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Stability of rubidium molecules in the lowest triplet state
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Experiments involving ultracold molecules require sufficiently long lifetimes, which can be very short for
excited rovibrational states in the molecular potentials. For alkali-metal atoms such as rubidium, a lowest
rovibrational molecular state can both be found in the electronic singlet and triplet configurations. The molecular
singlet ground state is absolutely stable. However, the lowest triplet state can decay to a deeper bound singlet
molecule due to a radiative decay mechanism that involves the interatomic spin-orbit interaction. We investigate
this mechanism, and find the lifetime of rubidium molecules in the lowest triplet rovibrational state to be about
20 min.
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I. INTRODUCTION

Stable ultracold molecules are of high experimental
and theoretical interest [1]. In particular molecules with a
permanent electric dipole moment offer the opportunity to
explore many-body states [2] that are impossible to reach
with the isotropic nature of the short-range ultracold atomic
interactions. One of the routes to create ultracold diatomic
molecules is to associate them from ultracold atoms. Initially
atoms are associated into weakly bound Feshbach molecules
by sweeping a magnetic field across resonance. Subsequently
stimulated Raman adiabatic passage (STIRAP) is performed
on these molecules to convert them to the lowest state of
a particular potential [3]. This technique has proven to be
very efficient, and in 2008 the first sample of diatomic KRb
molecules in the rovibrational ground state was produced [4].
More recently, this also succeeded for RbCs [5,6], which
contrary to KRb is chemically stable under two-body collision
processes [7]. Also nondipolar Rb2 [8] and Cs2 [9] ground-
state molecules have been created in this way.

The stability of these molecules is crucial for experiments,
and therefore it is only natural to create the molecules in the
absolute ground state. This is the rovibrational ground state of
the electron spin singlet potential X 1�g . The singlet potential
is energetically very deep, and to reach its ground state via
STIRAP, typically an additional laser system is required.
However, the lowest spin triplet state is much less deep, and
can be reached more easily with the laser set-up which is
usually present for laser cooling and trapping purposes.

While (singlet) ground-state molecules are absolutely stable
with respect to radiative decay, molecules in the lowest
triplet state are not. However, the question is whether the
radiative lifetime will be a practical limiting factor to current
experiments. Recent experimental and theoretical work shows
that a gas of singlet ground-state molecules has a very short
reactive lifetime resulting from three-body collisions [5,10].
Also, triplet molecules have theoretically been shown to be
unstable towards trimer formation [11]. On the other hand,
isolated Rb2 molecules in the lowest triplet state, produced in
an optical lattice [8], are not sensitive to other types of decay
apart from the radiative process, and may potentially have a
much longer lifetime than the reactive lifetimes of both singlet
and triplet molecules in their lowest rovibrational state.

In this paper, we investigate the lifetime of the lowest
triplet Rb2 state a3�+

u . While our approach is generic for all

alkali-metal atoms, rubidium is particularly interesting as it is
currently the most widely used species in ultracold quantum
gas experiments. Our treatment applies to 85Rb2 and 87Rb2

molecules. Rb2 molecules in the lowest triplet state are not
absolutely stable, as the combined valence electron spins may
form a lower energetic singlet configuration.

In the following we present a calculation of the lifetime
of Rb2 molecules in their lowest triplet state, considering the
two most probable decay mechanisms involving a spin flip.
The first mechanism we consider arises from the interatomic
part V so of the total spin-orbit interaction [12,13] that admixes
a set of intermediate electronic states into the lowest triplet
state. The spin flip is followed by E1 decay, and we show
that this is the dominant mechanism that leads to a lifetime of
about 20 min. The second mechanism starts with an energy-
conserving spin flip, resulting from the magnetic dipole-dipole
interaction, which is followed by nuclear spin M1 decay. This
mechanism appears in practice to be completely negligible,
as the associated lifetime is 1029 s, and therefore leaves the
interatomic spin-orbit mechanism as the sole mechanism
responsible for the decay of rubidium molecules in the lowest
triplet state. In both cases the two-atom system is considered
to consist of two valence electrons 1,2 and two Rb+ ions A,B
with nuclear spins iA,iB (see Fig. 1). In the following we focus
on the 87Rb2 molecule for which iA = iB(= 3

2 ).

II. INTERATOMIC SPIN-ORBIT COUPLING

One of the terms contributing to V so in the situation of
Fig. 1, in which the electron-ion pair 1,B of the dimer is
involved is [12,13]

V so(1,B) = e

4m2c2
[ �E(�r1B) × �p1] · �σ1 ≡ eh̄

4m2c2
�V1B · �σ1,

(1)

which includes the Thomas precession factor 1
2 . We define the

shorthand notation �V1B for the spatial part of V so(1,B), i.e.,
�E(�r1B) × �p1 (similarly for other electron-ion combinations).

In Eq. (1) the quantity �E(�r1B) = er̂1B/(4πε0r
2
1B) is the electric

field operating on electron 1 due to the net charge of the
other ion B+ concentrated at its nucleus, r̂1B is the unit vector
�r1B/r1B, �σ the Pauli spin vector, �p1 the electronic momentum
operator, e the elementary charge, c the velocity of light, and
m the electron mass. Rewritten in atomic units and including
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FIG. 1. Geometry of the Rb2 molecule, considered to consist of
two valence electrons 1,2, and two Rb+ ions A+,B+. Electrons 1,2
and the atomic nuclei are initially spin polarized in a direction z

(nuclear spins iA and iB ). Vector �E(�r1B ) is the Coulomb field at the
position of electron 1 from the net charge of ion B+ concentrated at
nucleus B. The figure illustrates one of the four terms contributing to
the interatomic spin-orbit interaction V so

f i [see Eq. (4)].

the 2A term we find

V so(1,B) + V so(2,A) = 1

4

(
λc

a0

)2

( �V1B · �σ1 + �V2A · �σ2), (2)

with λc the reduced electron Compton wavelength and a0 the
Bohr radius.

We study the excitation process at fixed values of the
internuclear distance R in a range where it is reasonable to
assume that electron 1 is in one atom and electron 2 in the
other, which is roughly equal to or larger than twice the Rb
atomic van der Waals radius rvdW = 5.72a0 [14]. Therefore,
in connection with the positions of the electrons relative to
ions A and B, we define a pair of projection operators �

on disjunct parts of the four-particle (two valence electrons
and two ions) configuration space where either 1A,2B is the
composition of the two atoms (projection operator �1A,2B) or
1B,2A (�1B,2A). We thus rewrite the above expression (2) as

V so = 1

4

(
λc

a0

)2

[�1A,2B( �V1B · �σ1 + �V2A · �σ2)

+�1B,2A( �V1A · �σ1 + �V2B · �σ2)]. (3)

It is the �σ1 − �σ2 part V so
f i of V so, proportional to the difference

of the valence electron spins (antisymmetric in 1 and 2), that
admixes a superposition of final singlet two-particle electronic
sp states into the fully spin-polarized initial dimer state |�i〉
before the decay:

V so
f i = 1

8

(
λc

a0

)2

[�1A,2B( �V1B − �V2A)

+�1B,2A( �V1A − �V2B )] · (�σ1 − �σ2). (4)

Note that in the above we discuss operator equations which act
on the combined Hilbert spaces of the spatial and spin degrees
of freedom. Below, we will only regard the spin-antisymmetric
part of the Hilbert space as the �σ1 + �σ2 part connects the
initial state to states that do not contribute to the decay.
The associated projection operators on spin-symmetric and
spin-antisymmetric parts of Hilbert space commute with the
projection operators �1A,2B and �1B,2A on configuration space
and therefore the spin operators (�σ1 − �σ2) can be pulled out of
the square brackets.

For the initial and final electronic states we take the
R-dependent adiabatic potential-energy curves (PECs) and

FIG. 2. Potential for lowest Rb20−
u and 1u states, where the

rovibrational ground state is located at −7.026 GHz (solid black
line). The corresponding squared wave function [φi(R)]2 is indicated
(dotted green line). Also indicated is the local decay rate 
(R) (dashed
red line).

electronic transition dipole moments (TDMs) of the low-lying
Rb dimer states from Ref. [15]. These have been calculated
both without and with (intra)-atomic spin-orbit coupling,
leading to �� states and � states, respectively. Here �,�,
and � are the projections of the total electron orbital, spin,
and total angular momentum along the internuclear axis,
respectively. Interatomic spin-orbit coupling is not taken into
account (see also Refs. [16–18]). In our case the choice
between the two types of states depends crucially on the
range of interatomic distances where the initial state is
concentrated. In Fig. 2 we present the PEC for the initial lowest
triplet rovibrational state with quantum numbers vt ,l,ml =
0,0,0, together with the corresponding eigenfunction squared
[φi(R)]2 with a Gaussian-like shape, normalized according to∫ ∞

0 [φi(R)]2dR = 1. It is concentrated in the interval from R

= 10 to 14 a0, which contributes dominantly to the transition
from |�i〉 to the final electronic states via intermediate states,
while the PECS for the (1)0−

u and (1)1u initial � states are
virtually identical to those of the a3�+

u state (for R = 10 to
14 a0 in six of eight decimals). For that reason we will only
make use of the �-type TDMs in Ref. [15]. In addition, we
only include them for sp final states and omit the sd states,
which are not admixed by V so.

In order to connect to the TDMs of Ref. [15] we now
expand the factor 1/r3

1B in the electric field �E(�r1B) = �r1B/r3
1B

(similarly for other electric fields in the previous equations)
in inverse powers of R, using the shorthanded notations ρ =
r1B/R,p = −2 cos θ1Ar1A/R,q = (r1A/R)2:

1/ρn = 1 − n

2
(p + q) + n(n + 2)

8
(p + q)2 + · · ·

= 1 + n
z′

1A

R
− n

2

(
r1A

R

)2

+ n(n + 2)

2

(
z′

1A

R

)2

+ · · · .

(5)
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We use a nuclei-fixed right-handed coordinate system: the
origin halfway the nuclei [15], an internuclear z′ axis, and
a perpendicular pair of x ′ and y ′ axes with an arbitrary
orientation around the z′ direction. Furthermore, we neglect
cross-terms between the intra- and interatomic spin-orbit
couplings (both weak), so that the electronic momentum in
Eq. (1) can be expressed as a commutator of the Hamiltonian
Hel for the two valence electrons [15] with the position vector
�r1A: �p1 = i[Hel,�r1A]. As a consequence, we have

�E(�r1B) × �p1 ∝ [Hel,�r2B × �r1A] = [Hel,− �R × �r1A], (6)

i.e., only the component �r1A⊥ = �r1⊥ perpendicular to �R and
only even orders in the 1/ρ3 expansion survive. The zeroth-
order contribution to �V1B can thus be dealt with in terms of
TDMs and the second-order term can be used to estimate
the relative error, which turns out to be roughly (rvdW/R)2 ≈
25% in the relevant range 10 < R < 14a0 (see Fig. 2). This
conclusion is valid for other electron-ion combinations, too.

A. Symmetry aspects

The foregoing steps change the spatial operator multiplying
�1A,2B in Eq. (4) into �V1B − �V2A = − i

R3
�R × [Hel,(�r1A +

�r2B)]. A similar result is obtained for the operator multiplying
�1B,2A. In total we obtain

V so
f i = 1

8R2

(
λc

a0

)2

R̂ × (�1A,2B[Hel,�r1 + �r2]

+�1B,2A[Hel,�r1 + �r2]) · (�σ1 − �σ2), (7)

with R̂ the unit vector �R/R.
The symmetry properties of this expression determine

selection rules for the admixtures induced by V so
f i . Splitting

the electronic spatial part �D = �r1⊥ + �r2⊥ of V so
f i into spherical

components q = ±1 [19], D±1′ = ∓(Dx ′ ± iDy ′ )/
√

2, we
find that they change parity u into g and in addition change
the z′ component M ′

L of the total electronic wave function
by ±1, i.e., only a 1g part is added to 0−

u and only 0+
g ,0−

g ,2g

parts to 1u. We also find that each of the D±1′ terms changes
σv reflection parity [12] from + to − and vice versa. The
foregoing implies that we can use the �� = ±1 transition
dipole moments (TDMs) for E1 transitions published by
Allouche et al. [15] to calculate the (�r1 + �r2)±1′ spatial
matrix elements, in combination with the spin matrix elements
〈(S,M ′

S)f = 0,0|(�σ1 − �σ2)∓1′ |(S,M ′
S)i = 1,±1〉. The equality

q = M ′
S illustrates angular momentum conservation along the

z′ symmetry axis: Spin angular momentum is transferred to
orbital angular momentum.

A necessary following step is to impose Kronig symmetry
[20]: We require invariance of the Hamilton operator under
the combination of a rotation of the nuclei over π around the
y ′ axis (leaving the electrons alone) and space inversion of
the electronic position coordinates with respect to the origin.
Both Hel and each of the �1A,2B and �1B,2A terms in Eq. (7)
obey this invariance. Kronig symmetry of the Hamiltonian
implies that the eigenstates have to be either symmetric or
antisymmetric (Kronig symmetry type c or d in Herzberg’s
notation [12,21]), or can be chosen as such.

As a consequence transitions induced by V so
f i take place

between states with equal Kronig symmetry only. To find the
c and d type (1)0−

u and (1)1u states we make use of our
earlier conclusion that in the R interval of interest these �

states are very close to 3�+
u states, i.e., �� states with � = 0

and S = 1,� = 0,±1. We therefore equate the latter to the
corresponding � states:

|(1)0−
u 〉 = |(1)3�+

u ,� = � = 0〉
= |c,(1)3�+

u ,S = 1,� = 0〉 (8)

is a Kronig-symmetric state by itself, as indicated by the
symbol “c”, whereas |(1)3�+

u ,� = 1〉 exists in two versions,
one with c and one with d symmetry:∣∣c

d
,(1)1u

〉 = [|�+,S = 1,� = 1,� = +1〉
± |�+,S = 1,� = 1,� = −1〉]/

√
2. (9)

We conclude that the above-mentioned selection rules have
to be further specified: Allowed transitions are (c,0−

u ) →
(c,1g),(c,1u) → (c,0+

g ) or (c,2g), and (d,1u) → (d,0−
g ) or

(d,2g).
Each of the above c and d states (8) and (9), multiplied

by |S,MSz = 1,+1〉 with the z axis along the polarization
direction, is present initially with probability 1/3 before the
excitation by V so

f i and has the total form,

|�i,ni=1( �R)〉 = |ψi(ni = 1; R)〉|L,ML = 0,0〉
⊗ |S,MS = 1, + 1〉. (10)

The state |ψi(ni ; R)〉 stands for the R-dependent part of the
initial adiabatic state of the valence electrons (eigenstates of
Hel with serial number ni of the corresponding eigenvalues
counting from below) that defines their motion relative to the
body-fixed axes. The states |L,ML〉 specify the rotational mo-
tion of these axes relative to the space-fixed coordinate system.
We leave out the nuclear spin state |I,MI = iA + iB,iA + iB〉,
which is not affected in the excitation and subsequent decay
process for the present mechanism. As a further step we expand
the initial electronic spin state in states |1,M ′

Sz′ 〉 quantized
along the direction of the z′ axis:

|S,MSz = 1,+1〉 =
∑
M ′

Sz′

D1∗
1,M ′

Sz′
(φR,θR,χR)|1,M ′

Sz′ 〉, (11)

where M ′
Sz′ = 0,±1 and DS

1,M ′
Sz′

is a rotation matrix

element [19].
Each of the final states has the form,

|�f,nf
( �R)〉 = |ψf (nf ; R)〉,

|L′ = 1,M ′
Lz′ ; S ′,M ′

Sz′ = 0,0〉, (12)

with |ψf (nf ; R)〉 the final valence electron state and
L′,M ′

Lz′ ; S ′M ′
Sz′ the rotational and spin angular momentum

quantum numbers with components along the body-fixed z′
axis in the final state. For each R value the states |ψi(ni ; R)〉
and |ψf (nf ; R)〉 form both an orthonormal set of eigenstates
of the Hamiltonian Hel for the valence electrons.
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B. Transition amplitudes and decay rate

For given �R and M ′
S we now consider the transition

amplitude induced by V so
f i between an initial state �i,ni

( �R)

and a final state �f,nf
( �R), divided by their energy difference:

Af nf ,ini
(M ′

S,R) = 〈�f nf
( �R)|V so

f i |�i,ni
( �R)〉

Ef nf
− Eini

. (13)

The energies E are R-dependent adiabatic potential-energy
values [eigenvalues of Hel; see potential energy curves (PECS)
in Ref. [15]]. Substituting Eq. (4) for V so

f i and letting Hel

operate to the left in one term of the commutators and to
the right in the other, we find that this results in a factor
Ef,nf

− Ei,ni
that cancels out the denominator in the above

equation. Using the orthogonality of the D functions we find

Af nf ,ini
(M ′

S,R) = 1

4
√

3R2

(
λc

a0

)2

af,ibf,i , (14)

in which af,i and bf,i are spatial and spin matrix elements:

af,i = 〈ψf (nf ; R)|r1,+1|ψi(ni ; R)〉 ≡ DT(f nf ,ini),

bf,i = 〈0,0|(�σ1 − �σ2)−1|1,+1〉 = −2. (15)

Like the previous PECs, the transition dipole moments
(TDMs) were tabulated by Allouche and Aubert-Frécon
[15]. For comparison reasons, we discuss now an alternative
approach that we investigated, which is, however, much
less precise. We started from the full interatomic spin-orbit
interaction V so of Eq. (3) operating on the initial state (10), in
which we took the radial wave function of the Rb 5s valence
electron from [22], leading to a sum of �S�πe = 100g and
11 − 1g parts. Subsequently, we followed [23] in describing
the E1 decay. The sum of the intraatomic spin-orbit couplings
and the interatomic electric dipole-dipole interaction V dd,
which are valid for larger distances than considered up to now
was diagonalized in the 18-dimensional space, leading to a set
of 18 R-dependent eigenstates in the 5s5p space considered
in Ref. [15], comparable to the final states ψf (nf ; R) above.
The main shortcoming of this approach is the role of the
interaction V dd in the radial range 10–14a0, where it is a bad
approximation. Due to the strong repulsion in some of the final
states and a strong attraction in the remaining ones the radial
wave functions have small values. This leads to a lifetime of
the lowest-energy Rb2 triplet state of about 25 h, which is two
orders of magnitude larger than what we calculate below.

Continuing the present treatment based on Ref. [15], we
take the absolute square of the above amplitude A in Eq. (13)
and integrate over the Euler angles. We thus find

|Af nf ,ini
(M ′

S,R)|2 sin(θR)dφRdθRdχR

= 1

4R4

8π2

3

(
λc

a0

)4

[DT(f,nf ; i,ni ; R)]2. (16)

In our notation the TDM matrix element in this equation is
given by

DT(f nf ,ini ; R) = |〈ψf (nf ; R)|[�r1q + �r2q]|ψi(ni ; R)〉|, (17)

with the spherical component q = �f − �i , the change of the
� values from initial to final states. The actual TDM values
[15] show which final states are primarily excited starting

from the three initial states. For larger R (beyond 40a0) only
the three lowest-energy c,1g states are significantly excited
from 0−

u , as well as the (2)-(3) 0+
g and (1) 2g state from 1u [for

notation see [15]; (1) 0+
g = absolute singlet ground state]. More

relevant for our purpose, in the above-mentioned interval R =
10 to 14 a0 the V so

f i strength is distributed among transitions
from 0−

u to the sp states (1)-(2) 1g , as well as from 1u to (2)-(3)
0+

g , to (1)-(2) 0−
g , and to (1)2g . All of these sp states undergo

E1 decay back to the ss states.
Averaging over the three initial i,ni states (8), (9), summing

over the final f,nf states, and multiplying by the average
γ = 3.60 × 107 s−1 of the Rb atomic first excited 2P1/2 and
2P3/2 spontaneous E1 decay rates, we find our estimate of the
local decay rate 
(R) of the lowest triplet Rb2 state,


(R) = γ
1

4R4

8π2

3

(
λc

a0

)4 ∑
ini

∑
f nf

(
1

3
δi,0−

u
+ 2

3
δi,1u

)

× [DT(f nf ,ini ; R)]2, (18)

displayed in Fig. 2, and the total decay rate for mechanism I,


I =
∫ ∞

0
〈φi(R)|
(R)|φi(R)〉dR. (19)

Our result for the total decay rate is 0.78 × 10−3 s−1, corre-
sponding to a lifetime of about 1200 s = 20 min.

III. MAGNETIC DIPOLE-DIPOLE INTERACTION

A second decay mode is a relaxation process predicted and
evaluated (see [24,25]), after the first proposal of a magnetic
trap for wall-free confinement of ultracold atoms by Pritchard
[26] and specifically for spin-polarized hydrogen atoms by
Hess [27]. The latter trap was experimentally realized by
Hess et al. [28]. The predicted decay process is induced in
two-body atomic collisions. It played a crucial role as a loss
process in connection with the first realization of Bose-Einstein
condensation in an ultracold gas of Rb rather than H by
Wieman and Cornell et al. [29] in 1995 after the prediction [30]
that 87Rb rather than the more easily available 85Rb isotope
was the preferable isotope because of its positive scattering
length in atom-atom scattering. Soon after that Ketterle et al.
[31] were successful in creating Bose-Einstein condensation
in an ultracold gas of spin-polarized Na atoms.

Bose-Einstein condensates in magnetic traps have macro-
scopic linear dimensions (0.01–1 mm). In this paper, however,
we discuss the stability of pairs of Rb atoms bound in Rb2

molecules and thus confined to a spatial region with linear
size roughly a factor 106 smaller (see probability distribution
displayed in Fig. 2). Due to this compact nature of the Rb2

molecule in the lowest triplet states the influence of the
above-mentioned long-range (R−3) magnetic dipole-dipole
interaction V dd (as well as in the radiative decay to be discussed
later) is reduced to a considerable extent. Moreover, for Rb2

molecules doubly polarized along an axis z the stronger part of
this interaction, V dd(e,e), among the valence electrons does not
lead to a final state that contains an excited singlet component
giving rise to decay. However, turning to the weaker part
V dd(e,n), acting between the spin magnetic moment μe of the
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electron of one atom and the nuclear spin magnetic moment
μn at the nucleus in the other atom, the situation is different.

Consider, for instance, the pair 1,B in Fig. 1. The corre-
sponding term in V dd(e,n) is

C
3(�σ1 · �r1B)(�σB · �r1B) − r2

1B �σ1 · �σB

r5
1B

, (20)

with C = (μ0/4π )μeμn. We now follow the procedure of
expansion Eq. (6), but now for n = 5. In the present case
only even terms contribute to the final result. For our estimate
we keep only the zeroth-order term, implying that we simply
replace �r1B by �rAB = − �R. This leads to the expression,

C
3(�σ1 · R̂)(�σB · R̂) − �σ1 · �σB

R3
, (21)

with the unit vector R̂ = �R/R as in Eq. (7). The total
expression is

V dd(e,n) = C
3(�σ1 · �̂R)(�σB · �̂R) − �σ1 · �σB + (1B → 2A)

R3

+C
(1B2A → 1A2B)

R3
. (22)

Here (1B → 2A) and (1B2A → 1A2B) stand for their
preceding term but with the replacements indicated. The
vectors �σJ (J = A,B) are dimensionless spin vectors, defined
by the expression for the nuclear spin magnetic moments:
�μn = μn �σJ . The latter expression for V dd(e,n) is identical

to the zeroth-order expression for the interatomic magnetic-
dipole coupling between the spins of two valence electrons
in diatomic molecules given in Eq. (3-2-34) on page 108
of Ref. [12]. In that paper the expression is worked out
for the S = 1 → 1 transition, whereas our interest is in the
S = 1 → 0 transition to singlet states which finally decay
radiatively to the singlet 5s2 ground state.

Our initial state is again that given in Eq. (10), but now
completed with the nuclear spin factor |I,MI,MIz=3,+3〉, which
in this second mechanism plays a role, too:

|�i,ni=1( �R)〉 = |ψi(ni = 1; R)〉 ⊗
|L,ML = 0,0; S,MS = 1,+1; I,MIz = 3,+3〉. (23)

The operator V dd(e,n) does indeed admix excited electronic
singlet states in this initial spin-polarized Rb2 triplet state, via
a term antisymmetric in the valence electron spins proportional
to the difference of Pauli spin vectors ��σ12 = �σ1 − �σ2,
which is automatically also nuclear spin antisymmetric and
proportional to ��σAB = �σA − �σB . Only their −1 spherical
components contribute. We refer to this part as V

dd(e,n)
f i ,

because it couples spin-symmetric initial triplet states to final
singlet states before the decay. To simplify the notation we
make use of the previous projection operators � and introduce
the rank 2 spherical tensors S(2) and R(2), each built from
products of two spherical vectors:

R(2)(R̂R̂)2,S
(2) = (��σ12��σAB)2. (24)

Then V
dd(e,n)
f i can be expressed in terms of the product

R
(2)
+2.S

(2)
(−2). We thus obtain the expression,

V
dd(e,n)
f i = − C

R3
(�1A,2B − �1B,2A)R(2)

2 · S
(2)
−2, (25)

for the magnetic dipole-dipole coupling inducing the transition
to the final singlet states before the radiative decay.

In analogy to Eq. (12), the possible final states are

|�f,nf
( �R)〉 = |ψf (nf ; R)〉,

|L′,M ′
L = +2,+2; S ′,M ′

S = 0,0; I ′,M ′
I = 2,+2〉, (26)

with |ψf 〉 one of the 5s2 states. Contrary to the situation for
mechanism II, it is preferable in this case to use magnetic
quantum numbers for the final states along the prepared
polarization direction z. In Eq. (26) f is equal to 0−

u

(automatically of Kronig symmetry-type c) or to c,1u, whereas
the serial number nf is any positive integer value in the
discrete spectrum of the 0−

u potential (continuum states will
play a negligible role). The corresponding rotational angular
momentum matrix elements are

〈L′,M ′
L = 2,+2|R(2)

+2|L,ML = 0,0〉 =
√

8

15
. (27)

Splitting the S(2) spin matrix element in two, we have

〈S ′,M ′
S = 0,0|(��σ12)−1|S,MS = 1,+1〉 = −4,

〈I ′,M ′
I = 2,+2|(��σAB)−1|I,MI = 3,+3〉 = − 2

iA

= −4

3
. (28)

We apply the previous Eqs. (27) and (28) to calculate the
transition amplitude A:

Af nf ,ini
(R) = 〈�f,nf

( �R)|V dd(e,n)
f i |�i,ni

( �R)〉
Ef,nf

− Ei,ni

= −32

3

√
2

15

C

R3

〈ψf (nf ; R)|ψi(ni ; R)〉
Ef,nf

− Ei,ni

. (29)

The result no longer depends on the direction of �R. Note also
that V dd(e,n)

f i in Eq. (25) does not affect the initial radial function
ψi(ni ; R), hence the inner product of ψ states in Eq. (29).

The next step is to derive the radiative decay rate for each
of the states |�f nf

〉 to the states of c,0+
g symmetry type. Only

the c,1u states can decay electromagnetically: The 0−
u state

and the other 1u state have Kronig symmetry-type d. The
multipole that is responsible for this decay has to satisfy several
conditions. The spatial electronic part (5s)2 of the �f,nf

states
should not be changed, nor should the spin part S = 0: Both are
already identical to the corresponding parts in the Rb2 ground
state. The only degrees of freedom susceptible to change are
those of the ions, i.e., in particular the nuclei: in Eq. (26)
the nuclear spin part I ′,M ′

I = 2,+2 and the rotational part
L′,M ′

L = 2,+2. The multipole that will lead to the required
intervention should also be symmetrical in the nuclei. The
foregoing conditions are satisfied by the spherical component
along the (body-fixed) z′ axis of a magnetic quadrupole:

(M2)2μz′ = 3
2δμz′ ,0μnRz′ (σAz′ − σBz′ ). (30)
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This component of a molecular magnetic quadrupole
moment is indeed symmetrical in the nuclei, since Rz′ =
z′
B − z′

A (see Fig. 1). It arises from the distribution of nuclear
magnetization in the Rb2 molecule relative to the total center
of mass and relative to the body-fixed axes. While the structure
of the above expression (30) can be understood from the
foregoing conditions, its normalization can be obtained from
the analogous expression for the electron spin quadrupole
moment in diatomic molecules given in Ref. [32], Eq. (39).

The local decay rate 
(R) and the total decay rate 


are therefore proportional to μ4
n, which already suggests an

extremely small value for the total decay rate 
. In more detail
we have, using Eq. (27) in the same paper [32],


f,nf
(R) = |Af nf ,ini=1|2 1

30

μ0

4πh̄

×
∑

L′′M ′′
L,I ′′M ′′

I ,n′′
f

[�EL′I ′n′
f ,L′′I ′′n′′

f
(R)/(h̄c)]5

×|〈L′′,M ′′
L; I ′′,M ′′

I |(M2)2,0z′ |L′,M ′
L; I ′,M ′

I 〉|2,
(31)

with L′,M ′
L = 2,+2,I ′,M ′

I = 2,+2,n′′
f = n′

f , and
�EL′I ′n′

f ,L′′I ′′n′′
f
(R) = EL′I ′n′

f
(R) − EL′′I ′′n′′

f
(R).

For our purpose it suffices to derive an upper limit. Our
strategy is to overestimate all factors on the right-hand side
of Eq. (31), including the 1/[Ef,nf

− Ei,1]2 factor in |A|2,
but excluding the factor |〈ψf (nf ; R)|ψi(ni ; R)〉|2 with ni = 1
in |A|2. The latter factor would have been the most difficult
to evaluate, but can now be dealt with easily as will be
shown below. We overestimate the energy numerator and
underestimate the denominator. The former can be equated
to the fifth power of the dissociation energy DeS of the singlet
ground state and the denominator to the square of half the
energy difference of the nearest pair of subsequent L = 2
vibrational singlet levels. We denote the latter as �Enf

, which
is estimated in terms of the classical relative radial velocity
(expressed in the maximum kinetic energy) and twice the
radial distance R covered by the atoms during one period
as hνvib = 3.2 × 10−21J . A strong magnetic field could in
principle be helpful via the downward Zeeman shift of the
triplet levels, but is too weak in practice (1.855 × 10−23BJ

for all alkali-metal species with B in Tesla. Finally, taking into
account that the R interval of interest is between 10 and 14a0

we replace the factor (1/R4) a−4
0 by choosing R0 = 10a0 to be

its maximum value 10−4 in atomic units. This implies that the
local and the total decay rates become equal. We thus find


II = 
II(R0) =
∑
nf

|Af nf ,ini=1(R0)|2Pf nf
(R0). (32)

Here, Pf nf
(R) is the decay rate for the state |�f,nf

〉 as if that
were the initial state. We use Eq. (27) of Ref. [32] for the decay

rate induced by a magnetic quadrupole moment. Substituting
the above expression, we find


II =
∑
nf

〈�f,nf
|M†

2,0z′
M2,0z′ |�f,nf

〉. (33)

The product M
†
2,0z′

M2,0z′ can be simplified using σAz′σAz′ =
σBz′σBz′ = 1 and the anticommutation relation of the σAz′

and σBz′ matrices, [σAz′ ,σBz′ ]+ = 0. The result is M
†
2,0M2,0 =

2( 3
2μnR0)2. Finally, the remaining summation over nf can be

handled by means of the completeness relation,∑
nf

|ψf (nf ; R0)〉〈ψf (nf ; R0)| = 1, (34)

leading to


II <
2910−4

152h̄

(
DeS

h̄c

)5
(

μ0

4π
μeμnμn

1
2�Enf

)2

= 0.4 × 10−68s−1, (35)

corresponding to a lifetime of 2.5 × 1068 s.

IV. CONCLUSION

We conclude that isolated rubidium molecules in the
lowest-energy triplet state have a finite lifetime. This is due
to a radiative mechanism involving an interatomic spin-orbit
interaction and inducing decay to the singlet state. The
lifetime is about 20 min, which is much longer than typical
experimental time scales needed to study these ultracold
molecules, created in an optical lattice starting from two atoms
on each lattice site. We also studied a second mechanism
induced by a magnetic dipole coupling between the valence
electron spin of one atom and the nuclear spin of the other,
followed by a magnetic quadrupole (M2) radiative transition
to the (1)c,0+

g ground state with a probability containing
an additional factor μ2

n. This second mechanism leads to a
lifetime that exceeds the earlier lifetime by at least a factor
1 × 1065, and can therefore be completely disregarded. Other
decay mechanisms resulting in a transition to deeper-bound
singlet states involve collisions, for instance, with other triplet
ground-state molecules [11]. Future experiments should be
able to investigate this mechanism, and shed more light on the
collisional lifetime.
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