)

k Fscd
3r,

(28)

where we have evaluated the density in linear order as defined
in (16b). This relation shows explicitly that only spill-out
electrons with

ϕ
(0)

k θ (r − R) �= 0 (29)

contribute to the surface term and will thus affect the harmonic
motion of the c.m. Since only electrons which are located
close to the cluster surface spill out into the vacuum, the
detailed electron distribution inside the cluster is not essential
for the motion of the c.m.. This observation suggests that an
accurate description of the plasmon dynamics requires a good
description of the density spillout in the equilibrium state.
It was demonstrated in Sec. III that already the SSVM with
Ns = 1 leads to a very good description of the spill-out region.
Thus, the SSVM is a good starting point for the analysis of the
Mie plasmon.

The advantage of the SSVM arises from the fact that the
numerical effort can be reduced drastically. This simplification
is especially helpful when it comes to parameter studies, where
one has to calculate a large number of cluster equilibria over a
wide range of cluster sizes. According to the linear perturbation
theory defined in Sec. IV, the electron dynamics within the
SSVM is described by a single radial wave function g10 l′ (r,t),
using Np = min(0,l′) + 1 = 1.

In the following, the results for the surface plasmon
resonance are presented. Thereby, results of the SSVM will
be compared with many-electron calculations for Na clusters.

The classical frequency ωl′ of the surface plasmon res-
onance can be calculated analytically in the limit R → ∞
using Maxwell’s equations in combination with the dielectric
function of a cold plasma at wave number k = 0. For a
perturbation in the sector l′ of the electron density, one
obtains ωl′ = √

l′/(2l′ + 1). In the case l′ = 1, the frequency
corresponds to the frequency ωM of the Mie plasmon. In the
following, perturbations of the dipole sector are investigated,
where the perturbation is chosen such that the dynamics is
azimuthally symmetric along the z axis. The time evolution of
the z component of the c.m. (25) is calculated based on the
time-propagated wave functions gnl l̄(r,t) up to linear order,

Z(t) = 1

Vion

∫
R3

n(1)(r,t) z d3r

= 1

Vion

√
16π

3
w

∑
l,n

∑
l̄∈M1l

D1 l̄ l

×
∫
R

Re{R∗
nl gnl l̄ }r3dr. (30)

First, the results of the SSVM are presented. To generate a finite
dipole moment at t = 0, a uniform shift of the equilibrium
density along the z axis is considered. Up to linear order in the
displacement δ, this yields

n(r,0) = n(0)(r − δ êz) = ∣∣ϕ(0)

100

∣∣2
(r − δ êz)

≈ n(0)(r) − 2δ Re
{(

∂z ϕ
(0)

100

)
ϕ

(0) ∗
100

}
= n(0)(r) − 2δ Re

{(
∂r ϕ

(0)

100

)
ϕ

(0) ∗
100

}√4π

3
Y10. (31)

Comparing the initial condition for the density with the
definition of the density perturbation defined in (21b),
the displacement corresponds to an initial wave function
[D110 = 1/(4π )]

g10 1(r,0) = −
√

4π

3
δ ∂r R10(r). (32)

Figure 4 shows the time evolution of the z component of the
c.m. for an initial displacement of δ = 0.1. One can confirm
that the motion of the c.m. corresponds to that of a damped
harmonic oscillator with frequency ω and damping rate γ .
This result shows that the surface term in (26) and the related
density spillout give rise to an exponential damping of the Mie
plasmon. The plasmon parameters γ and ω can be calculated
by a fit using the model function

Z(t) = Z0 cos(ωt)e−γ t . (33)

This behavior is also confirmed for higher multipole excita-
tions with l′ > 1. Besides the damping effect, one can see that
the frequency of motion ω is smaller for the small cluster
with R = 10. As visible in Fig. 4, the damping effect is
more pronounced for the smaller cluster. In this case, the
spillout of the electron density in the equilibrium state is more
pronounced (see Fig. 3).

The decay of the c.m. is associated with an energy loss of
the collective electron motion. We briefly describe how the
energy of the initial excitation is transferred to the cluster. It
is a basic feature of the electrostatic Vlasov theory (5) that the
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FIG. 4. Time evolution of the center of mass (SSVM calculation).
The z component Z(t) of the center of mass is shown for two cluster
radii R = 10 and R = 100. The initial electron distribution is chosen
as a shifted equilibrium distribution with displacement δ = 0.1.

average energy

〈E〉 = 〈T 〉 + 〈V 〉, V = −φion − 1
2φee

of the electron system is conserved if the external field is
switched off, φext = 0. Here, φion is the electrostatic potential
of the ions and φee the Hartree potential of the electron-electron
interaction. The factor 1/2 has to be taken into account in order
to avoid double counting of the electron-electron interaction
energy. In the following, the partition of the excitation energy
into kinetic and potential energy is studied as a function of
time. Figure 5 shows the evolution of the kinetic and potential
energies per electron for a cluster with radius R = 10 and
an initial displacement of δ = 0.1. The corresponding motion
of the c.m. is given in Fig. 4. The total energy is very well
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FIG. 5. Expectation values of the kinetic and potential energy per
electron as a function of time (SSVM calculation). The parameters are
R = 10 for the cluster radius and δ = 0.1 for the initial perturbation.
The energies are measured with respect to their corresponding
equilibrium values E(0). It is shown that the initial excitation energy
is partitioned into kinetic and potential energies, which become
stationary at the end of the calculation.
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FIG. 6. Density perturbation n(1) of the electron system as a
function of time (SSVM calculation). The density is evaluated along
the z axis with x = y = 0. One can recognize the conversion of
the surface mode into volume modes by surface scattering. The
parameters are R = 30 for the cluster radius and δ = 0.5 for the
initial perturbation.

conserved up to the end of the calculation. The initial potential
energy becomes reduced and is largely converted into kinetic
energy. It can be seen that the energies oscillate with half of
the Mie period and relax together with the dipole oscillation to
constant values at the end of the calculation. Since the average
position and momentum vanish for large times, this result
indicates that the excitation energy is contained in fluctuations
of the electron system.

To gain an understanding of the residual fluctuations of
cluster excitations, we studied the dynamics of the electron
density. Figure 6 shows the time evolution of the density
perturbation n(1) along the z axis with x = y = 0. For the
calculation, we chose a cluster with radius R = 30. The initial
electron perturbation is again produced by a rigid shift with
δ = 0.5. As shown in Fig. 6, the density perturbation n(1) is
located near the cluster surface at t = 0, since the equilibrium
density n(0) is almost uniform inside the cluster. The initial
density overshoot at z ≈ R follows from the fact that the
electron system is shifted in the positive z direction. From
the time evolution one can see an oscillatory behavior of
the density at the cluster surface on the time scale of the
Mie period TM which is related to the collective electron
oscillation relative to the ion sphere. After each half period
of the oscillation, particle streams are emitted from the cluster
surface which move into the cluster. These streams partially
result from a reflection of the electrons at the cluster surface,
as is visible, e.g., at the end of the first half period when the
electron system moves in the negative z direction. At time
t ≈ TM/2, one can see that the density overshoot generated
by incoming electrons at the lower cluster boundary splits into
two streams. The stream which propagates in the positive z

direction is associated with electrons which are reflected at
the cluster surface, while the transmitted stream moves in the
negative z direction and leaves the ion sphere. In total, the
superposition of the waves propagating from the surface result
in a formation of standing waves inside the cluster which are
associated with volume plasmons. These modes are the subject
of Sec. V B. In summary, we find that the surface scattering
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leads to an energy transfer between the surface modes and the
volume modes of the cluster.

In the following, the size dependence of the frequency and
damping rate of surface plasmons is studied. Besides the dipole
oscillation, quadrupole excitations (l′ = 2) are also considered
which couple to the quadrupole tensor,

Qij (t) = −
∫
R3

n(r,t)(3rirj − r2δij )d3r, (34)

of the electron distribution.
The analysis in the single-state approximation is performed

with cluster radii up to R = 260. Choosing a typical solid-state
density n0 = 1023 cm−3 for the ionic background, this covers
the regime of clusters up to a radius of approximately 21 nm.
In the first step, cluster equilibria are calculated over the range
of cluster sizes considered. In the second step, the system is
excited. The Mie plasmon (l′ = 1) is excited by an external
laser field in dipole approximation which is polarized along
the z axis. In this case, the external potential φext in (5) is given
by

φext(r,t) = −zE(t), E(t) = E0 sin(ωLt). (35)

Here, ωL is the frequency of the laser. In the framework of the
perturbative description, this yields ν1(r,t) = √

4π/3 rE(t).
After the laser is switched off, the decay of the c.m. is studied
as a function of time. The plasmon parameters are determined
by a fit to the function profile of the c.m. using the model
function (33). Figure 7 shows the results for the damping rate
γ and the resonance frequency ω of the Mie plasmon as a
function of the cluster radius R. In addition, the results for the
surface plasmon in the quadrupole sector (l′ = 2) are plotted.
Here, the dynamics of the element Q33 of the quadrupole
tensor (34) is studied. Calculations were performed in the
framework of both the SSVM and many-electron equilibria
of Na clusters. The electron configurations we used for our
calculations are given in Appendix A, where we considered
clusters up to a radius of 1.2 nm with an electron number of
Ne = 198. The treatment of the largest Na cluster in linear
perturbation theory requires a time propagation of Np = 30
radial wave functions according to (21).

One recognizes a significant redshift of the resonance
frequencies for R � 20, while they tend to the bulk values
ωl′ = √

l′/(2l′ + 1) for large clusters. For the Mie plasmon
(ωM ≈ 0.577 3) one calculates ω = 0.576 8 for the largest
considered cluster with R = 260, while one obtains ω = 0.43
for the smallest cluster with R = 4. In the following, we
motivate the relationship between the spill-out effect and the
redshift of the Mie plasmon.

Figure 8 shows the fraction fout of spill-out electrons in the
equilibrium state as a function of the cluster radius R. It is
calculated based on the equilibrium density n(0)(r),

fout = Nout

Ne

= 4π

Vion

∫ ∞

R

n(0) r2dr. (36)

For the smallest cluster with R = 4 approximately 25% of the
electrons are located outside the ion sphere [59]. In the jellium
model, the restoring force generated by the ions increases
linearly with the radial distance inside the ion sphere. Outside
the cluster, the restoring force decays Coulomb-like. For a
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FIG. 7. Size dependence of the damping rate γ (a) and the
resonance frequency ω (b) of the surface plasmon resonance in
the dipole (l′ = 1) and quadrupole (l′ = 2) sector. The results are
plotted against the cluster radius R. Calculations are performed
in the single-state Vlasov model (Ns = 1) and with many-electron
equilibria of Na clusters. The electron configurations are given in
Appendix A. The data points of the single-state Vlasov model are
fitted to the inverse power laws γ (R) = 0.96/R0.99 for the dipole
mode and γ (R) = 1.54/R0.99 for the quadrupole mode.

decreasing cluster size, the fraction of spill-out electrons
increases (Fig. 8). In conclusion, the fraction of electrons
which feel a weaker restoring force than electrons inside the
cluster increases as the cluster size decreases. This leads to a
reduction of the resonance frequency compared with ωM .

The behavior of the damping rate γ in Fig. 7 indicates an
algebraic decrease as a function of R both for the dipole and
quadrupole mode. Thereby, a faster decay of the quadrupole
mode can be observed. To analyze the scaling with the cluster
size, a fit is performed to the data using a model function of
the form

γ (R) = α

Rβ
, (37)

with fit parameters α and β. The fit is also shown in Fig. 7(a).
As depicted, this leads to a very good description of the data
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FIG. 8. Fraction of spill-out electrons in the equilibrium state as
a function of the cluster radius R (SSVM calculation). The data is
fitted to the inverse power law fout(R) = 0.95/R.

in the range of cluster radii treated. The fit parameters are
given in Table II. The results indicate a 1/R dependence of the
damping rate [60] such that the damping is determined by the
surface-to-volume ratio of the ion sphere. Furthermore, one
can observe the significant result that the data points of the
many-electron calculations fit very well to the data points of
the SSVM. Although the electronic details of the Na clusters
are completely neglected within the SSVM, the properties of
the collective dipole oscillation are covered in a description
with a single representative electron state for these reference
clusters.

Transforming the power law (37) into dimensional units (1)
yields (β ≈ 1)

γ � = A
vp

R�
, A = α√

2
. (38)

One obtains A = 0.68 for the dipole and A = 1.09 for the
quadrupole mode. In our calculations we find a scaling of the
the damping rate with the plasma velocity vp = √

2h̄ωp/me.
In the literature, the damping rate (38) is commonly written
in terms of the Fermi velocity vF = (3π2n0)1/3h̄/me [29].
Therefore we have compared both quantities, which yields
a ratio of

vp

vF

= 1.22

(
n0

1023cm−3

)−1/12

. (39)

TABLE II. Fit parameters for the damping rate γ and the fraction
fout of spill-out electrons as a function of the cluster radius. A model
function of the form (37) is used.

(a) γ (b) fout

l α β α β

1 0.96 0.99 0.95 1.00
2 1.54 0.99

For typical electron densities n0 within the range 1022cm−3 <

n0 < 1023 cm−3, the ratio varies between 1.48 and 1.22.
Therefore, our result differs only slightly from a scaling
with the Fermi velocity over the relevant regime of electron
densities. Using the definition of ωp, the result (38) can be
expressed in terms of the electron density,

γ � = A′
(

n0
1023cm−3

) 1
4(

R�

1nm

) fs−1, A′ ≈ 1.44α. (40)

The result indicates that the damping rate scales with the fourth
root of the electron density n0. We calculate A′ = 1.38 for the
dipole and A′ = 2.21 for the quadrupole mode.

It turns out (see Table II) that the fraction of spill-out
electrons in the equilibrium state shows the same scaling
with the inverse cluster radius. In conclusion, the damping
rate of the surface plasmon scales with the fraction of spill-
out electrons in the equilibrium state. In particular, for the
Mie plasmon, the obtained fit parameters indicate that the
dimensionless quantities γ (R) and fout(R) are almost equal.
In dimensional units, this yields the simple relation

γ � ≈ ωp fout (41)

for the damping rate of the Mie plasmon.

B. Volume plasmon resonance

In the previous section, surface plasmons were treated
which are related to density perturbations close to the cluster
surface. The Mie plasmon can be excited by a spatially
homogeneous electric field. In spatially inhomogeneous fields,
produced, e.g., by external charges, other modes known as
volume modes can be excited. Volume plasmons are found
in each sector l′ of the density perturbation. The density
perturbation of volume modes is mainly located inside the
cluster. In the following, the excitation is driven by an external
charge distribution which is centered spherically symmetric
around the point r ′ = r ′ êz on the z axis. The total charge of
the external distribution is given by Q. The distance between
the cluster and the charge distribution is considered to be
sufficiently large such that the potential of the external charges
can be decomposed as (r < r ′)

φext(r) = Q

|r − r ′| = −
∞∑
l=0

νl(r) Yl0(θ ),

νl = −
√

4π

2l + 1

Q

r ′

(
r

r ′

)l

. (42)

Volume modes turn out to couple only weakly to the multipole
moments of the system such that they are not instructive for
their identification. Instead, the time evolution of the perturbed
wave function g10 l′(r,t) in sector l′ at the fixed radial distance
r = r0 inside the cluster is studied. Using this ansatz, volume
modes can be identified with the Fourier transform of the

043401-10



MODE CONVERSION OF MIE PLASMONS AT THE . . . PHYSICAL REVIEW A 95, 043401 (2017)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

g̃ 0
0

1
}ω

p
L

3
/
2

ω/ωp

FIG. 9. Fourier transform Re{g̃00 1}(r0,ω) of the time-propagated
wave function in sector l′ = 1 (SSVM calculation). The wave function
is analyzed at the radial distance r0 = 2 inside a cluster of size
R = 20.

signal,

g̃00 l′(r0,ω) =
∫ Tf

0
g10 l′(r0,t)e

iωtdt, (43)

where Tf is the final time of wave propagation. Figure 9 shows
the Fourier transform of an observed wave perturbation for l′ =
1 and R = 20. One can see a spectrally isolated peak below ωp

which is associated with the Mie plasmon. In addition, several
partially overlapping peaks appear above ωp. As shown, the
width of the peaks as well as the spacing between neighboring
modes increases as a function of the frequency ω. Furthermore,
it is found that the mode density in frequency space increases
as a function of the cluster radius.

One can conclude from the linearized equations that each
fundamental mode generates a Lorentzian-shaped profile in
frequency space for Tf  γ −1. To extract the parameters
(ωn,γn) of volume modes, the Fourier transform (43) is fitted
to a superposition of Lorentzian profiles,

f (ω) =
N∑

n=1

αn

γn

(ω − ωn)2 + γ 2
n

, (44)

where αn, ωn, and γn are fit parameters. Due to the large
number of degrees of freedom, one has to choose a good initial
approximation for the fit parameters. As there is no evidence
in the data to suggest the spectrum of volume modes to be
limited for ω → ∞, one has to choose a cutoff N for the
number of modes which are covered in this fit. The results for
volume modes with l′ = 1 (see Fig. 9) are shown in Table III.
Analyzing the function profile of g10 l′ (r,t) as a function of
r , one finds that volume modes can be classified according
to the number of nodes inside the cluster, where the density
profile of the mode with mode number n has n zeros inside
the cluster. The resonance frequency as well as the damping
constant increase as a function of n (see Table III). For silver
with n0 = 5.86×1022 cm−3, one finds a decay time of τ =
1/γ = 152 fs for the volume plasmon with n = 3 nodes.

TABLE III. Damping rates γn and resonance frequencies ωn

of volume plasmons in sector l′ = 1 for R = 20. The index n

characterizes the number of nodes of the corresponding density
profiles.

n 1 2 3 4 5 6 7 8 9 10

ωn 1.007 1.008 1.02 1.06 1.12 1.20 1.30 1.43 1.59 1.77
γn 0.0054 0.0047 0.01 0.02 0.03 0.05 0.08 0.1 0.13 0.15

We compared the lifetime of the volume plasmons with
mode parameter l′ = 1 to the lifetime of the Mie plasmon.
According to (37) and Table II, the damping rate of the Mie
plasmon for R = 20 is given by γ ≈ 0.05. From Table III
one can conclude that for this cluster size the damping of
the volume plasmons with mode numbers n < 6 is weaker
compared to the damping of the Mie plasmon. In particular,
one recognizes that the volume plasmons with small n are
long-lived compared to the Mie plasmon. This result is in
agreement with the observation on the dynamics of the electron
density in Fig. 6. As shown, one can clearly identify a strong
signal of modes with only a few nodes n after the Mie plasmon
has relaxed.

For R → ∞, the frequencies of volume plasmons can be
derived analytically. In sector l′ of the perturbed electron
density, one obtains the result (Appendix B)

ω2
l′n = 1 + 1

4

(
zl′n

R

)4

, n ∈ N0. (45)

Here, zl′n are the zeros of the l′th spherical Bessel function
of the first kind. The number n counts the number of nodes
of the density profile. To analyze how finite-size effects
modify the resonance frequencies of the volume plasmon
resonance, the calculated frequencies are compared with those
in the large cluster limit. Figure 10 shows the resonance
frequencies for R = 20 and l′ = 1 (Table III) together with
the result (45) for R → ∞. As in the case of the surface
plasmon resonance, the resonance frequencies for R = 20 are
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FIG. 10. Volume plasmons in sector l′ = 1 of the density (SSVM
calculation). The calculated resonance frequencies ω1n for R = 20
are plotted together with the result (45) in the large cluster limit.
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redshifted with respect to the ones in the large cluster limit.
One recognizes that the redshift increases as a function of the
mode number n.

VI. CONCLUSION

In the present work, plasmon excitations of atomic clusters
were studied in the framework of the self-consistent quantum
Vlasov theory. The pure quantum-mechanical spill-out effect
of the electron density in the ground state was found to be
crucial for the plasmon dynamics, especially for small clusters.

In a first step, the dependence of the equilibrium density on
the number of representative electron states was investigated,
which is an inherent parameter of the Vlasov theory. Here,
the decisive electron spill-out region was found to depend
only slightly on the number of representative states taken into
account and on the exchange-correlation potential of DFT. In
particular, it was demonstrated for a specific Na cluster that
a Vlasov model in which the electron system is described by
a single representative state is already sufficient to obtain the
electron spillout to a very good approximation. The single-state
model was then applied to obtain the dynamics of the Mie
plasmon over a wide range of cluster parameters that cannot
be treated with comparable numerical effort by full atomic
cluster calculations.

For the Mie plasmon it was found in particular that the
spillout gives rise to an exponential damping of the collective
dipole motion. The resonance frequency is redshifted for small
clusters with respect to its value in the large cluster limit. The
damping rate shows a characteristic 1/R scaling. This behavior
was found to be directly related to the size dependence of the
fraction of spill-out electrons in the equilibrium state. A simple
scaling relation (40) was obtained for the damping rate of the
Mie plasmon and the quadrupole mode.

The damping mechanism of the dipole motion has been ex-
plained by mode conversion at the cluster surface. We became
convinced that this mode conversion process is based on two
essential preconditions. First, the electron equilibrium has to
provide a significant fraction of spill-out electrons. Actually,
the damping rate is found proportional to the fractional number
of spill-out electrons, as demonstrated by (41). Second, the
self-consistent electron-electron interaction is required to
produce a coupling to the volume modes. Calculations with the
ion potential only do not show damping even in the presence
of electron spillout. Here, the spillout can only account for a
frequency shift.

The calculations show a very good agreement of the results
obtained in the SSVM with the results of many-electron
calculations performed with Na clusters. Since the SSVM
provides a very efficient method to describe the collective
properties up to linear order, it should be instructive to
investigate how far it is also applicable to nonlinear phenomena
like the energy absorption in the presence of external laser
fields [41,61,62].

Furthermore, a comparison to the well-known classical Mie
theory [10] of light scattering by small particles provides
a basic challenge. This generalization requires the solution
of the complete Vlasov-Maxwell system, including magnetic
interactions, and thereby it can also account for radiation
damping of large clusters.

APPENDIX A: ELECTRON CONFIGURATIONS
OF NA CLUSTERS

l Nl

0 2
1 2
2 2
3 1
4 1

R = 7.56,

Ns = 34

l Nl

0 3
1 2
2 2
3 1
4 1
5 1

R = 8.36,

Ns = 46

l Nl

0 3
1 3
2 2
3 2
4 1
5 1
6 1

R = 9.57,

Ns = 69

l Nl

0 4
1 3
2 3
3 2
4 2
5 1
6 1
7 1

R = 10.8,

Ns = 99

APPENDIX B: DISPERSION RELATION
OF THE VOLUME PLASMON RESONANCE

The resonance frequencies of volume modes can be derived
analytically for R → ∞. In the case Ns = 1, the Schrödinger-
Poisson system (5) for the wave function ϕ(r,t) is equivalent
to the Madelung equations

∂t n + ∇ · (nv) = 0, (B1a)

∂t v + (v · ∇)v = −∇U, (B1b)

�φ = n − nion, (B1c)

U = −φ − 1

2

�
√

n√
n

,

for the density n and the velocity field v, where

ϕ(r,t) = A(r,t) exp[iS(r,t)], v = ∇S, n = A2. (B2)

The equations (B1) are linearized about the equilibrium
functions n(0)(r) and v(0)(r),

n(r,t) = n(0)(r) + n(1)(r,t),

v(r,t) = v(0)(r) + v(1)(r,t). (B3)
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The equilibrium action S0 is spatially constant and determined
by the ground-state eigenvalue ε0, S0(t) = −ε0t . Thus, v(0) =0.
Introducing the ansatz (B3) in (B1b), the linearized potential
U reads

U = −φ(0) − 1

2

�
√

n(0)

√
n(0)︸ ︷︷ ︸

ε0

−φ (1) − 1

4
�n(1), (B4)

where we used that n(0) = θ (R − r) for R → ∞, as discussed
in Sec. II. Using this result, the linearized equations for the
perturbations n(1) and v(1) read

∂t n(1) + ∇ · v(1) = 0, (B5a)

∂t v(1) − ∇φ (1) − 1

4
∇(�n(1)) = 0, (B5b)

�φ (1) = n(1). (B5c)

Differentiating (B5a) with respect to t and acting with ∇
on (B5a), both equations can be combined using (B5c)(

1 + ∂2
t

)
n(1) + 1

4�2 n(1) = 0. (B6)

This equation is solved in the frequency domain using the
ansatz ñ(1)(r,ω) = f (r,ω)Yl′0(θ,ϕ) for the Fourier transform
of n(1), taking into account azimuthally symmetric excitations.
The equation for the radial part f (r,ω) reads

(1 − ω2)f + 1

4
�2

l f = 0, �l = �r − l(l + 1)

r2
. (B7)

Regular solutions of this equation are given by spherical Bessel
functions jl :

f (r,ω) ∼ jl(kr), ω2 = 1 + 1
4k4. (B8)

For R → ∞, the electron density vanishes outside the ion
sphere. The resulting condition jl(kR) = 0 leads to a quanti-
zation of the possible wave numbers k,

k = zln

R
, jl(zln) = 0, n = 0,1,2, . . . , (B9)

where n counts the number of nodes for r < R.
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