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Matthew T. Eiles1,2 and Chris H. Greene1,2,3

1Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
2Kavli Institute of Theoretical Physics, University of California, Santa Barbara, California 93106, USA

3Purdue Quantum Center, Purdue University, West Lafayette, Indiana 47907, USA
(Received 14 November 2016; revised manuscript received 29 January 2017; published 25 April 2017)

The interaction between a Rydberg electron and a neutral atom situated inside its extended orbit is described
via contact interactions for each atom-electron scattering channel. In ultracold environments, these interactions
lead to long-range molecules with binding energies typically ranging from 10 to 1 × 104 MHz. These energies
are comparable to the relativistic and hyperfine structure of the separate atomic components. Studies of molecular
formation aiming to reproduce observations with spectroscopic accuracy must therefore include the hyperfine
splitting of the neutral atom and the spin-orbit splittings of both the Rydberg atom and the electron-atom
interaction. Adiabatic potential energy curves and permanent electric dipole moments are presented for Rb2 and
Cs2. The influence of spin degrees of freedom on the potential energy curves and multipole moments probed in
recent experimental work is elucidated, and the observed dipole moments of butterfly molecules are explained
by the generalized 3P J pseudopotential derived here.
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I. INTRODUCTION

Rydberg atoms, owing to their exaggerated properties,
provide a pristine environment for highly accurate quantum
metrology and manipulation, especially in conjunction with
the remarkable precision afforded by ultracold laboratory
systems and high-resolution laser spectroscopy. They reveal
a wealth of information about the myriad effects of external
fields on quantum systems, the transition between quantum
and classical physics, and the universal properties of many
different atomic species [1–6]. Additionally, they provide
a promising framework for quantum information due to
the Rydberg blockade and associated long-range interac-
tions [7,8]. Rydberg atoms embedded in dense gases serve
as probes of the electron-atom scattering properties of the
surrounding gas [9] and, remarkably, can even bind one or
more nearby atoms into an ultra-long-range molecule through
the localized interaction induced by this scattering [10]. The
binding energies of these fragile molecules are similar to the
relativistic spin-orbit (SO) corrections to the Rydberg atom’s
level structure, the SO splitting of the electron-atom scattering
channels, and the hyperfine splitting of the perturbing atom.
These quantities have been measured to increasingly high
accuracy in recent years [11–13]. The improved knowledge
of these parameters provides the necessary ingredients to
characterize the properties of exotic Rydberg molecules to very
high accuracy, provided a full theoretical model including all
these effects is developed.

The original theoretical predictions of these molecules
focused on the simplest cases of 3S [10] and 3P [14,15]
scattering of electrons by a Rb atom, neglecting hyperfine
structure and the 3P J splittings. Essentially simultaneously,
sophisticated Green’s function approaches for the same system
were developed [15–17]; one in particular (the Khuskivadze-
Chibisov-Fabrikant approach, henceforth referenced as KCF)
included the 3P J splitting [18]. Photoassociation experiments
have since formed ns, np, and nd Rydberg molecules of
both Rb and Cs [19–24], and recently even “trilobite” and
“butterfly” molecules consisting of large admixtures of high-l
states with very large permanent electric dipole moments

(PEDMs) [25,26]. Several recent works have explored effects
related to the hyperfine splitting in these molecules, beginning
with a joint theoretical and experimental investigation [24,27]
and recently including studies of mixed singlet-triplet poten-
tials [21,28,29] and the ability of this mixing to induce a spin
flip [30].

The present article expands upon this wide body of
literature, particularly the theoretical efforts [18,27,29], by
including all relevant interactions for both alkali-metal atomic
species of common experimental interest, thus unifying past
theoretical approaches into a complete model. A major
component of this is the inclusion of 3P J splittings within the
pseudopotential approach, which is important for quantitative
calculations with heavier atoms like Rb and Cs. This provides
highly accurate potential energy curves (PECs), which will be
utilized in a forthcoming effort to fully confirm and understand
past experimental observations [31]; already in the present
effort the 3P J splitting gives improved theoretical values for
the observed dipole moments of butterfly molecules. These
potential curves additionally reveal a wealth of interesting
regimes for future experimental and theoretical exploration.
An improved understanding of these exotic molecules provides
insight into the precision study of the scattering properties and
control possibilities of these molecules and provides a strong
foundation for studies of many-body and mean-field effects in
polyatomic systems, an area of current interest that demands
accurate two-body information [32–37]. Additionally, the
modified 3P J -wave pseudopotential could find applications
in other ultracold systems or in parallel systems in nuclear
physics [38–41]. Note that the present treatment, which aims
to replace the Green’s function technique by a phase-shift-
dependent operator that can be numerically diagonalized,
connects with the spirit and motivations of effective field
theory [42].

II. CONSTRUCTION OF THE HAMILTONIAN MATRIX

A diatomic system of alkali-metal atoms, one in its
ground state and the other in a highly excited Rydberg state,

2469-9926/2017/95(4)/042515(13) 042515-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.95.042515


MATTHEW T. EILES AND CHRIS H. GREENE PHYSICAL REVIEW A 95, 042515 (2017)

is considered. The two nuclei adiabatically traverse PECs
vi( �R) that, in the Born-Oppenheimer approximation, depend
parametrically on the internuclear distance, �R = Rẑ. The
much faster electronic motion defines these PECs through the
time-independent Schrödinger equation, H (�r; �R)�i(�r; �R) =
vi( �R)�i(�r; �R), for the electronic wave function �i(�r; �R). This
equation is solved by diagonalizing the matrix representation
of H (�r; �R). This method is chosen in contrast to alternative
methods based on the Coulomb Green’s function to simplify
the inclusion of spin degrees of freedom. Additionally, diago-
nalization immediately provides the eigenfunctions, yielding
multipole moments, information about state mixing, and
nonadiabatic couplings. The full Hamiltonian includes all
relevant relativistic effects:

Ĥ (�r; �R) = ĤRyd(�r) + V̂P ( �R,�r) + ĤHF − α

2R4
. (1)

The Hamiltonian of the Rydberg atom, ĤRyd(�r), includes the
effects of core electrons and the Rydberg SO splitting, typically
parametrized by measured quantum defects from atomic spec-
troscopy. V̂P ( �R,�r) is the electron-perturber pseudopotential
generalized to include all electron-scattering channels up to P -
wave: 1S0,

3S1,
1P 1, and 3P 0,1,2. ĤHF is the hyperfine interaction

between the perturber’s nuclear and electronic spins, and − α
2R4

is the polarization potential between the Rydberg core ion and
the perturber. These terms are described in more detail as their
matrix elements are constructed.

Figure 1 schematizes these different interactions and
illustrates the two centers inherent to this system, which

FIG. 1. The molecular system and relevant angular momenta. The
internuclear axis lies parallel to the body-frame z axis passing through
the ionic core (left) and the ground-state atom (right). The red (blue)
dashed oval represents the Rydberg (ground state) electron’s orbit. (a)
The Rydberg electron is located at �r relative to the core and at �X =
�r − �R relative to the perturber. (b) The spin of the Rydberg electron,
�s1 (red), couples to its orbital angular momentum relative to the core, �l
(yellow), to give a total angular momentum �j (orange) with projection
mj = ml + m1. (c) The interaction between the Rydberg electron and
neutral atom depends on the total electronic spin, �S = �s1 (red) +�s2

(cyan), coupled to the orbital angular momentum �L (green) relative
to the perturber to form total angular momentum �J (purple), with
projection MJ = ml + m1 + m2. (d) The spin of the perturber’s outer
electron, �s2 (cyan), interacts with the perturber’s nuclear spin,�i (gray),
to form �F (pink) and its projection MF = m2 + mi . The only good
quantum number of the combined system is � = mj + m2 + mi .

TABLE I. Quantum defects, polarizabilities α, and hyperfine
constants A for 87Rb and 133Cs from [13,43–49].

Rb μ(0) μ′(0) Cs μ(0) μ′(0)

s1/2 3.1311804 0.1784 s1/2 4.049325 0.2462
p1/2 2.6548849 0.2900 p1/2 3.591556 0.3714
p3/2 2.6416737 0.2950 p3/2 3.559058 0.374
d3/2 1.34809171 −0.60286 d3/2 2.475365 0.5554
d5/2 1.34646572 −0.59600 d5/2 2.466210 0.067
f5/2 0.0165192 −0.085 f5/2 0.033392 −0.191
f7/2 0.0165437 −0.086 f7/2 0.033537 −0.191

Rb Rb+ Cs Cs+

α (a.u.) 319.2 9.11 α 402.2 15.8

Rb(ns) Rb(5s) Cs(ns) Cs(6s)
A (GHz) 18.55/(n∗)3 3.417 A 3.383/(n∗)3 2.298

are crucial when dealing with the 3P J scattering states. The
first center, the Rydberg ion, determines the good quantum
numbers of the Rydberg electron’s wave function in the
absence of a perturbing atom, |n(ls1)jmj 〉. Explicitly, these are
the principal quantum number n, the total angular momentum
�j 2 = (�s1 + �l)2, and its projection onto the internuclear axis,
mj . Since these eigenfunctions are known, a sensible choice of
basis to represent the Hamiltonian includes these unperturbed
eigenfunctions |n(ls1)jmj 〉 as well as the uncoupled nuclear
and electronic spin states of the perturber, |s2m2; imi〉. Di-
agonalization of ĤRyd(�r), which would otherwise involve the
numerical solution of the electron’s dynamics in some model
potential describing the alkali-metal atom, is trivial in this
basis, with eigenenergies given by experimentally determined
quantum defects:

En(s1l1)jm = − 1

2
[
n − μ(s1l1)j (n)

]2 . (2)

The quantum defects are parametrized:

μ(s1l1)j (n) = μ(s1l1)j (0) + μ′
(s1l1)j (0)[

n − μ(s1l1)j (0)
]2 . (3)

Table I displays these parameters for ns, np, nd, and nf

states of both Rb [43,44] and Cs [45,46]. For higher angular
momenta, the quantum defects account for core polarization
through the approximate formula

μl(n) =
(

α(X+)[3n2 − l(l + 1)]/4

n2(l − 1/2)l(l + 1/2)(l + 1)(l + 3/2)

)
, (4)

where α(X+) is the polarizability of the Rydberg core of atom
X. Table I shows the polarizabilities of both atoms and their
positive ions [47]. The hydrogenic fine-structure splitting is
assumed for these nonpenetrating high-l (l > 3) states:

�En(s1l1)jm = − α2

2n3

(
1

j + 1/2
− 3

4n

)
, (5)

where α is the fine-structure constant. Since this splitting
and the core polarization-induced quantum defects decrease
rapidly with l, the l > 2 states are nearly degenerate and only
slightly modify the potential curves. The eigenfunctions of
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ĤRyd(�r) are

ψn(ls1)jmj
(�r) =

∑
m,m1

C
jmj

lm,s1m1

fnlj (r)

r
Ylm(r̂)χs1

m1
, (6)

where χs1
m1

is the Rydberg electron’s spin wave function. The
radial eigenstates, fnlj (r), for low-l states with nonintegral
quantum defects are approximately given by Whittaker func-
tions. This is an excellent approximation beyond distances of
a few Bohr radii where the non-Coulombic potential due to
the actual distribution of core electrons vanishes.

The hyperfine Hamiltonian is ĤHF = A �I · �S2. Table I gives
the constant A; for the Rydberg atom this decreases as n−3 and
is irrelevant at the level of accuracy considered here [13,48,49].
The matrix elements of ĤHF in the uncoupled basis are

〈αimi,s2m2|A �I · �S2|α′i ′m′
i ,s

′
2m

′
2〉

= A

2
δαα′

∑
FMF

C
FMF

s2m2,imi
C

FMF

s2m
′
2,im

′
i

× [(F (F + 1) − i(i + 1) − s2(s2 + 1)], (7)

where α = {n,l,s1,j,mj } and the nuclear spin i = 3/2(7/2)
for 87Rb(133Cs). C

j3m3
j1m1,j2m2

is a Clebsch-Gordan coefficient.
In the context of Rydberg physics, the pseudopotential

V̂P ( �R,�r) determining the interaction between the electron
and the perturber was first derived for the S partial wave by
Fermi, and then generalized to the P wave by Omont [9,38].
It has been verified and used in a variety of other physical
contexts [39,50,51]. A contact potential is justified based on
the large wavelength of the electron relative to the size of the
perturber, motivating a partial wave expansion of the Rydberg
electron wave function relative to the perturbing atom. To
incorporate the SO splitting of this scattering process these
partial waves (L) are coupled with the total electron spin (S)
to give phase shifts depending on the total angular momentum
J of the Rydberg electron about the perturber. Khuskivadze
et al. [18] were the first to include this via a Green’s function
treatment and a finite-range potential for the electron-atom
interaction. Here we develop an alternative procedure that is
much more convenient for the diagonalization treatments with
zero-range interactions that are typically implemented. The
small coupling between 1P 1 and 3P 1 symmetries is neglected
so that the Fermi pseudopotential remains diagonal in spin.

Two complementary approaches are considered here to
emphasize different aspects of this derivation and provide
alternative physical pictures. The first involves a recoupling of
the tensorial operators involved in the Fermi pseudopotential
so that J -dependent phase shifts can be incorporated, while the
second reformulates the pseudopotential so that it is diagonal
in the |(LS)J�〉 basis with matrix elements proportional to the
tangents of the J -dependent phase shifts, and then considers an
expansion of the electronic wave function near the perturber.
The first approach begins with the Fermi pseudopotential
including singlet and triplet states:

V̂ = A(SL,k)
∑
MS

χS
MS

(
χS

MS

)† ←∇Lδ( �X) · �∇L. (8)

Here �X = �r − �R, andA(SL,k) = (2L + 1)2πa(SL,k), where
a(SL,k) is the energy-dependent scattering length (volume)

for L = 0 (1) and for S = 0 or 1.
←
∇ and χS

MS
represent

conjugate operators acting to the left. Equation (8) is expressed
using zero-rank tensor operators composed of the tensorial sets
χ

(S)
MS

and ∇(L)
ML

via standard angular momentum theory:

V̂ = A(SL,k)δ( �X)
√

(2L + 1)(2S + 1)(−1)−L−S

×{[ ←∇(L) × �∇(L)](0) × [χ (S) × (χ (S))†](0)}(0)
0 .

The J dependence is included by recoupling these operators
in the usual spirit of Wigner-Racah algebra [52–54]. The
recoupling coefficient is calculated using properties of Wigner
9J symbols, and A(SLJ,k) may now be brought inside the
final scalar product and allowed to become J dependent:

V̂ = δ( �X)
∑

J

A(SLJ,k)
√

2J + 1(−1)−L−S

×{[ ←∇(L) × χ (S)](J ) × [ �∇(L) × (χ (S))†](J )}(0)
0 .

After decoupling, this scalar operator is

V̂ = δ( �X)
∑

J

∑
�

∑
ML,M ′

L

A(SLJ,k)CJ�
LML,S�−ML

×CJ�
LM ′

L,S�−M ′
L

←∇(L)
ML

χ
(S)
�−ML

�∇(L)
M ′

L

(
χ

(S)
�−M ′

L

)†
. (9)

After uncoupling the Rydberg electron’s spin and orbital
angular momenta, then coupling the electronic spins together,
matrix elements of V̂ in the basis chosen above are constructed
using the definition

Q
nlj

LML
(R) = δm,ML

[ �∇L(φnljm( �R))
]L

ML
,

where

Q
nlj

00 (R) = fnlj (R)

R

√
2l + 1

4π
, (10)

Q
nlj

10 (R) =
√

2l + 1

4π
∂R

(
fnlj (R)

R

)
, (11)

Q
nlj

1±1(R) = fnlj (R)

R2

√
(2l + 1)(l + 1)l

8π
, l > 0. (12)

The pseudopotential matrix V which results is given in
Eq. (20), which we now derive directly following the alterna-
tive second approach. This starts from a reformulation of the
Fermi pseudopotential in which all the angular dependence has
been projected out. This explicitly incorporates J -dependent
scattering phase shifts by projecting into states with good
quantum numbers β = {(LS)J�} describing the electron-
atom interaction:

V̂P =
∑

β

|β〉 (2L + 1)2

2
a(SLJ,k)

δ(X)

X2(L+1)
〈β|. (13)

Here,

〈X̂|β〉 =
∑

ML,MS

C
JMJ

LML,SMS
YLML

(X̂)χS
MS

. (14)

Further details explaining the integration of the angular terms
of the gradient in Eq. (13) are found in Appendix A. Since
the good quantum numbers β are incompatible with those
characterizing the eigenstates of the Rydberg electron, the
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Rydberg wave function of Eq. (6) is expanded to first order
about the position of the perturber:

ψn(ls1)jmj
(�r)

=
∑
m,m1

C
jmj

lm,s1m1
χs1

m1
{φnljm( �R) + �∇[φnljm( �R)] · �X}, (15)

where φnljm( �R) = fnlj (R)
R

Ylm(R̂). After using the spherical
tensor representation of �∇φnljm( �R) given by the Q functions
and expressing �X in terms of spherical harmonics YLM (X̂)
centered at the perturber, it becomes clear that this expansion
mediates the transformation from spherical harmonics relative
to the Rydberg atom, Ylm(r̂), to S and P partial waves relative
to the perturber, YLM (X̂):

ψn(ls1)jmj
(�r) =

m1=s1∑
m1=−s1

1∑
L=0

ML=L∑
ML=−L

XLfL

×C
jmj

lML,s1m1
Q

nlj

LML
(R)YLML

(X̂)χs1
m1

, (16)

where fL =
√

4π
(2L+1) . Coupling ψn(ls1)jmj

(�r) from Eq. (16) to

the perturber’s spin introduces S = 0,1 states:

ψn(ls1)jmj
(�r)χs2

m2
=

m1=s1∑
m1=−s1

L=1
ML=L∑
L=0

ML=−L

S=1
MS=S∑
S=0

MS=−S

XLχS
MS

×C
jmj

lML,s1m1
CSMS

s1m1,s2m2
Q

nlj

LML
(R)fLYLML

(X̂).

(17)

The matrix elements of this operator are obtained from
Eq. (17) after a trivial integration over X and in-
troducing the Clebsch-Gordan coefficients CJ�

LML,SMS
=

〈(LS)J�|LML,SMS〉. These matrix elements are compactly
expressed by first constructing the matrix representation of
Eq. (13) in the basis of quantum numbers centered at the
perturber, |β〉 = |(LS)J�〉:

Uβ,β ′ = δβ,β ′
(2L + 1)2

2
a(SLJ,k). (18)

The transformation of this diagonal matrix into one in the
|αs2m2〉 basis, where α = {n,l,s1,j,mj }, is mediated by a
“frame-transformation” matrix A. In this context this is
physically equivalent to a change of coordinates and good
quantum numbers between the two geometrical centers of
this system, analogous to what is done in multiple scattering
theory [55]. This matrix is readily deduced from the prior steps
of the derivation:

Aαs2m2,β =
ML=L∑

ML=−L

fLC
jmj

lML,s1mj −ML
Q

nlj

LML
(R)

×C
Smj −ML+m2

s1mj −ML,s2m2
C

Jmj +m2

LML,Smj −ML+m2
. (19)

The final scattering matrix is diagonal in mi and for every n

and l consists of a block matrix:

V = A × U × A†. (20)

These matrix elements can be equivalently obtained from
Eq. (9) after the same recoupling of the basis states, but without

the need for an expansion of the wave function. The mixing
of ML,M ′

L implied by Eqs. (9) and (20) is critical for an
accurate physical description of this splitting, since the total
spin vector �S and total orbital �L precess during each P -wave
electron-perturber collision. This was first recognized and
incorporated in the Green’s function calculation of KCF [18].
However, all subsequent work has neglected this detail. We
expect that the much simpler description developed here using
zero-range potentials will correct this oversight. This mixing
of ML projections invalidates the use of  and � symmetry
labels to categorize the 3P J potential curves. Incidentally,
the Clebsch-Gordan coefficients vanish for ML = 0 for the
3P 1 state, so that it remains a � state in the absence of the
hyperfine interaction. Appendix B provides more details about
this potential matrix without the obscuring complexities of the
fine and hyperfine structure.

III. DETAILS OF THE CALCULATION

The energy-dependent scattering length for S-wave scat-
tering, a(S0J,k) = − tan δ(0,S,J,k)

k
, and the energy-dependent

scattering volume for P -wave scattering, a(S1J,k) =
− tan δ(1,S,J,k)

k3 , are calculated using the phase shifts of KCF and

the semiclassical electronic momentum k(R) =
√

2
R

− 1
n2

H

,

where nH is the principal quantum number of the nearest
hydrogenic manifold. The 3P J phase shifts for Cs were
slightly shifted (by ∼1 meV) from the values calculated by
KCF to align their resonance positions with experimental
values [56,57]. These phase shifts are plotted in Appendix C.
No direct experimental measurements of the Rb resonance
positions yet exist, although an average value consistent with
the phase shifts of KCF was extracted from observations
of Rb2 Rydberg molecules [23]. At very low energies the
S-wave phase shifts for both species were smoothly con-
nected to experimentally determined zero-energy scattering
lengths [21,23].

The Hamiltonian matrix H is diagonalized at every value
of the internuclear distance, R. The dimension of this matrix is
finite in the spin quantum numbers, while the infinite number
of states of different n must be truncated. Typically four total
manifolds {nH − 2,nH − 1,nH ,nH + 1} are employed in the
results presented here. The only good quantum number of this
system is the total spin projection, � = mj + m2 + mi . At
long range, where the perturber-electron interaction vanishes,
the potential curves can be identified asymptotically via the
electronic angular momenta l and j , and the perturber’s total
nuclear spin F . Since only L � 1 partial waves are included in
the electron-perturber scattering, only states with |mj | � 3/2
will be shifted, and so H is block diagonal in �, |�| < 7

2 ( 11
2 )

for Rb (Cs). For states around nH = 30 the basis size ranges
from approximately 2200 (2000) for Cs (Rb) with |�| = 1/2,
down to 275 for the maximal �.

The accuracy and convergence of these PECs is a con-
troversial issue. A number of adjacent manifolds must be
included in the basis so that level repulsion constrains the
divergences in the scattering volumes caused by the 3P J shape
resonances [14]. However, a study of the ns potential wells has
shown that the inclusion of additional manifolds deepens these
long-range wells uncontrollably due to the highly singular

042515-4



HAMILTONIAN FOR THE INCLUSION OF SPIN EFFECTS . . . PHYSICAL REVIEW A 95, 042515 (2017)

FIG. 2. PECs of Rb2, � = 0 (black), without the hyperfine
splitting. The results of KCF (red crosses) are also plotted. The
abscissa is the square root of R, which more uniformly spaces the
potential wells. The detuning is relative to nH = 30.

δ-function potential [58]; numerical tests also show that the
deepest butterfly potential wells are sensitive to the basis size
(see the discussion of Fig. 6). Two independent benchmarks
are employed here to find the most satisfactory values for
the potential curves, given their formal nonconvergence. The
Borodin-Kazansky model [59] (BK hereafter) uses the phase
shifts to determine the smooth large-scale structure of the
trilobite and butterfly PECs through

E(LS)J (R) = −[2(n − δ(L,S,J,k[R])/π )2]−1. (21)

This serves as a crude convergence benchmark, since the true
PECs should not differ dramatically from these results. The
second convergence check is the comparison between the
potential curves from the present model with those calculated
in the KCF model. Good agreement with these two benchmarks
was found after including one more manifold below the level of
interest than above; specifically, the set {nH − 2, . . . ,nH + 1}
is used. The n−3 scaling of the Rydberg level spacing lends
some physical justification to this heuristic approach, since
the manifolds above the level of interest contribute more
weight to the level repulsion due to their relative closeness
in energy; the additional manifolds below “balance” this
repulsion. For clarity, only comparisons with KCF and not
the BK comparisons are included in the figures. Some further
nuances and convergence tests are discussed in later sections.

IV. ADIABATIC POTENTIAL ENERGY CURVES

As a straightforward confirmation of the validity of this
full theory, the PECs for Rydberg energies around nH = 30
are compared with the calculations of KCF. Figures 2–5 show
these comparisons and reveal a wealth of information. In Fig. 2,
the hyperfine structure is neglected for clarity. The main fea-
tures of KCF are reproduced excellently, validating this basis
set truncation and the accuracy of our 3P J pseudopotentials.
Low-l molecules can be adequately described without the 3P J

splitting, since the butterfly potentials cross the low-l states
with comparable slopes and distances, although quantitative
results still require this level of accuracy. The J dependence

FIG. 3. PECs of Rb2, � = 1/2, with the hyperfine splitting of
the ground state atom (black). The results of KCF (red crosses) are
plotted, although these ignore hyperfine- and fine-structure splittings.
The inclusion of the additional fine and hyperfine structure creates
a multitude of additional 3P J -scattered states and splits the trilobite
PECs into separate hyperfine states. The detuning is relative to nH =
30, and the potential curves are labeled as in Fig. 2.

becomes qualitatively crucial in the depths of the butterfly
states and in their PEDMs (see Figs. 7 and 9).

Inclusion of the hyperfine structure adds significant com-
plexity: it increases the multiplicity of butterfly states, further
mixes these states, introduces many avoided crossings, and
splits the low-l states by several gigahertz. Figure 3 shows
results for Rb2 with nH ∼ 30 and � = 1/2, highlighting the
importance of these additional splittings in shifting the long-
range asymptotes and creating a tangle of avoided crossings
in the butterfly potential wells. Figure 4 shows the PECs for
larger values of �. As � increases, the allowed J values also
increase, eliminating some PECs until for the highest nontrivial
� value only a 3P 2 potential curve of � symmetry remains.

Figure 5 is the same as Fig. 3, but for Cs2. Again, the
major features of the KCF potential curves are reproduced
excellently, but several discrepancies necessitate discussion.
The larger hyperfine- and fine-structure splittings of Cs create
significant differences in the low-l asymptotes and crossings
with the 3P J butterfly states. The main differences in the
3P J states are due to the modified phase shifts, since those
employed here were modified to reflect direct experimental
input. Differences remain, particularly in the ultra-long-range
3P 0 state, even when identical phase shifts are used. These
discrepancies, appearing particularly at long range and low
scattering energy, are also visible in the long-range “trilobite”
region at the order of a few gigahertz. The alternative
Green’s function approach utilizing zero-range potentials [14]
agrees closely with the diagonalization results presented here,
suggesting that these differences stem from the finite range
potential formalism of KCF.
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FIG. 4. PECs of Rb2 for (a) � = 1/2, (b) � = 3/2, (c) � = 5/2,
and (d) � = 7/2. The detuning is relative to nH = 30.

As a numerical test of the convergence of these results,
three different basis sets ({nH − q, . . . ,nH ,nH + 1}, with
q = 3,2,1) were used to calculate the PECs of Cs2 in three
of the most interesting regimes. These comparisons are
shown in Fig. 6. At long range the inclusion of additional
manifolds below the level of interest does not contribute to the
nonconvergent increase in well depth seen in Ref. [58], but
at short range these additional manifolds have a strong effect
on the potential wells, repulsing them upwards. Setting q = 2
agrees well with KCF and BK. An expanded convergence test
was additionally performed for basis sets {nH − q, . . . ,nH +
p} with q = 1,2, . . . ,6 and p = 1,2, giving an estimated
uncertainty of 3 GHz for the butterfly states and 5 MHz for
the long-range states. This uncertainty in the butterfly states

FIG. 5. PECs of Cs2, including the hyperfine splitting of the
ground-state atom, for the projection � = 1/2 are plotted in black.
The KCF results are shown as red crosses. The detuning is relative to
nH = 30.

FIG. 6. PECs of Cs2, � = 1/2, relative to nH = 30. The re-
sults using the {29,30,31} basis (dot-dashed blue curves), the
{28,29,30,31} basis (solid black curves) and the {27,28,29,30,31}
basis (dashed red curves) are plotted. Each panel shows a different
regime of the PECs, showing that at long range the calculation is
quite well converged with either basis, but the short-range butterfly
curves in particular vary severely with the basis size.

applies to their absolute depths since issues with the basis
size are manifested primarily as a global shift. The shape and
relative depth of the individual wells is less sensitive, and
the uncertainty on the relative energies of observed states is
estimated to be about 0.5 GHz.

As a final comparison, the observed butterfly states of
Rb are considered in Fig. 7. Overlaid onto the PECs are
the observed bound states (red points), whose bond lengths,
extracted from rotational spectra, fix them as points in the
two-dimensional energy-position plane. Additionally, the full
spectrum is overlaid as horizontal lines, showing the range
of energies and change in density of states as higher excited
states are observed. Qualitative agreement is observed for both
these comparisons, although at shorter internuclear distances
the observed states are further detuned than our PECs allow.
This could be due several factors: the potential wells here
are very sensitive to the 3P J phase shifts; this could reflect
further problems with the convergence of these PECs; or, this
might signify the presence of D-wave scattering. Future work
is required to determine if the simple δ-function potentials
truly cannot be accurately converged, and if either a Green’s
function method or a more suitable set of basis configurations
is necessary [58]. Some likely improvements include a varying
number of basis states as a function of R, an R-matrix
treatment along the lines of the recent study in Ref. [60], or
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FIG. 7. � = 1/2 Rb2 PECs (solid black curves) near the 25p

Rydberg states, which descend into the butterfly potential wells at
short internuclear distances. Zero energy is set to the 25p1/2,F = 1
asymptote. The bound states whose PEDMs were characterized in
Ref. [26] are plotted as red squares, while the observed spectrum
of that experiment is overlaid. The color scheme matches that of
Ref. [26] and has no meaning but to guide the eye. The 25p3/2,F = 1
and 25p1/2,F = 2 potential wells are highlighted in the inset, since
for this Rydberg level the interplay between the fine and hyperfine
states makes these states nearly degenerate.

the renormalization method of Ref. [50]. Additionally, some
of these problems might stem from the use of the semiclassical
electron momentum; k(R) could be modified self-consistently
until a converged result is attained.

V. DISCUSSION

The elements investigated in a photoassociation process
determine many key properties of the Rydberg molecules.
The prominent differences between the two alkali-metal atoms
considered here are their quantum defects and 3P J scattering
properties. The top panel of Fig. 6 shows the PECs in the
Cs2 “trilobite” region near the nH = 30 manifold. The near
degeneracy between the (n + 4)s states and this manifold
allows two-photon excitation of the trilobite molecule [20,25];
this is not reasonable in Rb since the trilobite state admixes
almost exclusively high-l states.

Likewise, the positions of the 3P J shape resonances
and their energy dependencies strongly change the butterfly
potential wells. The 3P 0 resonance in cesium occurs at such a
low electronic energy that the associated PECs cross the low-l
states at very large internuclear distances, destabilizing the
longest-range states to a greater degree than in Rb (Fig. 7
displays rubidium’s np and butterfly PECs). The butterfly
states of Rb possess significant p-character, making a single-
photon excitation through this admixture possible; the butterfly
states of Cs are much further detuned from the np asymptotes
(e.g., see Fig. 5) and possess less p character. Additionally, the
much larger 3P J splittings in Cs greatly spread the butterfly
wells, limiting the number of avoided crossings.

The interplay between different fine and hyperfine splittings
can also be used to engineer Rydberg molecules with specific
spin characters, and notably can be tuned via the principal
quantum number to induce spin flips in the perturbing atom or

to strongly entangle the nuclear spin of the perturber with
the electronic spin of the Rydberg atom [30]. The PECs
for these states are highlighted in Fig. 7. In particular, the
near degeneracy of 25p3/2,F = 1 and 25p1/2,F = 2 states
strongly mixes their spin character; this degeneracy can be
varied over a range of quantum numbers from 24 to 29.
Similar degeneracies are found in the np states of Cs, for
n = 31–35 [29], or also in the Cs nd states for n = 21–25.
The myriad differences between these two alkali-metal species
provide a wide range of parameters influencing the properties
of the Rydberg molecules, and future work could investigate
the impact of different properties of other alkali-metal atoms
such as Li, Na [61], K, or Fr [62] in their respective long-range
Rydberg molecules. Other interesting opportunities involve
studies of heteronuclear Rydberg molecules: for example, an
excited Cs atom bound to a ground-state Rb atom would
take advantage of the favorable near degeneracy between the
(n + 4)s and n,l > 3 energies without the added complications
of the large 3P J splitting of the e-Cs scattering resonances.
Recent work has demonstrated that an even wider diversity
of excitation pathways, final molecular states, and decay
channels can be found in non-alkali-metal atoms, due to their
complex multichannel behavior [63–65]. One class of such
multichannel atoms, the alkaline earths, provides additional
simplifications, as they lack hyperfine structure for the most
common isotopes and, for those heavier than Mg, P -wave
shape resonances [66].

VI. MULTIPOLE MOMENTS

The state mixing induced by the perturber creates large
PEDMs in these molecules. This even occurs in the weakly
perturbed low-l states due to small admixtures of trilobite
or butterfly states [67]. Since the PEDMs of both trilobite
and butterfly molecules have been observed in recent ex-
periments [25,26], new interest in the application of these
molecules in dipolar gases and ultracold chemistry has been
sparked. The higher multipole moments of these molecules
are of interest for detailed calculations of the intermolecular
interactions.

The multipole moments of the ith electronic configuration
are d

k,q

ν,i = 〈i|T k
q |i〉, where the multipole moments from clas-

sical electrostatics [68] are promoted to quantum-mechanical
operators:

T k
q = −rk

√
4π

2k + 1
Yk,q(r̂). (22)

We first generalize the dipole moments of KCF, derived in the
absence of spin and for purely hydrogenic states, to all orders
in the multipole expansion. The  trilobite [�00( �R,�r)] and
,� butterfly [�10( �R,�r),�1±1( �R,�r), respectively] states are
well described by the electronic wave functions [18]

�LML
( �R,�r) =

∑
l Q

nl
LML

(R)YlML
(r̂)r−1fnl(r)√∑

l |Qnl
LML

(R)|2
, (23)
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FIG. 8. Analytic (valid only for hydrogenic states) dipole,
quadrupole, and octupole moments for n = 23, using Eq. (27). The
trilobite ( dashed blue curves) and  butterfly state ( solid red curves)
oscillate as a function of R, while the � butterfly state (dot-dashed
black curves) is nonoscillatory; this behavior matches the PECs.

where the j dependence of the Q functions [see Eq. (10)]
is removed, the sum over l spans from lmin � 2 to n − 1,
and r−1fnl(r)Ylm(r̂) is the Rydberg wave function. Using
these approximate forms, which ignore couplings to other
n manifolds and assume vanishing quantum defects, the

multipole moments are〈
T k

q

〉 = 〈�L′M ′ |T k
q |�L′M ′ 〉

=
∑
l,l′

Qnl
L′M ′(R)Qnl′

L′M ′(R)∑
l

∣∣Qnl
L′M ′ (R)

∣∣2 〈nlM ′|T k
q |nl′M ′〉. (24)

The matrix element separates into a radial integral, Rnl′
nl (L) =∫

drfnl(r)rLfnl′ (r), and an angular integral which is expressed
as a reduced matrix element through the Wigner-Eckart
theorem:

〈
T k

q

〉 =
∑
l,l′

Qnl
L′M ′ (R)Qnl′

L′M ′ (R)∑
l

∣∣Qnl
L′M ′(R)

∣∣2 Rnl′
nl (L)

× ClM ′
l′M ′,kq√
2l′ + 1

〈l||T k||l′〉, (25)

where

〈l||T k||l′〉 = (2l′ + 1)

(
l l′ k

0 0 0

)
(−1)k−l′ . (26)

Equations (25) and (26) lead to the result

〈
T k

q

〉 =
∑
l,l′

Qnl
L′M ′ (R)Qnl′

L′M ′ (R)∑
l

∣∣Qnl
L′M ′(R)

∣∣2 Rnl′
nl (k)

×ClM ′
l′M ′,kq(−1)k−l′

√
(2l′ + 1)

(
l l′ k

0 0 0

)
. (27)

The Clebsch-Gordan coefficient causes any term with M ′ �=
0 to vanish, reflecting the cylindrical symmetry. The L = 1
moments agree exactly with KCF. These multipole moments
scale in size as n2L, and are displayed in Fig. 8 up to the
octupole moments.

Within the full spin model, the multipole moments are
derived similarly, but using the numerically calculated eigen-
states, |s〉 = ∑

k ask|k〉, where |s〉 is an electronic eigenstate,
k is a composite quantum number k = {n(ls1)jmjm2mi}, and
ask is the eigenvector corresponding to the sth eigenstate. The
multipole moments are then

〈s|T k
q |s〉 =

∑
k,k′

[
askask′δm2,m

′
2
δmi,m

′
i
δmj ,m

′
j
R

n′l′j
nlj (L)(−1)s1+j ′+l−l′

√
(2j + 1)(2l + 1)(2l′ + 1)C

jmj

j ′m′
j ,kq

×
(

l l′ k

0 0 0

){
l′ s1 j ′
j k l

}]
. (28)

Several PEDMs are plotted in Fig. 9: those corresponding to
3P 0 and 3P 1 states, the analytic curves for  and � symmetries
of Eq. (27), the butterfly curve neglecting 3P J splitting used
in Ref. [26], and the experimentally observed values. The
observable PEDMs are obtained from the theoretical curves by
averaging over the vibrational wave functions of the relevant
states. The 3P 0 PEDM is noticeably smaller and oscillates
more dramatically than the  and 3P curves. The maxima in
this curve are correlated with the positions of bound states
in the relevant potential wells. At large R > 400 these PECs
connect adiabatically with the np states, which explains the
rapid decrease in the PEDMs as R increases.

The reduced strength of the 3P 0 PEDM relative to the
results neglecting J dependence (the 3P curve) stems from
the ML mixing caused by the SO splitting of the electron-
perturber interaction. The PEDMs extracted from pendular
state measurements are systematically smaller (by ∼25%)
than predicted by the 3P curve (solid black), which follows
the approximate  curve quite closely [26]. The full theory
explains this systematic difference: the ML = 0 states focus the
electronic wave function near the perturber, while |ML| = 1
states maximize the wave function closer to the Rydberg core
ion; their mixing places the mean value of the electron’s
position closer to the positively charged core and reduces the
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FIG. 9. Analytic PEDMs (dashedblack curve), PEDMs ignoring
the 3P J splitting (solid black curve, labeled 3P ), PEDMs from the full
spin model for electronic states dominated by 3P 0 scattering (solid
blue curve), and 3P 1 scattering (solid red curve) are plotted. The red
squares are placed at the observed bond lengths and PEDMs [26].
The 3P 0 and 3P 1 PEDMs correspond to states of mixed ML, although
the mixing is quite weak for 3P 1 scattering and the analytic and exact
results agree more closely. The 3P 2 case is not shown, for simplicity.

PEDM. Examination of Fig. 8(a) reveals that any mixture of
ML in this region of internuclear distances mixes negative
and positive PEDMs, reducing the total strength. Quantitative
agreement is seen between the experimental PEDMs and the
theoretical curves they lie directly on at the bond lengths
extracted from the experiment, which also agree with the
potential minima predicted by the theory. The 3P prediction
does not even overlap most experimental points. This is
evidence that even though the relatively small e-Rb 3P J

scattering splittings do not dramatically shift the PECs, these
splittings do have significant impact on observables such as
the PEDMs. For Cs, this effect will be even greater. Further
insight into this spin mixing is given by considering the 3P 1

curve, which is predominantly a � symmetry state except
for hyperfine-induced mixing, which occurs near avoided
crossings of the potential curves. Figure 9 shows that this
PEDM lies on the straight line predicted by the approximate
� curve, except for deviations located at avoided crossings in
the relevant potential curves.

VII. CONCLUSIONS

A full theoretical model has been presented here which
accurately includes all relevant relativistic effects. This effort
serves as a foundation for future experimental efforts requiring
the most complete theoretical picture and provides a basis
for future theoretical work studying new systems or novel
applications of these exotic molecules. Furthermore, this
development will soon be combined with accurate approaches
for calculating the binding energies and line strengths of these
bound states in order to quantitatively assess the agreement
with experiment [31]. The recent observation of butterfly
molecules is a promising step towards the routine preparation

of enormous dipolar ultracold molecules, which will be new
paradigms of controllability at scales far beyond the state of
the art. The results presented here help to better understand
the character of these molecules, as well as their binding
energies and PEDMs. The prospects of forming these butterfly
molecules in Cs will perhaps be more challenging since the p

character of the butterfly state is much smaller, but the huge
separation between 3P J potential curves greatly enlarges the
range of internuclear distances and PEDMs accessible in these
molecules. The improved description of the nearly degenerate
high-l manifold with the very close (n + 4)s state given here
lends a more complete theoretical description of this state
that should encourage further exploration of the trilobite state
in Cs.

Ultracold chemical processes related to these two systems
(where X can be either Rb or Cs) are also of current
interest, namely l-changing collisions leading to the formation
of X+ ions, or the formation of X2

+ molecular ions. The
former process occurs due to nonadiabatic processes creating
pathways from the initial state to asymptotic regions correlated
with other angular momentum states, or even to the high-l
manifold via couplings with the trilobite state. The latter
process occurs when the neutral atom tunnels inwards out of
the potential well in which the molecule is bound towards
the Rydberg core. This process is facilitated by the 3P J

potential curves, which descend so steeply from the low-l
asymptotic states that the neutral atom is accelerated to the
short-range region where ultracold chemistry can occur. This
has been studied in some detail in Rb, and some recent
experimental investigations along similar lines focusing on
the decay channels have been reported for Cs as well [69,70].
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APPENDIX A: DERIVATION OF PROJECTION
OPERATOR FORM OF THE PSEUDOPOTENTIAL

The Fermi (L = 0) pseudopotential along with the Omont
generalization to P -wave interactions are

VP (�r, �R) = 2π

1∑
L=0

(2L + 1)a(L,k)
←∇L · δ3(�r − �R) �∇L,

where a(L,k) is the energy-dependent scattering length (vol-
ume) for L = 0 (1), and L is the electron’s angular momentum
in the coordinate system defined by the perturber, where the
electron is located at �X = �r − �R. The gradient terms act on
the bra or ket, following the direction of the vector arrow.
Spin dependence is introduced via projectors onto singlet or
triplet states and the inclusion of spin-dependent scattering
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parameters:

VP = 2π
∑
S,MS

∑
S ′,M ′

S

|SMS〉〈SMS |

×
∑
L

(2L + 1)a(SL,k)
←∇L · δ3( �X) �∇L|S ′M ′

S〉〈S ′M ′
S |.

We desire a form of the pseudopotential in terms of projections
onto states of total J , VP ∝ ∑

J |(LS)J�〉ALSJ 〈(LS)J�|.
This is accomplished by projecting the above equation
onto states of L, leaving only an integration over the
radial part in the eventual construction of the matrix
elements:

VP = 2π
∑
LML

L′M ′
L

∑
S,MS

∑
L′′

(2L′′ + 1)a(SL′′,k)δS,S ′ |LML,SMS〉

×
∫

Y ∗
LML

(X̂)
←∇L′′ · δ3( �X) �∇L′′

YL′M ′
L
(X̂)

× dX̂〈L′M ′
L,SMS |.

This expression is diagonal in S and also in L, since the basis
states are expanded in powers of XL; if the exponent on the
gradient operator does not match the exponent of X, these
terms vanish. This leaves

VP = 2π
∑

LML,M ′
L

∑
S,MS

(2L + 1)a(SL,k)|LML,SMS〉

×
∫

Y ∗
LML

(X̂)
←∇L · δ3( �X) �∇LYL′M ′

L
(X̂) dX̂〈LM ′

L,SMS |.

The integration over X̂ can now be performed. Explicitly, for
L = 0,

∫
Y ∗

00(X̂)δ3( �X)Y00(X̂) dX̂ = δ(X)

X2
Y00(0,0)Y00(0,0).

And, for L = 1,
∫

Y ∗
1ML

(X̂)
←∇ · δ3( �X) �∇Y1M ′

L
(X̂) dX̂

= δ(X)

X2

(
∂ ′
X∂XY1ML

(0,0)Y1M ′
L
(0,0)

+ 1

X2

(2L + 1)(L + 1)L

8π
δML,M ′

L
δ|ML|,1

)
.

Here ∂ ′
X∂X is the radially dependent term of the dot product

of the two gradient operators, where ∂ ′
X acts to the left. Since

the analysis in the text only considers functions linear in X

for L = 1, the derivative term can be effectively replaced by
a X−2 factor to give the following compact form for the full
pseudopotential:

VP = 2π
∑

LML,M ′
L

∑
SMS

|LML,SMS〉 (2L + 1)2

4π
a(SL,k)

× δ(X)

X2(L+1)
δML,M ′

L
〈LM ′

L,SMS |.

The angular momenta may now be coupled and summed over
M ′

L:

VP = 2π
∑
LML

∑
SMS

∑
J�,J ′�′

|(LS)J�〉CJ�
LML,SMS

× (2L + 1)2

4π
a(SLJ,k)

δ(X)

X2(L+1)
CJ ′�′

LM ′
L,SMS

〈(LS)J ′�′|.
Summation over ML and MS replaces the product of Clebsch-
Gordan coefficients with δJJ ′δ��′ , along with the triangularity
condition relating the possible values of L and S to the allowed
values of J . Finally,

VP = 2π
∑

(L,S)J�

|(LS)J�〉 (2L + 1)2

4π
a(SLJ,k)

× δ(X)

X2(L+1)
〈(LS)J�|, L � 1. (A1)

This pseudopotential form, with the angular dependence
situated in the projectors, is the desired form to incorporate
the J -dependent scattering parameters correctly.

APPENDIX B: FURTHER COMMENTS ON THE EFFECTS
OF 3P J SCATTERING

To highlight the impact of the 3P J splitting effect, it is
isolated by ignoring the fine structure of the Rydberg atom
and the hyperfine structure of the ground-state atom. In this
case the matrix elements of the Fermi-Omont pseudopotential
are given in the total spin basis, |nlmSMS〉, where |nlm〉 is the
wave function of the Rydberg electron. For definiteness, only
the L = 1, S = 1, and � = 0 matrix elements are considered:

〈nlmSMS |V̂ |n′l′m′S ′M ′
S〉 =

∑
J

6πa(11J,k)δm,−MS
δm′,−M ′

S

×CJ0
1m,1−mCJ0

1m′,1−m′Q
nl
1m(R)

×Qn′l′
1m′ (R)δS,S ′ . (B1)

FIG. 10. Absolute (normalized so that the largest is 100) values of
the elements of the scattering matrix Vij = 〈nlS,mMS |V̂ |nlS,m′M ′

S〉
at R = 700 and with n = 30, l = 10, and S = 1, for Cs. The basis
states are labeled by |mMS〉; labels a,b, . . . ,i correspond to |11〉, |01〉,
|−11〉, |10〉, |00〉, |−10〉, |1 − 1〉, |0 − 1〉, and |−1 − 1〉, respectively.
Reference [29] gives only the diagonal elements.
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FIG. 11. Absolute squares of the normalized eigenvector compo-
nents, |ci |2, for the three nonzero eigenvalues. m and m′ are mixed for
3P 0 and 3P 2, while the 3P 1 scattering state has no m = 0 component.
The basis state labels are given in the Fig. 10 caption.

If the scattering volume’s J dependence is neglected, the J

summation can be performed over the two remaining Clebsch-
Gordan coefficients, yielding a diagonal matrix in m,m′, as
expected. In contrast, Eq. (11) of Ref. [29] gives the same
result as Eq. (B1) multiplied by δmm′δMSM ′

S
.

Figure 10 displays the matrix elements of the 3P J scattering
potential within a restricted Hilbert space, with fixed n,n′,l,l′.
Since � = 0, only states with opposite m,MS are nonzero.
The size of the nondiagonal elements reflects the mixing of
m values. As Fig. 11 illustrates, these off-diagonal elements
are truly essential in capturing the physics of this process,
as they are needed to obtain three distinct eigenvalues out of
different linear combinations of states of different m. If only the
diagonal elements are included, the eigenvalues labeled 2 and 3
are degenerate, and only two butterfly potential wells develop.
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FIG. 12. Scattering phase shifts for (a) Cs and (b) Rb, extracted
from the KCF approach [18]. In (a) the unshifted phases are shown
as faint curves; the thick curves were shifted slightly to better reflect
experimentally observed resonance positions.

APPENDIX C: Rb AND Cs ELECTRON-SCATTERING
PHASE SHIFTS

The phase shifts used in this work are plotted in Fig. 12,
which shows the small shifts applied to the data from KCF
so that the energies where the phase shift varied most rapidly
corresponded to the experimentally observed resonance posi-
tions. This involved shifts of approximately 1 meV. The Rb
phase shifts were not modified from those calculated in the
KCF approach.

[1] D. A. Harmin, Theory of the Stark effect, Phys. Rev. A 26, 2656
(1982).

[2] G. Alber and P. Zoller, Laser excitation of electronic wave
packets in Rydberg atoms, Phys. Rep. 199, 231 (1991).

[3] G. Wunner, U. Woelk, I. Zech, G. Zeller, T. Ertl, F. Geyer, W.
Schweitzer, and H. Ruder, Rydberg Atoms in Uniform Magnetic
Fields: Uncovering the Transition from Regularity to Irregularity
in a Quantum System, Phys. Rev. Lett. 57, 3261 (1986).

[4] G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky, and P.
Zoller, Strongly Correlated Gases of Rydberg Atoms: Quantum
and Classical Dynamics, Phys. Rev. Lett. 104, 223002 (2010).

[5] J. Parker and C. R. Stroud, Jr., Coherence and Decay of Rydberg
Wave Packets, Phys. Rev. Lett. 56, 716 (1986).

[6] M. Aymar, C. H. Greene, and E. Luc-Koenig, Multichannel
Rydberg spectroscopy of complex atoms, Rev. Mod. Phys. 68,
1015 (1996).

[7] E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz,
T. G. Walker, and M. Saffman, Observation of Rydberg blockade
between two atoms, Nat. Phys. 5, 110 (2009).

[8] D. Møller, L. B. Madsen, and K. Mølmer, Quantum Gates and
Multiparticle Entanglement by Rydberg Excitation Blockade
and Adiabatic Passage, Phys. Rev. Lett. 100, 170504 (2008).

[9] E. Fermi, Sopra lo spostamento per pressione delle righe elevate
delle serie spettrali, Nuovo Cimento 11, 157 (1934).

[10] C. H. Greene, A. S. Dickinson, and H. R. Sadeghpour, Creation
of Polar and Nonpolar Ultra-Long-Range Rydberg Molecules,
Phys. Rev. Lett. 85, 2458 (2000).

[11] J. Lee, J. Nunkaew, and T. F. Gallagher, Microwave spectroscopy
of the cold rubidium (n + 1)d5/2 → ng and nh transitions, Phys.
Rev. A 94, 022505 (2016).

[12] J. Lee and T. F. Gallagher, Microwave transitions from pairs of
Rb nd5/2nd5/2 atoms, Phys. Rev. A 93, 062509 (2016).

042515-11

https://doi.org/10.1103/PhysRevA.26.2656
https://doi.org/10.1103/PhysRevA.26.2656
https://doi.org/10.1103/PhysRevA.26.2656
https://doi.org/10.1103/PhysRevA.26.2656
https://doi.org/10.1016/0370-1573(91)90058-T
https://doi.org/10.1016/0370-1573(91)90058-T
https://doi.org/10.1016/0370-1573(91)90058-T
https://doi.org/10.1016/0370-1573(91)90058-T
https://doi.org/10.1103/PhysRevLett.57.3261
https://doi.org/10.1103/PhysRevLett.57.3261
https://doi.org/10.1103/PhysRevLett.57.3261
https://doi.org/10.1103/PhysRevLett.57.3261
https://doi.org/10.1103/PhysRevLett.104.223002
https://doi.org/10.1103/PhysRevLett.104.223002
https://doi.org/10.1103/PhysRevLett.104.223002
https://doi.org/10.1103/PhysRevLett.104.223002
https://doi.org/10.1103/PhysRevLett.56.716
https://doi.org/10.1103/PhysRevLett.56.716
https://doi.org/10.1103/PhysRevLett.56.716
https://doi.org/10.1103/PhysRevLett.56.716
https://doi.org/10.1103/RevModPhys.68.1015
https://doi.org/10.1103/RevModPhys.68.1015
https://doi.org/10.1103/RevModPhys.68.1015
https://doi.org/10.1103/RevModPhys.68.1015
https://doi.org/10.1038/nphys1178
https://doi.org/10.1038/nphys1178
https://doi.org/10.1038/nphys1178
https://doi.org/10.1038/nphys1178
https://doi.org/10.1103/PhysRevLett.100.170504
https://doi.org/10.1103/PhysRevLett.100.170504
https://doi.org/10.1103/PhysRevLett.100.170504
https://doi.org/10.1103/PhysRevLett.100.170504
https://doi.org/10.1007/BF02959829
https://doi.org/10.1007/BF02959829
https://doi.org/10.1007/BF02959829
https://doi.org/10.1007/BF02959829
https://doi.org/10.1103/PhysRevLett.85.2458
https://doi.org/10.1103/PhysRevLett.85.2458
https://doi.org/10.1103/PhysRevLett.85.2458
https://doi.org/10.1103/PhysRevLett.85.2458
https://doi.org/10.1103/PhysRevA.94.022505
https://doi.org/10.1103/PhysRevA.94.022505
https://doi.org/10.1103/PhysRevA.94.022505
https://doi.org/10.1103/PhysRevA.94.022505
https://doi.org/10.1103/PhysRevA.93.062509
https://doi.org/10.1103/PhysRevA.93.062509
https://doi.org/10.1103/PhysRevA.93.062509
https://doi.org/10.1103/PhysRevA.93.062509


MATTHEW T. EILES AND CHRIS H. GREENE PHYSICAL REVIEW A 95, 042515 (2017)

[13] H. Saßmannshausen, F. Merkt, and J. Deiglmayr, High-
resolution spectroscopy of Rydberg states in an ultracold cesium
gas, Phys. Rev. A 87, 032519 (2013).

[14] E. L. Hamilton, C. H. Greene, and H. R. Sadeghpour, Shape-
resonance-induced long-range molecular Rydberg states, J.
Phys. B 35, L199 (2002).

[15] M. I. Chibisov, A. A. Khuskivadze, and I. I. Fabrikant, Energies
and dipole moments of long-range molecular Rydberg states,
J. Phys. B 35, L193 (2002).

[16] E. L. Hamilton, Ph.D. thesis, Photoionization, photodissoci-
ation, and long-range bond formation in molecular Rydberg
states, University of Colorado, 2002.

[17] C. H. Greene, E. L. Hamilton, H. Crowell, C. Vadla, and
K. Niemax, Experimental Verification of Minima in Excited
Long-Range Rydberg States of Rb2, Phys. Rev. Lett. 97, 233002
(2006).

[18] A. A. Khuskivadze, M. I. Chibisov, and I. I. Fabrikant, Adiabatic
energy levels and electric dipole moments of Rydberg states of
Rb2 and Cs2 dimers, Phys. Rev. A 66, 042709 (2002).

[19] V. Bendkowsky, B. Butscher, J. Nipper, J. B. Balewski, J. P.
Shaffer, R. Löw, and T. Pfau, Observation of ultralong-range
Rydberg molecules, Nature (London) 458, 1005 (2009).

[20] J. Tallant, S. T. Rittenhouse, D. Booth, H. R. Sadeghpour, and
J. P. Shaffer, Observation of Blueshifted Ultralong-Range Cs2

Rydberg Molecules, Phys. Rev. Lett. 109, 173202 (2012).
[21] H. Saßmannshausen, F. Merkt, and J. Deiglmayr, Experimental

Characterization of Singlet Scattering Channels in Long-Range
Rydberg Molecules, Phys. Rev. Lett. 114, 133201 (2015).

[22] A. T. Krupp, A. Gaj, J. B. Balewski, P. Ilzhöfer, S. Hofferberth,
R. Löw, T. Pfau, M. Kurz, and P. Schmelcher, Alignment
of D-State Rydberg Molecules, Phys. Rev. Lett. 112, 143008
(2014).

[23] V. Bendkowsky et al., Rydberg Trimers and Excited Dimers
Bound by Internal Quantum Reflection, Phys. Rev. Lett. 105,
163201 (2010).

[24] D. A. Anderson, S. A. Miller, and G. Raithel, Photoassociation
of Long-Range nD Rydberg Molecules, Phys. Rev. Lett. 112,
163201 (2014).

[25] D. Booth, S. T. Rittenhouse, J. Yang, H. R. Sadeghpour, and J. P.
Shaffer, Production of trilobite Rydberg molecule dimers with
kilo-Debye permanent electric dipole moments, Science 348, 99
(2015).

[26] T. Niederprüm, O. Thomas, T. Eichert, C. Lippe, J. Pérez-Ríos,
C. H. Greene, and H. Ott, Observation of pendular butterfly
Rydberg molecules, Nat. Commun. 7, 12820 (2016).

[27] D. A. Anderson, S. A. Miller, and G. Raithel, Angular-
momentum couplings in long-range Rb2 Rydberg molecules,
Phys. Rev. A 90, 062518 (2014).

[28] F. Böttcher, A. Gaj, K. M. Westphal, M. Schlagmüller, K. S.
Kleinbach, R. Löw, T. C. Liebisch, T. Pfau, and S. Hofferberth,
Observation of mixed singlet-triplet Rb2 Rydberg molecules,
Phys. Rev. A 93, 032512 (2016).

[29] S. Markson, S. T. Rittenhouse, R. Schmidt, J. P. Shaffer,
and H. R. Sadeghpour, Theory of ultralong-range Rydberg
molecule formation incorporating spin-dependent relativistic
effects: Cs(6s)-Cs(np) as case study, ChemPhysChem 17, 3683
(2016).

[30] T. Niederprüm, O. Thomas, T. Eichert, and H. Ott, Rydberg
Molecule-Induced Remote Spin Flips, Phys. Rev. Lett. 117,
123002 (2016).

[31] M. T. Eiles and C. H. Greene (unpublished).
[32] M. Schlagmüller, T. C. Liebisch, H. Nguyen, G. Lochead, F.

Engel, F. Böttcher, K. M. Westphal, K. S. Kleinbach, R. Löw, S.
Hofferberth, T. Pfau, J. Pérez-Ríos, and C. H. Greene, Probing
an Electron Scattering Resonance Using Rydberg Molecules
within a Dense and Ultracold Gas, Phys. Rev. Lett. 116, 053001
(2016).

[33] R. Schmidt, H. R. Sadeghpour, and E. Demler, Mesoscopic
Rydberg Impurity in an Atomic Quantum Gas, Phys. Rev. Lett.
116, 105302 (2016).

[34] A. Gaj, A. T. Krupp, J. B. Balewski, R. Löw, S. Hofferberth,
and T. Pfau, From molecular spectra to a density shift in dense
Rydberg gases, Nat. Commun. 5, 1 (2014).

[35] T. C. Liebisch et al., Controlling Rydberg atom interactions in
dense background interactions, J. Phys. B 49, 182001 (2016).

[36] M. T. Eiles, J. Pérez-Ríos, F. Robicheaux, and C. H. Greene,
Ultracold molecular Rydberg physics in a high density environ-
ment, J. Phys. B: At. Mol. Opt. 49, 114005 (2016).

[37] C. Fey, M. Kurz, and P. Schmelcher, Stretching and bending
dynamics in triatomic ultralong-range Rydberg molecules, Phys.
Rev. A 94, 012516 (2016).

[38] A. Omont, On the theory of collisions of atoms in Rydberg states
with neutral particles, J. Phys. (Paris) 38, 1343 (1977).

[39] Z. Idziaszek and T. Calarco, Pseudopotential Method for
Higher Partial Wave Scattering, Phys. Rev. Lett. 96, 013201
(2006).

[40] J.-W. Chen and M. J. Savage, np → dγ for big-bang nucleosyn-
thesis, Phys. Rev. C 60, 065205 (1999).

[41] H. W. Hammer and D. R. Phillips, Electric properties of the
beryllium-11 system in halo EFT, Nucl. Phys. A 865, 17 (2011).

[42] G. P. Lepage, How to renormalize the Schrödinger equation,
arXiv:nucl-th/9706029.

[43] W. Li, I. Mourachko, M. W. Noel, and T. F. Gallagher,
Millimeter-wave spectroscopy of cold Rb Rydberg atoms in
a magneto-optical trap: Quantum defects of the ns, np, and nd

series, Phys. Rev. A 67, 052502 (2003).
[44] J. Han, Y. Jamil, D. V. L. Norum, P. J. Tanner, and T. F. Gallagher,

Rb nf quantum defects from millimeter-wave spectroscopy of
cold 85Rb Rydberg atoms, Phys. Rev. A 74, 054502 (2006).

[45] P. Goy, J. M. Raimond, G. Vitrant, and S. Haroche, Millimeter-
wave spectroscopy in cesium Rydberg states: Quantum defects,
fine- and hyperfine-structure measurements, Phys. Rev. A 26,
2733 (1982).

[46] K. H. Weber and C. J. Sansonetti, Accurate energies of nS, nP ,
nD, nF , and nG levels of neutral cesium, Phys. Rev. A 35, 4650
(1987).

[47] J. Mitroy, M. S. Safranova, and C. W. Clark, Theory and
applications of atomic and ionic polarizabilities, J. Phys. B 43,
202001 (2010).

[48] A. Tauschinsky, R. Newell, H. B. van Linden van den Heuvell,
and R. J. C. Spreeuw, Measurement of 87Rb Rydberg-state
hyperfine splitting in a room-temperature vapor cell, Phys. Rev.
A 87, 042522 (2013).

[49] E. Arimondo, M. Inguscio, and P. Violino, Experimental
determinations of the hyperfine structure in the alkali atoms,
Rev. Mod. Phys. 49, 31 (1977).

[50] N. Y. Du and C. H. Greene, Interaction between a Rydberg
atom and neutral perturber, Phys. Rev. A 36, 971(R) (1987);
Interaction between a Rydberg atom and neutral perturber, 36,
5467(E) (1987).

042515-12

https://doi.org/10.1103/PhysRevA.87.032519
https://doi.org/10.1103/PhysRevA.87.032519
https://doi.org/10.1103/PhysRevA.87.032519
https://doi.org/10.1103/PhysRevA.87.032519
https://doi.org/10.1088/0953-4075/35/10/102
https://doi.org/10.1088/0953-4075/35/10/102
https://doi.org/10.1088/0953-4075/35/10/102
https://doi.org/10.1088/0953-4075/35/10/102
https://doi.org/10.1088/0953-4075/35/10/101
https://doi.org/10.1088/0953-4075/35/10/101
https://doi.org/10.1088/0953-4075/35/10/101
https://doi.org/10.1088/0953-4075/35/10/101
https://doi.org/10.1103/PhysRevLett.97.233002
https://doi.org/10.1103/PhysRevLett.97.233002
https://doi.org/10.1103/PhysRevLett.97.233002
https://doi.org/10.1103/PhysRevLett.97.233002
https://doi.org/10.1103/PhysRevA.66.042709
https://doi.org/10.1103/PhysRevA.66.042709
https://doi.org/10.1103/PhysRevA.66.042709
https://doi.org/10.1103/PhysRevA.66.042709
https://doi.org/10.1038/nature07945
https://doi.org/10.1038/nature07945
https://doi.org/10.1038/nature07945
https://doi.org/10.1038/nature07945
https://doi.org/10.1103/PhysRevLett.109.173202
https://doi.org/10.1103/PhysRevLett.109.173202
https://doi.org/10.1103/PhysRevLett.109.173202
https://doi.org/10.1103/PhysRevLett.109.173202
https://doi.org/10.1103/PhysRevLett.114.133201
https://doi.org/10.1103/PhysRevLett.114.133201
https://doi.org/10.1103/PhysRevLett.114.133201
https://doi.org/10.1103/PhysRevLett.114.133201
https://doi.org/10.1103/PhysRevLett.112.143008
https://doi.org/10.1103/PhysRevLett.112.143008
https://doi.org/10.1103/PhysRevLett.112.143008
https://doi.org/10.1103/PhysRevLett.112.143008
https://doi.org/10.1103/PhysRevLett.105.163201
https://doi.org/10.1103/PhysRevLett.105.163201
https://doi.org/10.1103/PhysRevLett.105.163201
https://doi.org/10.1103/PhysRevLett.105.163201
https://doi.org/10.1103/PhysRevLett.112.163201
https://doi.org/10.1103/PhysRevLett.112.163201
https://doi.org/10.1103/PhysRevLett.112.163201
https://doi.org/10.1103/PhysRevLett.112.163201
https://doi.org/10.1126/science.1260722
https://doi.org/10.1126/science.1260722
https://doi.org/10.1126/science.1260722
https://doi.org/10.1126/science.1260722
https://doi.org/10.1038/ncomms12820
https://doi.org/10.1038/ncomms12820
https://doi.org/10.1038/ncomms12820
https://doi.org/10.1038/ncomms12820
https://doi.org/10.1103/PhysRevA.90.062518
https://doi.org/10.1103/PhysRevA.90.062518
https://doi.org/10.1103/PhysRevA.90.062518
https://doi.org/10.1103/PhysRevA.90.062518
https://doi.org/10.1103/PhysRevA.93.032512
https://doi.org/10.1103/PhysRevA.93.032512
https://doi.org/10.1103/PhysRevA.93.032512
https://doi.org/10.1103/PhysRevA.93.032512
https://doi.org/10.1002/cphc.201600932
https://doi.org/10.1002/cphc.201600932
https://doi.org/10.1002/cphc.201600932
https://doi.org/10.1002/cphc.201600932
https://doi.org/10.1103/PhysRevLett.117.123002
https://doi.org/10.1103/PhysRevLett.117.123002
https://doi.org/10.1103/PhysRevLett.117.123002
https://doi.org/10.1103/PhysRevLett.117.123002
https://doi.org/10.1103/PhysRevLett.116.053001
https://doi.org/10.1103/PhysRevLett.116.053001
https://doi.org/10.1103/PhysRevLett.116.053001
https://doi.org/10.1103/PhysRevLett.116.053001
https://doi.org/10.1103/PhysRevLett.116.105302
https://doi.org/10.1103/PhysRevLett.116.105302
https://doi.org/10.1103/PhysRevLett.116.105302
https://doi.org/10.1103/PhysRevLett.116.105302
https://doi.org/10.1038/ncomms5546
https://doi.org/10.1038/ncomms5546
https://doi.org/10.1038/ncomms5546
https://doi.org/10.1038/ncomms5546
https://doi.org/10.1088/0953-4075/49/18/182001
https://doi.org/10.1088/0953-4075/49/18/182001
https://doi.org/10.1088/0953-4075/49/18/182001
https://doi.org/10.1088/0953-4075/49/18/182001
https://doi.org/10.1088/0953-4075/49/11/114005
https://doi.org/10.1088/0953-4075/49/11/114005
https://doi.org/10.1088/0953-4075/49/11/114005
https://doi.org/10.1088/0953-4075/49/11/114005
https://doi.org/10.1103/PhysRevA.94.012516
https://doi.org/10.1103/PhysRevA.94.012516
https://doi.org/10.1103/PhysRevA.94.012516
https://doi.org/10.1103/PhysRevA.94.012516
https://doi.org/10.1051/jphys:0197700380110134300
https://doi.org/10.1051/jphys:0197700380110134300
https://doi.org/10.1051/jphys:0197700380110134300
https://doi.org/10.1051/jphys:0197700380110134300
https://doi.org/10.1103/PhysRevLett.96.013201
https://doi.org/10.1103/PhysRevLett.96.013201
https://doi.org/10.1103/PhysRevLett.96.013201
https://doi.org/10.1103/PhysRevLett.96.013201
https://doi.org/10.1103/PhysRevC.60.065205
https://doi.org/10.1103/PhysRevC.60.065205
https://doi.org/10.1103/PhysRevC.60.065205
https://doi.org/10.1103/PhysRevC.60.065205
https://doi.org/10.1016/j.nuclphysa.2011.06.028
https://doi.org/10.1016/j.nuclphysa.2011.06.028
https://doi.org/10.1016/j.nuclphysa.2011.06.028
https://doi.org/10.1016/j.nuclphysa.2011.06.028
http://arxiv.org/abs/arXiv:nucl-th/9706029
https://doi.org/10.1103/PhysRevA.67.052502
https://doi.org/10.1103/PhysRevA.67.052502
https://doi.org/10.1103/PhysRevA.67.052502
https://doi.org/10.1103/PhysRevA.67.052502
https://doi.org/10.1103/PhysRevA.74.054502
https://doi.org/10.1103/PhysRevA.74.054502
https://doi.org/10.1103/PhysRevA.74.054502
https://doi.org/10.1103/PhysRevA.74.054502
https://doi.org/10.1103/PhysRevA.26.2733
https://doi.org/10.1103/PhysRevA.26.2733
https://doi.org/10.1103/PhysRevA.26.2733
https://doi.org/10.1103/PhysRevA.26.2733
https://doi.org/10.1103/PhysRevA.35.4650
https://doi.org/10.1103/PhysRevA.35.4650
https://doi.org/10.1103/PhysRevA.35.4650
https://doi.org/10.1103/PhysRevA.35.4650
https://doi.org/10.1088/0953-4075/43/20/202001
https://doi.org/10.1088/0953-4075/43/20/202001
https://doi.org/10.1088/0953-4075/43/20/202001
https://doi.org/10.1088/0953-4075/43/20/202001
https://doi.org/10.1103/PhysRevA.87.042522
https://doi.org/10.1103/PhysRevA.87.042522
https://doi.org/10.1103/PhysRevA.87.042522
https://doi.org/10.1103/PhysRevA.87.042522
https://doi.org/10.1103/RevModPhys.49.31
https://doi.org/10.1103/RevModPhys.49.31
https://doi.org/10.1103/RevModPhys.49.31
https://doi.org/10.1103/RevModPhys.49.31
https://doi.org/10.1103/PhysRevA.36.971
https://doi.org/10.1103/PhysRevA.36.971
https://doi.org/10.1103/PhysRevA.36.971
https://doi.org/10.1103/PhysRevA.36.971
https://doi.org/10.1103/PhysRevA.36.5467
https://doi.org/10.1103/PhysRevA.36.5467
https://doi.org/10.1103/PhysRevA.36.5467


HAMILTONIAN FOR THE INCLUSION OF SPIN EFFECTS . . . PHYSICAL REVIEW A 95, 042515 (2017)

[51] I. L. Beigman and V. S. Lebedev, Collision theory of Rydberg
atoms with neutral and charged particles, Phys. Rep. 250, 95
(1995).

[52] U. Fano and G. Racah, Irreducible Tensorial Sets (Academic
Press, New York, 1959).

[53] U. Fano and J. H. Macek, Impact excitation and polarization of
the emitted light, Rev. Mod. Phys. 45, 553 (1973).

[54] C. H. Greene and R. N. Zare, Photofragment alignment and
orientation, Annu. Rev. Phys. Chem. 33, 119 (1982).

[55] D. Dill and J. L. Dehmer, Electron-molecule scattering and
molecular photoionization using the multiple-scattering method,
J. Chem. Phys. 61, 692 (1974).

[56] M. Scheer, J. Thølgersen, R. C. Bilodeau, C. A. Brodie, H. K.
Haugen, H. H. Andersen, P. Kristensen, and T. Andersen,
Experimental Evidence That the 6s6p3P J States of Cs− are
Shape Resonances, Phys. Rev. Lett. 80, 684 (1998).

[57] U. Thumm and D. W. Norcross, Evidence for Very Narrow Shape
Resonances in Low-Energy Electron-Cs Scattering, Phys. Rev.
Lett. 67, 3495 (1991).

[58] C. Fey, M. Kurz, P. Schmelcher, S. T. Rittenhouse, and H. R.
Sadeghpour, A comparative analysis of binding in ultralong-
range Rydberg molecules, New. J. Phys. 17, 055010 (2015).

[59] V. M. Borodin and A. K. Kazansky, The adiabatic mechanism
of the collisional broadening of Rydberg states via a loosely
bound resonant state of ambient gas atoms, J. Phys. B 25, 971
(1992).
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