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Investigation of Feshbach resonances in ultracold40K spin mixtures

J. S. Krauser,1,2 J. Heinze,1,2 S. Götze,1 M. Langbecker,1,3 N. Fläschner,1 L. Cook,4 T. M. Hanna,5 E. Tiesinga,5
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Magnetically tunable Feshbach resonances are an indispensable tool for experiments with atomic quantum
gases. We report on 37 thus far unpublished Feshbach resonances and four further probable Feshbach resonances
in spin mixtures of ultracold fermionic 40K with temperatures well below 100 nK. In particular, we locate a
broad resonance at B = 389.7 G with a magnetic width of 26.7 G. Here 1 G = 10−4 T. Furthermore, by exciting
low-energy spin waves, we demonstrate a means to precisely determine the zero crossing of the scattering length
for this broad Feshbach resonance. Our findings allow for further tunability in experiments with ultracold 40K
quantum gases.
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I. INTRODUCTION

Ultracold fermionic atomic gases are ideally suited for
the study of many-body quantum phenomena owing to the
unrivaled control over experimental parameters such as the
spatial geometry of confining potentials and the interaction
strength between the atoms. The interaction strength is
controlled using magnetically tunable Feshbach resonance and
typically characterized by the s-wave scattering length, which
can be set to a wide range of values, either negative or positive.
Feshbach resonances have been found in many bosonic, as
well as fermionic, atomic systems (see [1–5] and references
therein). The isotope 40K constitutes one of the workhorses
in current experiments with ultracold fermions and provides
a rich ground-state structure allowing for the realization of
binary and multicomponent spin mixtures [6–23], as well
as several Bose-Fermi [24–30] and Fermi-Fermi mixtures
[31–35]. In the energetically lowest hyperfine manifold with
total angular momentum f = 9/2 ten magnetic spin states are
available ranging from m = −9/2, . . . ,+9/2, and 45 binary
spin mixtures can be realized [36]. So far, only three Feshbach
resonances have been reported, one for each of collision chan-
nels {m1,m2} = {−9/2,−7/2} [37], {−7/2,−7/2} [38,39],
and {−9/2,−5/2} [40].

Here, we report on the experimental observation of 37
theoretically confirmed and 4 further probable magnetic Fes-
hbach resonances in different spin mixtures of ultracold 40K.
Their positions are determined from the enhanced, resonant
loss of atoms near the resonance, either caused by three-body
recombination or two-body inelastic spin flips. In addition, we
introduce a method for precisely determining the sign changes
of the scattering length around the Feshbach resonance by
exciting low-energy spin waves. In particular, this approach
enables us to measure the zero crossing with high accuracy.
We also find that the measured positions of the assigned
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Feshbach resonances agree well with theoretical calculations
based on multichannel coupled-channels and quantum-defect
theory using the best available Born-Oppenheimer potentials
for40K [41].

A Feshbach resonance occurs when two atoms in well-
defined spin states collide and couple to a virtual molecular
state with a different spin configuration [1–5]. Because
these configurations have different magnetic moments their
relative Zeeman energy can be tuned with a magnetic field.
This leads to a magnetic-field-dependent complex scattering
length ã(B) = a(B) − ib(B), where real-valued a(B) and
b(B) > 0 describe elastic and inelastic two-body processes,
respectively. Here, we have allowed for inelastic transitions
to spin configurations whose Zeeman energy is below that of
the entrance configuration. In fact, near a resonance and in the
limit of zero collision energy,

a(B) = abg

[
1 − �B(B − Bres)

(B − Bres)2 + (γ2/2)2

]
, (1)

with resonance position Bres, magnetic width �B, and
background scattering length abg. Finally, γ2 describes two-
body decay to other spin-channels (expressed in units of the
magnetic field). Similarly, we have

b(B) = 2ares
(γ2/2)2

(B − Bres)2 + (γ2/2)2
, (2)

with resonance length ares = abg�B/γ2. Atom loss, quanti-
fied by the two-body rate coefficient K2(B) = 4πh̄b(B)/μ, is
largest in the vicinity of the resonance position Bres. Here, h̄
is the reduced Planck constant, μ = m/2, and m is the atomic
mass.

II. LOSS SPECTROSCOPY OF FESHBACH RESONANCES

We begin our experiments by preparing a spin mixture of
m1 = +9/2 and m2 = +7/2 atoms with about N = 5×104

atoms per spin state in an optical dipole trap. The trap is
harmonic and nearly isotropic with mean trapping frequency
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TABLE I. Thirty-seven measured and theoretically assigned
Feshbach resonances of 40K and the prediction of a further 17
resonances. The first four columns represent the collision channel
{m1,m2} in the f = 9/2 manifold, the total spin quantum number
M = m1 + m2, and the partial wave �, with its projection m�. The
next two columns are the experimental maximum loss position Bexp

and the observed magnetic width σ exp. The uncertainty of Bexp,
given in parentheses, is a 1 standard deviation uncertainty with
combined systematic and statistical error. The last four columns
show resonance data from coupled-channels calculations at a collision
energy of E/k = 60 nK. Here, Bcalc

res is the resonance position, where
the elastic rate coefficient Kelas has its maximum, �Bcalc is the
(signed) magnetic width defined as the difference between the field
locations, where Kelas has a minimum and maximum, respectively. γ2

is the two-body decay width, as defined in Eq. (1). Some resonances
only exhibit resonant behavior in the calculated losses. We give the
corresponding resonance position in the Bcalc

res column and mark them
with a superscript star. Missing numbers in one or more of the last
two columns imply the absence of a minimum in Kelas and/or that the
collision has no losses. Magnetic fields and widths are in Gauss.

{m1,m2} M � m� Bexp σ exp Bcalc
res �Bcalc γ2

{+5/2,−9/2} −2 s 0 24.0(0.5) 4.2 24.5 2.1 0.24

−2 s 0 33.2 0.7 1.7

{+9/2,−9/2} 0 s 0 17.6(0.3) 5.4 18.7 1.8 0.30
0 s 0 35.9(0.4) 5.6 34.9 4.2 5.1
0 p −1 93.6(1.3) 17.3 89.1� 20
0 p 1 ibid. 88.2 20
0 p 0 ibid. 98.1 −27.4 21

{+7/2,−7/2} 0 s 0 18.0 0.2 0.17
0 s 0 34.3(0.8) 10.8 35.2 3.4 0.77
0 s 0 65.5(1.3) 11 64.2 7.0 9.1
0 s 0 147.1(3.0) 0.8 145.8 0.2 0.01

{+9/2,−7/2} 1 s 0 13.9(0.2) 1.3 14.4 0.4 0.16
1 s 0 28.4(0.3) 6.1 30.2 2.9 0.39
1 s 0 66.3(0.7) 14.5 62.2 11.9 15
1 p 1 139(1) 20 131.6 25
1 p −1 ibid. 132.5� 25
1 p 0 ibid. 143.0 −41.4 26

{+5/2,−5/2} 0 s 0 17.6 0.1 0.08
0 s 0 31(4) 6 32.3 0.4 0.38
0 s 0 61(4) 21 61.6 4.0 1.0
0 s 0 111.8 0.02 0.001
0 s 0 156.7 1.0 0.04

{+7/2,−5/2} 1 s 0 14.2 0.2 0.04
1 s 0 28.1 0.2 0.22
1 s 0 61(8) 31 60.0 6.0 0.79
1 s 0 149.4 0.3 0.13

{+9/2,−5/2} 2 s 0 27.3(0.3) 4.8 26.8 1.9 1.2
2 s 0 63.4(0.7) 30 62.1 8.4 6.3
2 p 1 159(3) 40 157.1 23
2 p −1 ibid. 157.1 23
2 p 0 ibid. 166.1 −46.5 25

{+3/2,−3/2} 0 s 0 17.4 0.08 0.02
0 s 0 31(4) 6 31.4 0.2 0.13
0 p 0 46(4) 4 45.6 0.11
0 p 1 ibid. 46.4 0.07
0 p −1 ibid. 46.4 0.13

TABLE I. (Continued.)

{m1,m2} M � m� Bexp σ exp Bcalc
res �Bcalc γ2

0 s 0 53(4) 4 55.3 0.3 0.35
0 s 0 95(4) 23 93.6 2.3 1.2
0 s 0 98.8� 0.009
0 s 0 120.9 0.1 0.0003
0 s 0 182(4) 12 181.4 2.3 0.25

{+5/2,−3/2} 1 s 0 14.1 0.06 0.007
1 s 0 23(8) 8 27.3 0.1 0.04
1 s 0 53(8) 8 51.8 0.1 0.07
1 s 0 115.4 0.8 0.55
1 s 0 122(8) >40 120.2 7.7 2.5
1 s 0 168.8 1.1 0.13
1 s 0 288.4 5.9 6.0

{+9/2,−3/2} 3 s 0 53(4) 14 51.9 4.4 2.6
3 s 0 137(8) 53 140.4 14.4 5.5

{+1/2,−1/2} 0 s 0 15(4) 4 17.3 0.06
0 s 0 31(4) 5 30.9 0.2
0 s 0 61(8) 8 53.4 0.4
0 s 0 88(4) 4 87.1 0.4
0 s 0 93.6
0 s 0 109.9 0.02
0 s 0 145.1 0.03
0 s 0 246(0.8) 2.4 246.6 2.0
0 s 0 389(1) 5.5 389.7 26.7

{+9/2,−1/2} 4 s 0 114(8) >40 112.2 11.7 7.6

{−1/2,−1/2} −1 p 1 373(2) 2 372.4 30.1
−1 p −1 ibid. 372.4 30.1 0.001
−1 p 0 ibid. 373.4 −11.5 0.001
−1 p 1 418.9 8.1
−1 p 0 418.9 −0.8 0.003
−1 p −1 418.9 8.1 0.003

{+3/2,+3/2} 3 p 1 140(4) 4 139.6 −37.1
3 p −1 ibid. 139.8 −37.0 0.03
3 p 0 ibid. 141.5 −30.5 0.009

ω̄ = 2π × 50 Hz and temperature T ≈ 0.3TF, where TF =
h̄ω̄(6N )1/3/k ≈ 170 nK is the Fermi temperature and k is
the Boltzmann constant. For the investigation of different
collision channels, the corresponding two-component 50:50
spin mixture is prepared at a magnetic field of B = 45 G using
radio-frequency sweep and pulse protocols optimized for each
mixture. After the preparation we do not observe any atoms in
undesired spin states within our detection sensitivity of Nmin ≈
200. After this preparation, the magnetic field is ramped to its
final value and the ensemble is held for a time of 100 ms. The
magnetic field is calibrated by radio-frequency spectroscopy,
resulting in an uncertainty of �B � 0.2 G. Subsequently, the
magnetic field is switched off and the remaining atoms are
counted after a time of flight in a Stern-Gerlach gradient field.
The field value where atom loss is maximal, Bexp, is assigned
as the resonance position Bres. The full-width-half-maximum
magnetic width of the experimental loss feature is denoted
by σ exp.

We have located 41 resonant experimental loss features in
this manner and assigned 37 based on two complementary
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theoretical approaches for collisions between two fermionic
40K atoms. The first approach corresponds to a coupled-
channels calculation based on the spectroscopically accurate
X1	+

g and a 3	+
u Born-Oppenheimer potentials [41] mixed

by the atomic Fermi-contact, atomic Zeeman, and magnetic
dipole-dipole interactions. The second approach corresponds
to a multichannel quantum-defect theory [4,42], where the
Born-Oppenheimer potentials are described by their scattering
length and common van der Waals dispersion coefficient
and mixing is due only to the Fermi-contact and Zeeman
interactions. For our ultracold 40K collisions it is sufficient to
include collisional channels with � = 0 or � = 1 mechanical
orbital angular momentum, i.e., s or p partial waves. (Parity
reflection symmetry ensures that there is no mixing between
even and odd �.)

We find quantitative agreement between the location of
experimental loss maxima and theoretical resonance locations
obtained from either theory. Table I lists the 37 assigned
resonances as well as predictions for 17 additional resonances.
The theoretical numbers are those extracted from the coupled-
channels calculation at a collision energy of E/k = 60 nK.
The resonance width �Bcalc is the difference in the magnetic
field of the elastic rate coefficient minimum and maximum.
For our mainly lossy resonances these two fields correspond
to good approximation to a scattering length that is zero and
infinite, respectively.

Most of the experimental features are Feshbach resonances
with s partial-wave character, while a handful have p-wave
character. In fact, for each resonance the partial wave of the
incoming collision channel and the corresponding resonant
bound state are the same. Interestingly, resonances can overlap
within their widths. For example, the experimental loss
feature at B = 122 G in {+5/3,−3/2} collisions are two
overlapping s-wave resonances according to our coupled-
channels calculations, one at ≈115.5 G and one at ≈120 G.
(We assign the experiment with the latter in the table.)
Overlapping p-wave resonances can also occur and correspond
to its three rotational projection quantum numbers m� = ±1,0.
Their degeneracy is lifted only by the magnetic dipole-dipole
interaction resulting in B-field splittings that are smaller
than our corresponding experimental σ exp, as verified by
our coupled-channels calculations. In fact, the lines are not
resolved.

The remaining four loss features are probable Feshbach
resonances and listed in Table II. For these features we found
no corresponding theoretical resonances. Parallel to this work,
groups in Munich and Amsterdam have measured other 40K
Feshbach resonances in different collision channels [43].

Note that the position of a resonance determined from
atom loss measurements contains systematic deviations as
reported previously; i.e., Bres �= Bexp [16]. Similarly, σ exp does
not coincide with the calculated γ2. Atom loss is not only
due to two-body collisions; it is also caused by three-body
recombination, where three colliding atoms react to produce a
hot molecule. The field-dependent recombination rate coeffi-
cient K3(B), does not need to peak at the same B field or have
the same width as K2(B). In addition, for quantum degenerate
Fermi gases of 40K atoms, collective phenomena can modify
the resonance feature especially when the scattering length
a(B) is large compared to 1/kF, where the Fermi wave vector

TABLE II. Four further measured loss resonances in 40K.
Columns represent collision channel {m1,m2} in the f = 9/2
manifold, quantum number M = m1 + m2, the partial wave �, the
maximum loss position Bexp, and the magnetic width σ exp. For these
loss features no corresponding theoretical value exists. Magnetic
fields and widths are in Gauss. The partial wave for each resonance
has been assigned s wave for equal losses in both components and p

wave if losses occur in only one component.

{m1,m2} M � Bexp σ exp

{+9/2,−1/2} 4 s 61(8) 9
{+3/2,+3/2} 3 p 76(4) 4
{+7/2,+7/2} 7 p 105(3) 11

7 p 182(2) 12

kF is defined by h̄2k2
F/(2m) = kTF [44]. Finally, line shapes

can also be distorted when a large fraction of the atoms is lost.
The collision channel {+1/2,−1/2} is of particular interest.

It is the magnetic ground state of the spin subspace with zero
magnetization M = m1 + m2 = 0 and, hence, losses due to
inelastic two-body collisions can occur only by spin-relaxation
from the weak magnetic dipole-dipole interactions [23]. In
this mixture, we have located a Feshbach resonance at Bcalc

res =
389.7 G with a width of �Bcalc = 26.7 G, which is about three
times larger than the width of the commonly used Feshbach
resonances in the channels {−9/2,−7/2} and {−9/2,−5/2}.

III. PRECISION DETERMINATION OF FESHBACH
RESONANCE PARAMETERS VIA SPIN WAVE ANALYSIS

From an experimental point of view, a broad resonance
is desirable as it lowers the technical demands for setting a
stable value of the interaction strength close to resonance.
Hence, the accurate determination of the resonance position
Bres and the zero crossing, where a(B) has a node as
a function of B, are of particular importance. The latter
occurs when Bzero = Bres + �B, as can be seen from Eq. (1)
when γ2 → 0. At this zero crossing atom loss tends to be
small. Recently, detection methods such as radio-frequency
spectroscopy [7,45], collective excitations [46,47], Bloch
oscillations [48], and spin segregation [49] have been used
to determine the resonance position or the zero crossing.
Here, we report on a method based on creating spin-wave
excitations near a Feshbach resonance. These excitations are
sensitive to the sign of the scattering length a(B) [50] and,
in particular, the phase of the spin-wave changes sign as the
sign of a(B) changes. Spin waves are an interaction-induced
phenomenon and cannot be excited at the zero crossing. For
strong interactions close to the pole in a(B), where the sign
of a(B) also changes, many-body effects induce additional
corrections [44]. Therefore, spin waves are particularly suited
for finding the zero crossing of Feshbach resonances.

We excite spin waves with spatially dependent magnetic
fields that induce spatially dependent relative phase evolution
between the two spin components (for details, see [21]). For
this purpose, we first prepare a single-component Fermi gas
in spin state m = +1/2 in an elongated dipole trap with
trapping frequencies ω = 2π × (70,70,12) Hz along the three
independent spatial directions. At a magnetic field near the
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FIG. 1. Breathing and dipole mode resulting from a quadrupole
and linear spin wave. Time evolution of the density of the spin
components m = +1/2 (top row) and m = −1/2 (bottom row),
obtained by integrating over the two spatial directions orthogonal
to the spin-wave excitation. Panel (a) shows quadrupole oscillations
induced at B = 401 G for strong interactions, and panel (b) shows
dipole oscillations induced at B = 422 G for weak interactions.
Counterflow dynamics between the spin components can be observed
in both panels.

{+1/2,−1/2} Feshbach resonance at Bcalc
res = 389.7 G, we

subsequently apply a radio-frequency pulse with a duration
of 10 μs to create a coherent and equal superposition of the
spin states m = +1/2 and −1/2. We then excite a spin wave
by using one of two types of field inhomogeneities along
the weakest trapping direction. Close to the zero crossing,
where the interaction strength is small, we apply a linear
magnetic gradient and excite linear spin waves leading to
dipole oscillations. For larger interaction strengths small
field inhomogeneities are sufficient. Here, even the small
residual magnetic quadrupole component originating from
the Helmholtz coils excite quadrupole spin waves and spatial
breathing modes. Examples of the spatial breathing and dipole
modes are shown in Figs. 1(a) and 1(b). In both cases
counterflow spin currents between the two spin components
are induced, even though the overall density remains constant.
While the dipole mode induced near the zero crossing of
the resonance is long lived [21], the breathing mode quickly
decays due to incoherent collisions in the vicinity of Bres [19].

The initial phase and amplitude of the breathing and
dipole oscillation depends on the magnetic-field strength.
To extract this behavior from our data we analyze the time
dependence of the variance of the spatial density profile along
the weak trapping direction for the breathing mode and of the
displacement of each of the spin components for the dipole
mode. The time evolution of the difference in the variance of
the two spin clouds is shown in Fig. 2(a) for two magnetic
fields on either side of the Bres = 389.7 G resonance position.
Initially, the differential width grows up to a maximum value
and then slowly decays to zero, indicative of strongly damped
motion. Figure 2(b) depicts the time evolution of the difference
in the displacement of the two spin components for two
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FIG. 2. Spin waves for different magnetic fields. (a) Time evolu-
tion of the differential variance for a breathing-mode spin wave at two
magnetic fields close the broad {+1/2,−1/2} Feshbach resonance.
(b) Time evolution of the differential displacement for a dipole-mode
spin wave at two magnetic fields close to the zero crossing of this same
resonance. In (a) and (b) the solid lines are only guides to the eye.
(c) Maximum amplitude of the differential variance as a function
of magnetic field around the resonance position. (d) Amplitude of
the differential displacement as a function of magnetic field near
the zero crossing. The amplitude is extracted by fitting a damped sine
oscillation to data similar to that in panel (b). The positions of the sign
change of the scattering length are determined from a linear fit.

magnetic fields on either side of the zero crossing. The dipole
oscillations remain visible over several periods. We repeat
measurements as shown in Figs. 2(a) and 2(b) for various
magnetic fields and find that the observed amplitudes reveal
a strong magnetic-field dependence. Figures 2(c) and 2(d)
summarize this dependence as a function of magnetic field.
Using a linear fit, we can accurately determine the magnetic
field at which the spin waves change their oscillation phase.
This yields Bres

sw = 389.5 (0.1) G and Bzero
sw = 416.1 (0.1) G,

respectively. The quoted 1 standard deviation uncertainty
follows from the fit. We estimate a systematic error due to an
uncertainty in the magnetic-field calibration of �Bsys = 0.2 G.

The measured value Bzero
sw = 416.1 (0.1) G should coincide

with the zero crossing of the scattering length. In fact, our
measured value is in very good agreement with the theoretical
value of 416.4 G. In contrast, the field value Bres

sw is affected by
many-body effects and does not serve as a precise measure for
the Feshbach resonance position. In future experiments, this
could be overcome by using thermal gases, where these effects
are negligible [44].
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IV. CONCLUSION

In conclusion, we have observed 37 Feshbach resonances
in 40K over a broad range of magnetic-field values, as well
as four further loss resonances whose origin has not yet
been theoretically determined. Thirty-one of the theoretically
confirmed resonances have s-wave character and six are
p-wave resonances. Most of these resonances are accompanied
by losses. In fact, these losses as well as the elastic interactions
can be tuned for each Feshbach resonance. This allows for
various future applications, such as the study of a quantum
Zeno insulator in optical lattices [51,52]. Furthermore, a broad
Feshbach resonance in the collision channel {+1/2,−1/2} has
been identified at a magnetic field of B = 389.7 G with a
width of 26.7 G, which constitutes an ideal candidate for two-
component studies with accurate control over the interaction

strength. In addition, we demonstrated the creation of spin
waves around this Feshbach resonance, which allowed for a
precise determination of the zero crossing. Furthermore, we
observed a phase shift of the spin waves near the Feshbach
resonance position, which might allow for the study of
many-body effects in strongly interacting Fermi gases in the
future.
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