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Role of adiabaticity in controlling alkali-metal fine-structure mixing induced by rare gases
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The collision cross sections for alkali-metal–rare-gas spin orbit mixing between the n2P3/2 → n2P1/2 levels
trend strongly with the Massey parameter, or adiabaticity of the collisions. The strength of the interaction, as
characterized by the C6 dispersion coefficient, is a secondary influence on the rates. An analytic expression for
the probability of energy transfer in alkali-metal–rare-gas collisions is derived using time-dependent perturbation
theory. The model agrees well with a broad literature survey of the observed temperature-dependent cross sections.
A simple interaction potential successfully organizes the alkali-metal–rare-gas database. The rates become very
large for high-lying states, as the collisions are quite sudden and the radius of the valence electron is large. In
contrast, the highly adiabatic cesium 62P mixing rates are six to eight orders of magnitude smaller. The mixing
rate for the Rb-He diode pumped alkali laser system varies from 0.20–1.53 ×10−11cm3/at. s for T = 279–893 K.
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I. INTRODUCTION

The diode pumped alkali laser (DPAL) was introduced in
2003 by Krupke [1] and quickly became a system of great
interest for high-power applications including laser weapons
[2]. Diode laser bars are used to pump the D2

2S1/2 → 2P3/2

transition, and collisional energy transfer to the spin-orbit
split 2P1/2 state yields lasing on the D1

2P1/2 → 2S1/2 tran-
sition in potassium, rubidium, or cesium vapor. Multikilowatt
lasers have been demonstrated [3,4], the intensity scaled to
>7 MW/cm2 [5–7], and performance models developed
[8–10]. Scaling the output power and system efficiency depend
critically on pressure broadening of the pump transition to
optimize spectral overlap between the diode pump and atomic
transition [11–15] and rapid collision-induced spin-orbit mix-
ing [16–19] to prevent bottlenecking of the laser cycle. Cycle
times as short as 74 ps have been achieved in potassium
using helium only as the collision partner [5]. The spin-orbit
mixing rates induced by rare gases are smaller in Rb, requiring
higher pressures, >10 atm [20], and much smaller in cesium
requiring hydrocarbons (methane or ethane) [3]. The heat
load associated with this fine-structure relaxation will likely
control the beam quality for the DPAL device. Temperature
gradients induced by nonuniform optical excitation, wall
effects, and fluid transport impose concentration gradients and
thus phase variations across the laser beam profile. A full
assessment of the system performance requires temperature-
dependent rate coefficients for both line-broadening and
fine-structure mixing processes. Our broad objective is to
unify the DPAL kinetics via interaction potentials [21,22],
anchored to asymmetric line shape observations [11,23–25],
capable of predicting the temperature-dependent fine-structure
mixing rates [16,26]. The maturity of the DPAL kinetic
database might then approach that achieved for the HF
chemical laser, where well-developed interaction potentials are
capable of predicting disposition of reaction exothermicity into
rovibrational population distributions [27] and the Schwartz,
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Slawsky, and Herzfeld (SSH) theory successfully predicts the
vibrational-to-transitional energy transfer rates [28].

The spin-orbit mixing rates of alkali-metal atoms in colli-
sions with rare gases have been measured in significant number
since the early 1960s [16,18,26,29–50] with a strong effort
towards developing a theoretical foundation for predicting the
cross sections of nonadiabatic collisions starting much earlier
[51–70]. More recently, the experimental focus has shifted to
higher-lying Rydberg states, the closely spaced n2D states, and
alkali-metal–alkali-metal collisions [48,50,71–73] and quan-
tum scattering calculations [74,75]. With the dramatic progress
in scaling the DPAL power, a resurgence of interest has arisen
in the temperature dependence of the fine-structure mixing
rates for the lowest 2P states of K, Rb, and Cs. The broadest
experimental study of the temperature-dependent mixing rates
were measured almost 50 years ago [16]. Only recently have
ab initio potentials and a full quantum-mechanical treatment
been used to predict temperature dependence of the cross
sections [75]. However, strong sensitivity to the interaction
potential leads to discrepancies with the observations.

Krause described the interaction between an alkali-metal
atom and a rare-gas perturber qualitatively in terms of the
Massey parameter, or adiabaticity [33]. The interactions of
lithium, sodium, and potassium with both heavy and light rare
gases is expected to be nonadiabatic and cannot be treated
with Zener’s semiclassical calculation [53]. This is in contrast
to the Rb and Cs interactions with heavy rare gases, which
can be considered adiabatic due to low relative velocity and
large spin-orbit splitting. Krause does not further develop
this relationship between the adiabaticity and magnitude of
the cross section. He does observe that the collisional cross
sections do not increase monotonically as might be expected
from the polarizability of the rare-gas partner, but rather a dip
at neon and then a slow increase to Xe. Gallagher followed up
on Krause’s work by measuring the temperature dependence
of spin-orbit mixing rates for the first-excited P states of Rb
and Cs in interactions with the rare gases [16]. He introduces
time-dependent perturbation theory to treat the collision of
two atoms, but, like Krause, does little to advance this concept
further and instead develops and empirical explanation for the
trends in the Rb and Cs cross sections in terms of the reduced
mass-adjusted temperature [16]. A recent literature review for
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the temperature dependence of the Cs-He, Ar mixing rates
suggests a different T 2 to T 1/2 dependence [74].

Utilizing Krause’s idea of adiabaticity [33] along with
Nikitin’s physical model [64] and Masnou-Seeuws’ approach
[60], this work develops a theoretical expression for the
cross section. We proceed with a development similar to
Masnou-Seeuws in that we use a modified interaction potential
and a straight-line trajectory in a time-dependent perturbation
theory derivation of the energy-transfer probability and drive
the model using the cross sections collected from the literature.
Organizing the cross sections using adiabaticity reveals all
the behavioral trends observed by Gallagher, Krause, and
Elward-Berry. The present study provides the theoretical
framework for the empirical scaling with adiabaticity we
previously reported [76]. Using a single adjustable parameter,
the temperature dependence of the fine-structure mixing rates
for all alkali-metal excited states induced by rare-gas collisions
is developed.

II. REVIEW OF FINE-STRUCTURE MIXING RATES

The fine-structure mixing rates have been measured for
Li (2p) [38], Na (3p) [32,35,37], K (4p) [31–33,41], K
(5p) [46], Rb (5p) [18,29,33,34], Rb (6p) [40,77], Rb (7p)
[40], Cs (6p) [30,33], Cs (7p) [40], and Cs (8p) [36] in
collisions with all of the rare gases at a fixed temperature.
The temperature dependence of the rates has been measured
for the Rb (6p)-He, Ne, Ar, Kr, Xe, Cs (6p)-He, Ne, and Cs
(7p)-He, Ne, Ar, Kr, Xe interactions [16,18,78]. We evaluate
a total of 203 experimental cross sections from the literature.
Pulsed and cw laser-induced fluorescence techniques typically
resolve the D1 and D2 fluorescence as a function of added
buffer gas pressure. Alkali-metal densities are kept below
10−5 Torr to prevent self-absorption. Temperature-dependent
measurements require increasing the gas temperature without
dramatically increasing the alkali-metal density. Observed rate
coefficients are divided by the mean relative velocity to provide
thermally averaged cross sections for the inelastic collision.
Reported uncertainties typically range from 10–50%. Figure 1
provides a summary of the temperature-dependent mixing
cross sections for the first-excited P states. The temperatures
are scaled by the collision pair reduced mass, μRg , relative to
the reduced mass of the He–alkali-metal pair, μHe, as origi-
nally proposed by Gallagher [16]. This reduced temperature
accounts for the different relative velocity distributions of the
various rare-gas partners and improves the correlation of the
observed cross sections. Several trends are readily identified.
First, the cross section for the heavier alkali-metal–rare-gas
pairs increases with temperature. Second, Li, Na, and K exhibit
much larger, near gas kinetic cross sections. The fine-structure
splitting of the first-excited P states are 0.34, 17.2, 57.7, 237.6,
and 554 cm−1 for Li, Na, K, Rb, and Cs, respectively, and the
rates decrease dramatically with larger fine-structure splitting.
Finally, for a given alkali metal, the cross sections generally
decrease from He to Ne, then increase for the heavier, more
polarizable rare gases. While Fig. 1 only shows the values for
the first-excited P states for clarity, all measured cross sections
roughly decrease by an order of magnitude as the spin-orbit
splitting of the alkali metal increases from K to Rb to Cs.
While the reduced temperature employed in Fig. 1 organizes
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FIG. 1. The experimental cross sections for the fine-structure
transition between the first-excited P states are correlated with the
reduced temperature. The different alkali metals are given by ◦,
Li; �, Na; �, K; �, Rb; �, Cs with the colors corresponding to
He (black), Ne (red), Ar (green), Kr (blue), and Xe (magenta). The
cross sections have a large decrease as a function of the spin-orbit
splitting and a smooth decrease as a function of temperature for a
given alkali-metal–rare-gas pair.

the cross sections by alkali metal it fails to organize the data
by alkali-metal–rare-gas pairs as the full set of cross sections
do not appear to be correlated by the single variable, reduced
temperature.

For a better correlation to the cross sections, we turn to a
modified Massey parameter, or adiabaticity, given by:

ξ = τC

τN

= f L

v̄
, (1)

where τC is the duration of the collision (atom-atom interaction
time), τN = 1/f is the oscillation lifetime defined by the spin-
orbit splitting, �Ef s = hf . The duration of the collision, τC

may be evaluated as the interaction length, L, relative to the
mean velocity of the alkali-metal–rare-gas collision pair, v̄.

In addition to the adiabaticity, we define an energy-transfer
probability per collision by dividing the experimental cross
section, σexp, by the quantum-defect cross section. The
quantum-defect cross section is representative of the hard-
sphere cross section where the size of the alkali-metal atom
corresponds to the expectation value of the position of the
valence electron, defines as

〈r〉 = a0(n∗)2

[
1 + 1

2

(
1 − l(l + 1)

(n∗)2

)]
, (2)

where l is the orbital angular momentum quantum number. The
alkali-metal state is assumed to be described by hydrogenic
wave functions, with a0 as the Bohr radius. The effective
quantum number is then defined as

n∗ =
√

ERyd

I − E
, (3)
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TABLE I. Rare-gas radii (rRg), in Bohr, derived from viscosity
data [79,80] and polarizability (αRg) [81], in atomic units, are
provided.

Radii (rRg) Polarizability (αRg)
Rare gas (Bohr, a0)

(
a.u.,a3

0

)
He 1.68 1.38
Ne 1.99 2.66
Ar 2.81 11.1
Kr 3.19 16.7
Xe 3.75 27.3

where ERyd is the Rydberg constant and I − E is the energy
gap between the level of interest, E, and the ionization
potential, I . The quantum-defect cross section is then given
by,

σQD = π (rRg + 〈r〉)2, (4)

where rRg is the radius of the rare-gas atom as derived
from viscosity data [79,80] and summarized in Table II. The
probability for population transfer from 2P3/2 → 2P1/2 is then
given by

P = σexp

σQD

= kexp

v̄σQD

, (5)

where kexp is the rate coefficient. The values of σQD used
are given in Table I. Using this probability instead of the
experimental cross section improves the correlation with
adiabaticity and allows comparison directly to the results of
the time-dependent perturbation theory calculation developed
in Sec. III.

Figure 2 demonstrates that the probabilities for many
collision pairs are neatly organized by adiabaticity. While
adiabaticity is clearly the primary parameter that controls the
probability, it is not the only one. This is apparent in Fig. 2 as
only the He and Ne data, excluding the Cs-Ne data, appear to
share the same lower bound curve, regardless of alkali-metal
collision partner. This curve is well approximated by a power
law for the log probability:

ln(Pξ ) = ln

(
σξ

σQD

)
= a − bξc (6)

where we refer to Pξ as the fine-structure mixing probability, σξ

as the adiabatic cross section, and the constants’ values are a =
0.76 ± 0.74, b = 3.34 ± 0.73, and c = 0.7784 ± 0.1. These
fit parameters are improved from our initial scaling report [76]
by removing the Cs-Ne interaction, which is enhanced by the
Ne polarizability above expected values. This cross section
is independent of polarizability and provides a lower bound
for the experimental cross section, if the interaction was fully
governed by adiabaticity.

Some of the probabilities in Fig. 2 are enhanced above the
lower bound of Eq. (6). The degree of enhancement increases
with both alkali-metal and rare-gas polarizability, as shown in
Fig. 3. The degree of enhancement is characterized by the ratio
of the observed cross section to the empirical lower bound of
Eq. (6), ε = σexp/σξ . These experimental cross sections vary in
temperature for each alkali metal as measurements at the same
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FIG. 2. The probabilities are correlated with the adiabaticity with
a fixed interaction length, L = 5 Å. The different alkali metals are
given by ◦, Li; �, Na; �, K; �, Rb; �, Cs with the colors corresponding
to He (black), Ne (red), Ar (green), Kr (blue), and Xe (magenta). The
solid curve (–) shown is defined by Eq. (6) and the dashed curve (−−)
is the original empirical fit from Ref. [76].

temperature do not exist for all alkali-metal–rare-gas pairs. The
temperatures are: 555 K for Li, 400 K for Na, 323 K for K,
340 K for Rb, and 311 K for Cs. The C6 coefficient determines
the strength of the alkali-metal–rare-gas interaction potential,
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FIG. 3. The enhancement is correlated with the C6 dispersion
coefficient. The different alkali metals are given by ◦, Li; �, Na; �, K;
�, Rb; �, Cs with the rare gases filled with the colors corresponding
to He (black), Ne (red), A r(green), Kr (blue), and Xe (magenta).
A linear fit (· · · ) for each alkali metal shows the deviation in cross
section as a function of the rare-gas partner. This is in contrast to
the exponential fit (−−), which shows the strong enhancement as a
function of the alkali-metal partner.
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TABLE II. Quantum-defect cross sections for alkali-metal–rare-
gas pairs, σQD[10−15cm2].

He Ne Ar Kr Xe

Li (2p) 3.65 4.01 5.04 5.56 6.37
Na (3p) 4.83 5.24 6.41 6.99 7.90
K (4p) 5.88 6.33 7.61 8.25 9.23
K(5p) 24.46 25.38 27.88 29.09 30.91
Rb (5p) 6.46 6.93 8.27 8.93 9.95
Rb (6p) 26.35 27.30 29.90 31.15 33.03
Rb (7p) 73.75 75.33 79.60 81.64 84.67
Cs (6p) 7.20 7.70 9.11 9.80 10.87
Cs (7p) 28.75 29.74 32.44 33.75 35.71
Cs (8p) 79.12 80.76 85.17 87.29 90.42

V (r) = C6/r6, at large distances and may be evaluated as [82]:

C6 = −e2〈r2〉αRg, (7)

where e is the electric charge, αRg is the rare-gas polarizability
from Table II and 〈r2〉 is the expectation value of the excited-
state alkali-metal atom radius squared obtained using quantum
defect theory together with Eq. (3),

〈r2〉 = 1
2 (a0n

∗)2[5(n∗)2 + 1 − 3l(l + 1)]. (8)

A comparison of the empirical C6 coefficients from the
quantum-defect theory and recently calculated values for the
ground X2	1/2, and excited 2
 potential energy surfaces
correlating with the first excited 2P states [83,84] are provided
in Table III. The quantum-defect C6 coefficients, defined in
Eq. (7), are chosen for this work. These empirical values
are used to correct the long-range behavior of ab initio
potentials in order to match observed line broadening and
shifting measurements [24]. Furthermore, this development

avoids using any calculated potentials or parameters derived
from them so that all alkali-metal excited states can be
treated identically, an impossible task using ab initio potentials
as most calculations focus on the ground and first-excited
2P states. It is worth noting that the quantum-defect C6

coefficients are within 25% of the mean of the coefficients
for the excited B2	1/2 and 2
3/2 potential energy surfaces.
The probability may be further influenced by the positions
and depths of shorter-range wells, location and magnitude
of avoided crossings, and by interaction length, which is not
captured by the correlation in Fig. 3.

The enhancement above the adiabatic cross section in-
creases with both alkali metal and rare gas. The enhancement
is modest, ε < 100, except for Rb and Cs, where the rates are
indeed very slow. This enhancement is most significant for a
given rare gas and weaker for a given alkali metal, implying
that the influence of the alkali-metal polarizability is larger
than that of the associated rare gas. As with the adiabaticity, if
the C6 coefficient were the only factor we would expect Fig. 3
to show all the data correlated to a single curve dependent on
the coefficient. As this is not the case, no empirical scaling
law can be formed to correct the adiabatic cross section for
the observed increases. Instead, we resort to a time-dependent
perturbation theory approach to obtain a theoretical expression
for the probability that will be dependent on the interaction
potential magnitude, V0, and the interaction length, L.

III. NONADIABATIC COLLISION THEORY

The ground X2	+
1/2 potential energy surface for the alkali-

metal–rare-gas collision pair correlates to the alkali-metal
ground 2S1/2 state and the rare-gas ground 1S0 state. The first-
excited alkali-metal 2P1/2 state and rare-gas 1S0 state yields the
A2
1/2 potential energy surface, and the 2P3/2 separated atom

TABLE III. Calculated C6 coefficients, in atomic units, for the ground state, and excited B2	1/2 and A2
 potential energy surfaces [83,84]
are compared to the quantum-defect coefficients given by Eq. (7).

Alkali-metal–rare gas pair X2	 Quantum defect B2	 A2
 Quantum defect

Li-He 22.51 23.7 50.71 28.27 37.6
Li-Ne 43.79 45.8 98.22 54.92 72.6
Li-Ar 174 190 401.1 220.1 302
Li-Kr 259.6 287 604.9 329.6 456
Li-Xe 410.7 469 972.8 524.4 744
Na-He 25.76 26 76.94 43.74 53.9
Na-Ne 50.41 50.1 149.2 85.11 104
Na-Ar 196.8 209 608.8 341.3 433
Na-Kr 292.7 315 918.7 512 653
Na-Xe 460.9 514 1479 816.7 1070
K-He 39.49 36 103.3 60.85 68.9
K-Ne 77.44 69.6 200.6 118.7 133
K-Ar 299.3 289 812.7 471.7 553
K-Kr 444.1 437 1223 706 835
K-Xe 697.9 713 1964 1123 1360
Rb-He 44.68 38.8 117.8 70.56 77.2
Rb-Ne 88 75 229 137.9 149
Rb-Ar 336.4 312 924.1 545.1 620
Rb-Kr 498 471 1390 815 936
Rb-Xe 780.1 768 2229 1295 1530
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yields the two potential energy surfaces, A2
3/2 and B2	1/2.
Collision-induced transitions between the fine-structure split
2P1/2,3/2 atomic states occurs primarily due to radial coupling
between the B2	1/2 and A2
1/2 potential energy surfaces.
We develop an expression for this fine-structure mixing rate
by approximating the collisional dynamics as a straight-line
trajectory. Position along the trajectory is expressed as a func-
tion of time and used to convert the diabatic coupling potential
between the B2	1/2 and A2
1/2 potential energy surfaces
to a time-dependent perturbation. A detailed description of
the interaction Hamiltonian and theoretical development may
be found in Ref. [85]. First-order perturbation theory is then
used to determine the probability per collision for transferring
population from the alkali-metal atomic 2P3/2 state to the 2P1/2

state:

P (b,v) =
∣∣∣∣−i

h̄

∫ ∞

−∞
V (R(t ; b,v))e−i�tdt ′

∣∣∣∣
2

, (9)

where the angular frequency � is defined by the fine-
structure energy difference, � = 2πf = Ef s/h̄. The collision
trajectory R(t) depends on the initial energy and angular
momentum, or impact parameter, b, and relative speed, v.
The interaction potential, V (R), is defined by the off-diagonal
diabatic potential energy surface matrix elements that couple
electronic states in the 2P3/2 manifold with electronic states
in the 2P1/2 manifold [85], but will be approximated by an
analytic function developed below. When V (R(t)) changes
more rapidly than the oscillation represented by exp(i�t), the
collision is sudden and the probability is enhanced. If V (R(t))
evolves more slowly, the collision is more adiabatic and the
integrand averages to near zero.

The predicted rate coefficient is obtained by the sum over
all impact parameters and average over relative speeds:

k(T ) = 2π

∫ ∞

0
bdb

[
4π

(
μ

2πkbT

)3/2

×
∫ ∞

0
dv

[
v3e

− μv2

2kbT P (b,v)
]]

, (10)

where kb is Boltzmann’s constant, μ is the reduced mass of
the collision pair, and T is the temperature. The predicted
rate coefficient, k(T ), can be compared with the experimen-
tally observed, thermally averaged rate coefficient kexp(T ) =
σexp(T )v̄, where v̄ is the average relative speed.

To calculate the probability we must further develop the
radial interaction potential V (R(t ; b,v)). An approximate form
for V (R(t)) is taken to be a rectangular Gaussian; a flat-top
function with Gaussian onset. The potential evolves during the
interaction:

VRG(t) =

⎧⎪⎪⎨
⎪⎪⎩

V0e
− (t+τ )2

2s2 t < −τ

V0 −τ < t < τ

V0e
− (t−τ )2

2s2 t > τ

(11)

with three parameters: the magnitude of the interaction
potential, V0, the temporal period over which the potential is
rapidly changing, s, and the period during which the interaction
potential is constant, τ . We assume a straight-line trajectory to

relate the interaction length, L, to the interaction period, τ :

L2 = b2 + v2τ 2 → τ = ±
[

(L2 − b2)

v2

] 1
2

. (12)

Grazing collisions with b > L yield imaginary τ and are
neglected. We note the assumption that s is not a function
of velocity and is approximated as s = w

v̄
where w is the

length scale for the rapidly changing region of the interaction
potential. This is consistent with the idea that nearly head-on
collisions are the biggest contributors to the probability. A
similar approximation is made in the SSH development for
vibrational energy transfer [28]. The utility of this approach to
modeling the interaction potential is that V0, L, and w can be
estimated from available properties such as polarizability, or a
single fine-structure transition rate measurement performed
at a single temperature. As a result, fine-structure mixing
can be modeled over a wide range of temperatures without
explicit knowledge of the ab initio potentials. Also, using
this approach, the full set of observations is organized by a
few parameters, and temperature-dependent rates are predicted
from the resulting theory. Validity of the approximate interac-
tion potential will be tested by comparison to the extensive
database.

Using Eqs. (11), (12) for V (t) we can arrive at an analytic
form for the fine-structure mixing rate, the details of which are
only summarized here. See Supplemental Material [86] for the
full mathematical derivation. The probability for fine-structure
mixing is evaluated from Eq. (10), using Eqs. (11), (12) to
obtain:

P (b,v) =
(

2V0

h̄�

)2

[A2cos2(�τ ) + 2ABcos(�τ )sin(�τ )

+B2sin2(�τ )], (13)

where

A = π
1
2 χe−χ2

,

B = 1 − π
1
2 χe−χ2

Erfi(χ ),

χ = �s

2
1
2

. (14)

We define χ in terms of the adiabaticity

χ = s�√
2

= (2π )√
2

f w

v̄
=

√
2π

w

L
ξ (15)

and integrate the probability over the velocity distribution to
yield the analytic expression:

P (b,T )v̄ = 4π

(
μ

2πkT

) 3
2
(

2V0

h̄�

)2(
kT

μ

)2

×
[

(A2 + B2) + (A2 − B2)x2√πG1(x)

+ 2AB
√

π

(
x

1
2 H1(x) + 2

3

√
πx2H2(x)

)]
, (16)

where x = �(L2−b2)μ
2kT

and G1, H1, and H2 are the Meijer
G and generalized hypergeometric functions. The Meijer
G function is a further generalization of the generalized
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hypergeometric functions and is a generator for most spe-
cial functions [87]. We further simplify the above ex-
pression by noting that both (A2 − B2)x2√πG1(x) and
2AB

√
π (x

1
2 H1(x) + 2

3

√
πx2H2(x)) rapidly approach zero for

values of ξ > 1. As most of the alkali-metal adiabaticities are
well above this threshold, we proceed by omitting these two
terms.

The final step in the calculation is to integrate this
probability over the impact parameter. We note that the upper
limit to the integral over the impact parameter is reduced to
L and as such our perturbation does not account for grazing
collisions (b > L). This yields the rate

k(T ) = 8π2

(
μ

2πkT

)3/2(2V0

h̄�

)2(
kT

μ

)2

(A2 + B2)
∫ L

0
bdb

=
(

8π1/2

21/2h̄2

)(
V 2

0 L2

�2

)(
kT

μ

)1/2

(A2 + B2). (17)

The rate can then be simplified into the concise form dependent
on V0, L, ξ , and w as

k(T ) = V 2
0 L4

2πh̄2v̄
ξ−2(A2 + B2), (18)

where A2 + B2 can be written in terms of the Dawson integral,
F(x) = 1

2e−x2
Erfi(x) [88],

A2 + B2 = 2e−4π2( w
L

)2ξ 2
π3

(
w

L

)2

ξ 2

+
[

1 − 2
√

(2)π
w

L
ξF

(√
(2)π

w

L
ξ

)]2

. (19)

All of the temperature dependence is contained in the ex-
pression ξ−2

v̄
(A2 + B2). The rest of the term establishes the

magnitude of this temperature dependence, which implies that
V0 and L predominantly act as scale factors for the probability
whereas ξ , through v̄, and w define most of the temperature
dependence.

IV. DISCUSSION

Figure 4 shows the results of fitting Eq. (18) to the
reviewed literature. These fits were accomplished using a fixed
interaction length, L, of 5 Å, a fixed onset width, w, of 3 Å,
and an interaction potential magnitude, V0, left as the only
free parameter. The V0 terms range from 1.3×10−5H for Li
(2p)-He to 6.2×10−3H for Rb (5p)-Xe. The expression for
the probability effectively captures the observed temperature
dependence of the probabilities in spite of the fixed parameters
for all the alkali-metal–rare-gas pairs. The mean error is
≈65%, close to the maximum experimental errors of 50%
but less than the scatter between distinct measurements of
nearly 100%. Given a single measurement for an alkali-metal–
rare-gas pair to fix V0, Eq. (18) has the ability to predict the
temperature dependence for that pair to within a factor of two
of the measurement error. If the C6 coefficient is a sufficient
surrogate for V0 then one might expect the two to be closely
correlated. We see in Fig. 5 that this is not necessarily true.
In fact, V0 trends similarly to the enhancement probability
shown in Fig. 3. This is expected as V0 is the free parameter
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FIG. 4. The experimentally measured cross sections normalized

to the quantum-defect cross section are shown as a function of
adiabaticity where ◦, Li; �, Na; �, K; �, Rb; �, Cs with the colors
corresponding to He (black), Ne (red), Ar (green), Kr (blue), and
Xe (magenta). Residuals of 0.5 correspond to errors of 65%. The
symbols are defined by Eq. (5) and the dashed line (−−) represents
the theoretical prediction, P (T ) = k(T )/(σQDv̄) where k(T ) is given
by Eq. (18). The displayed prediction corresponds to a temperature
range of 100–1000 K. V0 values range from 1.3×10−5 H for Li
(2p)-He to 6.2×10−3 H for Rb (5p)-Xe.
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FIG. 5. V0 are plotted against the quantum-defect C6 coefficients.
The different alkali metals are given by ◦, Li; �, Na; �, K; �, Rb; �,
Cs with the colors corresponding to He (black), Ne (red), Ar (green),
Kr (blue), and Xe (magenta). A linear fit (· · · ) for each alkali metal
shows the deviation in cross section as a function of the rare-gas
partner. This is in contrast to the exponential fit (−−), which shows
the strong deviation as a function of the alkali-metal partner.
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FIG. 6. The theoretical (–) and predicted (−−) potentials for
collisions of K (top), Rb (middle), Cs (bottom) in collisions with
He (black), Ne (red), and Ar (green) [21]. The predicted potentials
are shallower and wider than the ab initio potentials.

designed to account for just that dependence. There is one
significant deviation between the dependencies of V0 and the
enhancement probability on the C6 coefficient. The predicted
V0 for the Cs-Ar, Kr, and Xe interactions are anomalously high
and have been excluded from Fig. 5. These cross sections are
significantly higher than expected, likely due to a mechanism
beyond a simple binary collision modeled in this work. A
thorough discussion on the sources of measurement error
associated with the Cs–rare-gas cross sections are provided
in a recent review of Cs energy-transfer measurements [74].
Ignoring the scale of the Cs-Ar, Kr, Xe data, we see that both V0

and the enhancement probability show the same exponential
dependence on alkali-metal polarizability for a given rare gas
as well as a linear dependence on rare-gas polarizability for a
given alkali metal.

The potentials for the alkali-metal–rare-gas interaction have
been calculated at the spin-orbit multireference configuration
interaction level by Blank et al. for K, Rb, Cs in collisions
with He, Ne, and Ar [21]. Figure 6 shows the calculated
diabatic potential energy surfaces compared to the current
model predicted potentials. The long-range (>10 Bohr) form
of the model and the calculated potentials are remarkably
similar with the predicted potentials decreasing slower due
to the large onset width, w. One major deviation between the
ab initio potentials and the current modeled forms exist for the
Cs-Ar case where the modeled potential is significantly higher
in energy, likely driven by the aforementioned three-body
effects. In the short range (<10 Bohr), the ab initio potential
vary more drastically from their modeled counterparts. This is
driven by the complex interaction of the alkali-metal–rare-gas
that is overly simplified by our proposed potential structure
designed to maintain an analytic form. The current predicted
mixing rates are similar to the probabilities computed using a
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FIG. 7. The prediction of Eq. (18) is shown as a line with
circle markers corresponding to a temperature range of 100–1000 K.
The lines without markers correspond to full quantum-mechanical
calculations of the cross sections conducted by Lewis et al. [75]. The
different line types correspond to K (–), Rb (- -), and Cs (· · · ) and
with colors corresponding to He (black), Ne (red), and Ar (green).

time-dependent wave packet approach [75], as seen in Fig. 7.
These calculated quantum-mechanical probabilities for the K
and Rb cases agree with the predicted temperature dependence
predominantly at higher temperatures. The low-temperature
behavior is underestimated in the full quantum-mechanical
development. The Cs-He prediction is closest in temperature
dependence but underestimates the overall probabilities by an
order of magnitude. The Cs-Ne and Cs-Ar probabilities are also
off by approximately an order of magnitude. It is also worth
noting that the Cs-Ar prediction is substantially higher than the
Cs-Ne prediction, which is consistent with our anomalously
high V0. These higher-fidelity theoretical calculations are
very sensitive to the ab initio potential energy surfaces, with
accuracy less than 10 cm−1 required for collision-induced
shifts [11,21]. The advantage of the current semiclassical
calculation with approximate potential energy surfaces is the
development of a broadly applicable scaling law with only a
few empirical parameters.

As an example of the predicted temperature-dependent
rates, we turn to evaluating the 52P3/2 → 52P1/2 mixing cross
section for the Rb-He DPAL system. Figure 8 compares
the most comprehensive experimental observations for the
temperature dependence [16] with the current prediction.
Gallagher’s very early work [16] remains the best reported
temperature -dependent values. His fit to the observations
employed a two-term temperature dependence:

Q(T ) = 	2
i=1Ki
(ni + 2)

(
2kT

μv2
0

)n

i

, (20)

where K1 = 3.4×10−20cm2, K2 = 490×10−20cm2, n1 =
3, n2 = 0.5, and v0 = 105cm/sec. At T = 400 K, the
mixing rate is k = 1.92×10−12cm3/at. s, increasing to
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FIG. 8. Equations (20) and (21) are compared to the Rb-He
probabilities. Gallagher’s empirical model, Eq. (20), is represented by
the dashed red curve and the current model, Eq. (21), is represented
by the dashed blue line. Both models agree to within 30%.

2.99×10−12cm3/at. s at 500 K. At 20 atmospheres of He at
400 K, the mixing time is 1.42 ns, or 18.5 cycles per radiative
lifetime (26 ns). The current prediction for the rate coefficient,
using the recommended values L = 0.5 nm, w = 0.3 nm, and
V0 = 4.19×10−3H is:

k(T ) = 5.58×10−16
√

T

(
51089

T
e−32524/T

+
(

1 − 226√
T

e−16262/T Erfi

(
127.523√

T

))2)
, (21)

where T is the temperature in Kelvin. This yields the second
curve in Fig. 8. The two rates agree to within 30% across
the temperature range 279–893 K with our prediction yielding
more accurate results for temperatures above 400 K. We prefer

the current result, as the full alkali-metal–rare-gas database
is unified with Eq. (18). It is worth noting that at elevated
pressures, three-body collisions enhance the rate, Rb-He k3b =
1.19×10−32cm6/at.2 s [18].

V. CONCLUSION

The experimental spin-orbit mixing cross sections have
been collected from the literature and reviewed in terms of
the adiabaticity and rare-gas interaction. The data show a
consistent trend for He, and most of the Ne, probabilities with
a positive enhancement from that trend as a function of po-
larizability. Using an approximate square-Gaussian effective
potential and a straight-line trajectory in a time-dependent
perturbation theory development, an analytic expression for
the probability of energy transfer in alkali-metal–rare-gas
collisions has been derived. The expression is dependent on the
magnitude of the effective potential, V0, the flat top distance,
L, and the onset width of the Gaussian w. A fixed L and
w of 5 Å and 3 Å, respectively, are suitable for matching the
complete alkali-metal database. The temperature dependence
for any alkali-metal–rare-gas cross section can be extracted
from the provided expression if V0 is used to set the magnitude
of the curve. There is good agreement between the analytic
model and the full quantum-mechanical development at high
temperatures for K and Rb but the data and analytic model
show a steeper trend with decreasing temperature than the full
numerical approach predicts.

Further testing of this model is required, especially in the
nonadiabatic cases of Li, Na, and K as well as the extremely
adiabatic cases of Cs-Ar, Kr, Xe where temperature-dependent
rate coefficients have not yet been measured. The formulation
may also apply to the mixing of the Halogens for the 2P1/2 →
2P3/2 transition. However, additional temperature-dependent
rate measurements will be required. The halogens would be a
particularly interesting case as the spin-orbit splittings range
from 400 cm−1 in fluorine to 7600 cm−1 in iodine, which
corresponds to adiabaticities of 4.3 (F-He) to 360 (I-Xe) at
300 K, a much wider range than in the alkali-metal–rare-gas
collision of ξ = 0.0024–26.3.
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