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We present calculations of the one-loop vacuum polarization correction (Uehling potential) for the three-body
problem in the NRQED formalism. The case of one-electron molecular systems is considered. Numerical
results of the vacuum polarization contribution at mα7 and higher orders for the fundamental transitions (v = 0,
L = 0) → (v′ = 1, L′ = 0) in the H+

2 and HD+ molecular ions are presented and compared with calculations
performed in the adiabatic approximation. The residual uncertainty from this contribution in the transition
frequencies is shown to be a few tens of Hz.
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I. INTRODUCTION

The hydrogen molecular ions H+
2 and HD+ have great

potential for improving the determination of fundamental
constants such as the proton-to-electron mass ratio [1–3].
Rovibrational transition frequencies have been measured at
the few-ppb level [4–6], and ongoing efforts towards improved
accuracies using two-photon transitions [3,7,8] or one-photon
transitions in the Lamb-Dicke regime [9,10] motivate the
development of precise theoretical predictions.

In Refs. [11] and [12] a complete set of mα7-order contri-
butions has been evaluated for the fundamental transitions of
the hydrogen molecular ions H+

2 and HD+. All calculations
at this order were performed in the nonrecoil limit, by
evaluating the one-electron QED corrections in the two-center
approximation. Only one term, the Uehling potential vacuum
polarization contribution [13], which had been estimated with
a lower level of accuracy, was later calculated in the framework
of the two-center approximation in [14].

In a slightly different context, namely, the hyperfine
structure of H+

2 , it was recently shown [15] that in evaluating
a second-order perturbation term within the mα6(m/M)-order
relativistic correction it is essential to take the vibrational
motion of nuclei into account. Such vibrational contributions
also arise in the spin-independent corrections and have to be
consistently included in the previously evaluated [11,12,14,16]
mα6- and mα7-order corrections [17].

The mα7-order Uehling contribution [14] is one such case.
In the present work we first revisit the evaluation of this term
within the adiabatic approximation by including the previously
omitted vibrational contribution. Then we go one step further
and evaluate it in a full three-body approach, exploiting
the fact that the matrix elements of the Uehling potential
in a basis of explicitly correlated exponential functions are
known in analytical form [18]. Comparison of results obtained
with these two approaches provide a useful cross-check and
give interesting insight into the precision of the adiabatic
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approximation for evaluating QED corrections in molecular
systems.

II. UEHLING CORRECTION TERMS AT mα7

AND HIGHER ORDERS

A. General expressions

We use atomic units throughout. The system under con-
sideration is composed of three particles with masses mi and
charges Zi (i = 1,2,3). We specifically consider a molecular
or moleculelike system and assume that the lightest particle,
i.e., an electron in the practical cases considered here—is
numbered 3 (thus m1,m2 � m3 = me, and Z3 = −1). The
relative positions of particles 1–3 and 2–3 (electron-nucleus)
are, respectively, denote r1 and r2, and the relative position
of particles 1–2 (internuclear) r12. Whenever the adiabatic
approximation is used, we set r12 = R.

The correction terms to be considered are the same as those
studied in the two-center approximation in [14], but we use
slightly different notations to make the comparison between
adiabatic and full three-body results more transparent. All
terms involve the Uehling potential interaction between the
electron and the nuclei,

U (e-n)
vp (r1,r2) = Uvp(r1) + Uvp(r2), (1)

where Uvp is given by [19]

Uvp(ri) = −2

3

Ziα

πri

∫ ∞

1
dt e− 2ri

α
t

(
1

t2
+ 1

2t4

)
(t2 − 1)1/2.

(2)

We neglect all corrections originating from the internuclear
Uehling interaction, as done in the calculation of lower-order
terms [20].

The first correction term comes from the first-order correc-
tion with the nonrelativistic wave function ψ0,

�Ea = 〈ψ0|U (e-n)
vp |ψ0〉, (3)

which contains contributions of orders mα5 and above.
The second contribution comes from the leading (∼α2)

relativistic correction to the wave function. It takes the form of
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a second-order contribution with the Breit-Pauli Hamiltonian
HB as the perturbation:

�Eb = 2〈ψ0|HBQ(E0 − H0)−1QU (e-n)
vp |ψ0〉. (4)

Here, Q = I − |ψ0〉〈ψ0| is a projection operator, H0 and E0

are the nonrelativistic Hamiltonian and energy, and HB is the
spin-independent relativistic correction to the electron,

HB = − pe
4

8m3
e

+ π

2m2
e

[Z1δ(r1) + Z2δ(r2)]. (5)

Since HB is of order α2 relative to the nonrelativistic
Hamiltonian H0, Eq. (4) could be expected to contribute at
orders mα7 and above. Closer inspection reveals that it contains
a mα6-order term due to the singular behavior of the relativistic
correction to the wave function.

For a full three-body treatment, one should take as HB the
full three-body Breit-Pauli Hamiltonian. However, our goal
is to analyze the accuracy of the two-center approximation,
which is why we include the exact same relativistic corrections
in both approaches. The neglected radiative-recoil terms of
orders mα7(m/M)n, n = 1,2, . . . (m ≡ me, M ≡ m1,m2), are
much smaller and irrelevant at the current level of theoretical
accuracy.

The last contribution is the vertex function modification
(Darwin term) at mα7 order (see Fig. 3 in [21]):

�Ec = 〈ψ0|H (7)
vp |ψ0〉, (6)

H (7)
vp = 1

8m2
e

(�r1Uvp(r1) + �r2Uvp(r2)). (7)

Again, Eq. (6), which could be expected to contribute at orders
mα7 and above, also contains a mα6-order term.

In a full three-body treatment, additional radiative-recoil
terms with m2

1 and m2
2 in the denominator instead of m2

e should
be included. Similarly to the �Eb contribution discussed
above, we neglect these terms here. Finally, we also neglect the
transverse photon exchange and spin-orbit terms [22], which
produce corrections of order mα7(m/M).

The total Uehling energy correction is

�EU = �Ea + �Eb + �Ec. (8)

Each of the three contributions contains lower-order terms
(mα5, mα6) which should be subtracted in order to get
the desired contribution (mα7 and above). This subtraction
procedure is explained in the next paragraphs, first in the
adiabatic approximation and then for the three-body case.

B. Adiabatic approximation

In this approach, ψ0 is an adiabatic wave function given by

ψ0 = φel(r; R)χ (R), (9)

where φel and χ are, respectively, the electronic and nuclear
wave functions. The Hamiltonian H0 appearing in Eq. (4) is
an adiabatic Hamiltonian, and E0 the adiabatic energy (see,
e.g., [23] for definitions).

Within the adiabatic approximation, the second-order per-
turbation term �Eb can be separated into electronic and

vibrational contributions [15,17]:

�Eb = 〈χ | E (el)
b (R)|χ〉 + E

(vib)
b , (10)

E (el)
b (R) = 2〈φel|HBQel(Eel − Hel)

−1QelU
(e-n)
vp |φel〉, (11)

E
(vib)
b = 2〈χ |EB(R)Qvib(Evib − Hvib)−1QvibEvp(R)|χ〉. (12)

Qel = I − |φel〉〈φel| and Qvib = I − |χ〉〈χ | are projection
operators, and Hel, Eel (Hvib, Evib) the electronic (vibrational)
Hamiltonian and energy (see [23] for definitions). Finally,
EB(R) = 〈φel|HB |φel〉, and Evp(R) = 〈φel|U (e-n)

vp |φel〉. Only the
first term of Eq. (10) was calculated in Ref. [14], while the
vibrational contribution was omitted.

The expansion in powers of α of each term in Eq. (8) was
studied in [14]. We reproduce the results here for convenience:

�Ea = −4α3

15
〈ψ0|Z1δ(r1) + Z2δ(r2)|ψ0〉

+ 5α4

48
π〈ψ0|Z2

1δ(r1) + Z2
2δ(r2)|ψ0〉 + . . . , (13)

�Eb = −3α4

16
π〈ψ0|Z2

1δ(r1) + Z2
2δ(r2)|ψ0〉

+ 4α5

15
ln α〈ψ0|Z3

1δ(r1) + Z3
2δ(r2)|ψ0〉 . . . , (14)

�Ec = +3α4

16
π〈ψ0|Z2

1δ(r1) + Z2
2δ(r2)|ψ0〉 + . . . . (15)

The first two terms of �Ea are the leading terms of the Uehling
correction, which were included in earlier calculations [20].
Indeed, the mα6-order terms appearing in �Eb and �Ec cancel
each other. Note that this exact cancellation no longer occurs
in the three-body approach, as shown below.

The sought corrections of order mα7 and above (excluding
the logarithmic contribution in �Eb, which was already
considered in [11] and [12]) are thus given by the following
subtractions:

�E
(7+)
U = �E(7+)

a + �E
(7+)
b + �E(7+)

c , (16)

�E(7+)
a = �Ea + 4α3

15
〈ψ0|Z1δ(r1) + Z2δ(r2)|ψ0〉

− 5α4

48
π〈ψ0|Z2

1δ(r1) + Z2
2δ(r2)|ψ0〉, (17)

�E
(7+)
b = �Eb + 3α4

16
π〈ψ0|Z2

1δ(r1) + Z2
2δ(r2)|ψ0〉

− 4α5

15
ln α〈ψ0|Z3

1δ(r1) + Z3
2δ(r2)|ψ0〉, (18)

�E(7+)
c = �Ec − 3α4

16
π〈ψ0|Z2

1δ(r1) + Z2
2δ(r2)|ψ0〉. (19)

Note that the definitions of �E
(7+)
b and �E(7+)

c differ from
those in Ref. [14]. Finally, since the leading-order terms in
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the expansion �Eb belong to the electronic contribution, we
define the higher-order electronic contribution as

�E
(7+)(el)
b = 〈χ | E (el)

b (R)|χ〉 + 3α4

16
π〈ψ0|Z2

1δ(r1)

+Z2
2δ(r2)|ψ0〉 − 4α5

15
ln α〈ψ0|Z3

1δ(r1)

+Z3
2δ(r2)|ψ0〉. (20)

C. Three-body formalism

In this approach, H0 is the exact nonrelativistic Hamiltonian
of the three-body system, i.e.,

H0 = − 1

2μ13
∇2

r1
− 1

2μ23
∇2

r2
−∇r1∇r2−

Z1

r1
−Z2

r2
+ Z1Z2

r12
,

(21)

where μij = mi/(mi + mj ), and ψ0 is one of its eigenstates. In
this case, the expansion of Uehling correction terms in powers
of α is modified with respect to Eqs. (13)–(15):

�Ea = −4α3

15
〈ψ0|Z1δ(r1) + Z2δ(r2)|ψ0〉

+ 5α4

48
π〈ψ0|μ13Z

2
1δ(r1) + μ23Z

2
2δ(r2)|ψ0〉 + . . . ,

(22)

�Eb = −3α4

16
π〈ψ0|a13Z

2
1δ(r1) + a23Z

2
2δ(r2)|ψ0〉

+ 4α5

15
ln α〈ψ0|μ13a13Z

3
1δ(r1)

+μ23a23Z
3
2δ(r2)|ψ0〉 . . . , (23)

�Ec = +3α4

16
π〈ψ0|μ13Z

2
1δ(r1) + μ23Z

2
2δ(r2)|ψ0〉 + . . . ,

(24)

where aij = μij (2μij − 1). These modifications can be under-
stood as follows. Both for �Ea and for �Ec, the successive
terms of the α expansion are proportional to the successive
derivatives of the squared wave function at the electron-
nucleus coalescence points. In the second term of �Ea and in
the first term of �Ec, both of which involve the first derivative,
the appearance of the additional factors μ13, μ23 comes from
Kato’s cusp condition [24] in the case of a finite nuclear mass:

∂ψ0

∂ri

∣∣∣∣
ri=0

= −μi3Ziψ0(ri = 0), i = 1,2. (25)

As for �Eb, Eq. (23) can be understood by writing this term
in the equivalent form

�Eb = 2〈ψB |U (e-n)
vp |ψ0〉, (26)

where ψB is the first-order correction to the wave function
induced by the relativistic correction HB :

(E0 − H0)ψB = (HB − 〈HB〉)ψ0. (27)

It was shown in [14] that the mα6 and mα7 ln α terms of �Eb,
respectively, come from the 1/ri and ln ri singularities of ψB .

The analysis of Eq. (27) in the limit ri → 0 reveals that the
singular parts of ψB are written [25]

ψ
sing
B = (U1 − 〈U1〉)
0, U1 = a13Z1

4r1
+ a23Z2

4r2
, (28)

ψ
log
B = (U2 − 〈U2〉)
0,

U2 = −μ13a13Z
2
1

2
ln r1

− μ23a23Z
2
2

2
ln r2, (29)

which explains the factors appearing in the first terms of the α

expansion.
One can observe that the mα6-order terms in �Eb and

�Ec no longer cancel, but their sum produces recoil terms.
Overall, the correction �EU contains a set of recoil corrections
at orders mα6(m/M)n. Note that the latter do not add up
to yield the known result for the mα6-order term including
recoil effects [20,26,27], because some recoil contributions
are missing due to the neglected terms in H (7)

vp (see Sec. II A).
This is of no consequence here, since mα6-order terms are
subtracted in order to focus on corrections of order mα7 and
above.

Similarly, �E
(7+)
U contains an incomplete set of recoil cor-

rections at orders mα7(m/M)n, therefore the results obtained
in the three-body framework are expected to be accurate to
O(m/M), just as within the adiabatic approximation.

The expansions, (22)–(24), lead to the following definitions
for the corrections of order mα7 and above:

�E(7+)
a =�Ea+ 4α3

15
〈ψ0|Z1δ(r1)+Z2δ(r2)|ψ0〉

− 5α4

48
π〈ψ0|μ13Z

2
1δ(r1)+μ23Z

2
2δ(r2)|ψ0〉, (30)

�E
(7+)
b = �Eb + 3α4

16
π〈ψ0|a13Z

2
1δ(r1) + a23Z

2
2δ(r2)|ψ0〉

− 4α5

15
ln α〈ψ0|μ13a13Z

3
1δ(r1)

+μ23a23Z
3
2δ(r2)|ψ0〉, (31)

�E(7+)
c =�Ec− 3α4

16
π〈ψ0|μ13Z

2
1δ(r1)+μ23Z

2
2δ(r2)|ψ0〉.

(32)

III. NUMERICAL CALCULATIONS AND RESULTS

In this section we calculate and compare the Uehling
corrections obtained within the adiabatic [Eqs. (17)–(19)] and
three-body [Eqs. (30)–(32)] approaches.

A. Adiabatic approximation

For the adiabatic case all the corrections terms, with the
exception of the vibrational contribution in �Eb [Eq. (12)],
have been evaluated in our previous work [14] and more details
may be found in that article.

Here we recall only the main features of our approach. In
the spirit of the adiabatic approximation, in the first step we
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calculate the electronic curves corresponding to the correction
terms, Evp(R) [defined after Eq. (12), E (el)

b (R) [Eq. (11)], and

Ec(R) = 〈φel|H (7)
vp |φel〉, (33)

as well asEB(R), which is required for the evaluation of �E
(vib)
b

[see Eq. (12)].
We use the variational expansion for the electronic wave

function of a σ state

φel(r) =
∞∑
i=1

Cie
−ai r1−bi r2 , (34)

which is symmetrized if Z1 = Z2:

φel(r) =
∞∑
i=1

Ci(e
−ai r1−bi r2 ± e−bi r1−ai r2 ). (35)

The real exponents ai and bi are generated quasirandomly in
optimized intervals.

We now describe the improvements we have implemented
with respect to the calculations presented in Ref. [14]. First,
we discovered that the transformation of the �E(7+)

c term
using integration by parts (Eq. (22) of [14]) is not valid for
a two-center system (although it is valid for a hydrogenlike

atom), leading to a numerical error of a few kHz. We have thus
recalculated Ec(R) directly from Eq. (33).

For the electronic contribution to �Eb [Eq. (11)] we use
the equivalent form

E (el)
b (R) = 2〈φB |U (e-n)

vp |φel〉, (36)

where φB is the first-order correction to the electronic wave
function induced by the relativistic correction HB :

(Eel − Hel)φB = (HB − 〈HB〉)φel. (37)

Trying to calculate φB directly by solving the linear prob-
lem, (37), would lead to numerical problems, because φB

contains singular terms (in 1/ri and ln ri , i = 1,2) which
are not well represented in the regular basis set, (34). We
thus separate the singular terms in φB following the approach
described in [28]:

φB(r1,r2) =
(

Z1

4r1
+ Z2

4r2
− Z2

1

2
ln r1 − Z2

2

2
ln r2

)
φel

+ φ̃B (r1,r2), (38)

where φ̃B(r1,r2) is a regular function which is obtained
numerically by solving the linear problem

(Eel − Hel)φ̃B = (HB − 〈HB〉)φel +
[
H,

(
Z1

4r1
+ Z2

4r2
− Z2

1

2
ln r1 − Z2

2

2
ln r2

)]
φel

= (HB − 〈HB〉)φel +
∑
i=1,2

(
Ziπδ(ri)

2
+ Z2

i

4r2
i

+ Ziri

4r3
i

∇ + Z2
i ri

2r2
i

∇
)

φel. (39)

Finally, one obtains

E (el)
b (R) = 2

〈(
Z1

4r1
+ Z2

4r2
− Z2

1

2
ln r1 − Z2

2

2
ln r2

)
U (e-n)

vp

〉

− 2

〈(
Z1

4r1
+ Z2

4r2
− Z2

1

2
ln r1 − Z2

2

2
ln r2

)〉 〈
U (e-n)

vp

〉

+ 2
〈
φ̃B |U (e-n)

vp |φel
〉
. (40)

The terms involving the Uehling potential [i.e., Evp(R),
E (el)

b (R), and Ec(R)] cannot be calculated exactly since its
matrix elements in the exponential basis set (34) are not known
in analytical form. We calculated them by two methods: (i) by
numerical integration as done in [14], using an approximate
form of the Uehling potential presented in [29], which is
accurate to at least nine digits, and (ii) by expansion of
the matrix elements in powers of α, which allows for much
quicker calculations. The expansions of all the required matrix
elements are given in the Appendix. We included all terms up to
the mα8 order in our calculation and found excellent agreement
with method i (see the Appendix for a numerical example),
thus removing any doubt that may arise on the accuracy of the
numerical integration.

Finally, in the second step the electronic curves are averaged
over the vibrational wave function χ (R), which is obtained
by numerical resolution of the nuclear Schrödinger equation.
The vibrational contribution E

(vib)
b [Eq. (12)] is obtained using

the first-order relativistic correction χB to the nuclear wave
function,

E
(vib)
b = 2〈χB |Evp(R)|χ〉, (41)

where χB is calculated by solving the linear problem

(Evib − Hvib)χB = EB(R)χ. (42)

B. Three-body formalism

For the three-body case we used a variational “exponential”
expansion of the three-body wave function in the form [30]


(r1,r2,r12) =
N∑

n=1

{UiRe[e−αir1−βir2−γi r12 ]

+WiIm[e−αir1−βir2−γi r12 ]}Y l1,l2
LM (r̂1,r̂2), (43)

where Y l1l2
LM(r̂1,r̂2) are bipolar spherical harmonics [31]. The

parameters αi , βi , and γi are complex exponents satisfying
the relations Re(αi + βi) > 0, Re(αi + γi) > 0, and Re(βi +
γi) > 0, generated pseudorandomly [32] in several intervals;
the variational parameters are the bounds of these intervals.

Here we consider only rotationless (L = 0) states. For
these states the matrix elements of the Uehling potential
Uvp(ri) required for calculation of �Ea were obtained in [18],
and those of �r1Uvp(r1) required for �Ec are given in the
Appendix.
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TABLE I. Uehling corrections at order mα7 and above (in kHz) for the two lowest vibrational states of H+
2 and for the fundamental

vibrational transition. For each contribution, the value obtained in the adiabatic approximation is given on the first line, and that obtained within
the three-body formalism on the second line. Note that the vibrational part of �E

(7+)
b was not included in previous calculations [14].

�E(7+)
a Electronic Vibrational �E

(7+)
b �E(7+)

c �E
(7+)
U

H+
2 (v = 0, L = 0) − 20.11 15.26 − 4.61 10.64 − 23.49 − 32.95

− 20.06 – – 10.64 − 23.43 − 32.86
H+

2 (v = 1, L = 0) − 19.54 14.44 − 4.18 10.26 − 22.83 − 32.10
− 19.49 – – 10.27 − 22.77 − 32.00

v = 0 → 1 transition 0.57 − 0.81 0.43 − 0.38 0.66 0.85
0.57 – – − 0.38 0.65 0.85

The precise calculation of the second-order perturbation
term �Eb is more challenging, because it involves solving
the linear problem, (27). Similarly to what was done for the
two-center problem, we separate the singular part of ψB in
order to alleviate the numerical difficulties. We introduce a
less singular function ψ̃B defined by

ψB = ψ
sing
B + ψ̃B, (44)

and ψ̃B can be obtained by solving the equation

(E0 − H0)
̃B = (HB − 〈HB〉)
0 + [H0,U1]
0. (45)

Straightforward algebraic manipulation leads to

[H0,U1] = Z1a13

4

[
1

μ13

{
2πδ(r1) + r1 · ∇r1

r3
1

}
+ r1 · ∇r2

r3
1

]

+ Z2a23

4

[
1

μ23

{
2πδ(r2) + r2 · ∇r2

r3
2

}
+ r2 · ∇r1

r3
2

]
.

(46)

The final expression of the second-order perturbation term is

�Eb = 2〈ψ0|U1U
(e-n)
vp |ψ0〉 − 2〈U1〉〈ψ0|U (e-n)

vp |ψ0〉
+ 2〈ψ̃B |U (e-n)

vp |ψ0〉. (47)

The calculation of the first term requires the matrix elements
of Uvp(ri)/ri , which are given in the Appendix, and crossed
terms of the type Uvp(ri)/rj , whose matrix elements are easily
obtained from the generating integral given in [18]. It should
be noted that in contradistinction with the two-center case,
we have separated the 1/r singularities of (27) but not the
logarithmic ones. Due to this the convergence of �Eb is much
slower. The separation of the logarithmic singularity would

require the derivation of three-body matrix elements involving
logarithms of interparticle distances.

C. Results and discussion

In order to obtain good convergence of the three-body
results, basis sets of N = 2000 vectors were used to represent
ψ0. For the numerical evaluation of the second-order term
[last term of Eq. (47)] we use 10 basis sets, where the first
two approximate the regular part of the intermediate solution
and the remaining eight sets, with increasing exponents, are
introduced to reproduce behavior of the type ln r1 (or ln r2)
at small values of r1 (r2). The total size of the basis used for
intermediate states is N = 5900.

The results for the first vibrational levels of H+
2 and HD+

are presented in Tables I and II. The relative difference
between adiabatic and three-body approaches (2–3 × 10−3)
matches the expected order of magnitude O(m/M), which
corresponds to the presence of recoil contributions in the
three-body correction. The difference between adiabatic and
three-body results also gives an order of magnitude of the
residual uncertainty due to unevaluated recoil corrections, i.e.,
a few tens of Hz, in the transition frequencies. This uncertainty
may be reduced further in the future by including all recoil
corrections within the three-body approach.

It can also be observed that the inclusion of the vibrational
part in the second-order perturbation term �Eb is essential to
get satisfactory agreement. This is even more true in the case of
vibrational transition frequencies, where this term contributes
to about 50% while representing only 13%–14% of the
correction to individual state energies, due to its much stronger
dependence on the vibrational state. The corresponding correc-
tion to the fundamental vibrational transition amounts to about
400 Hz, which is significant at the current level of theoretical
accuracy. It is thus essential to include all terms of similar
nature arising in other mα7-order corrections [17].

TABLE II. Same as Table I, but for the HD+ molecular ion.

�E(7+)
a Electronic Vibrational �E

(7+)
b �E(7+)

c �E
(7+)
U

HD+ (v = 0, L = 0) − 20.15 15.31 − 4.65 10.67 − 23.54 − 33.02
− 20.11 – – 10.67 − 23.50 − 32.94

HD+ (v = 1, L = 0) − 19.65 14.60 − 4.27 10.34 − 22.96 − 32.27
− 19.62 – – 10.34 − 22.92 − 32.19

v = 0 → 1 transition 0.48 − 0.71 0.38 − 0.33 0.56 0.75
0.50 – – − 0.33 0.58 0.74
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APPENDIX

1. Two-center problem: Expansion of matrix elements for σ

electronic states

In what follows, the notation 〈i|A|j 〉 stands for the matrix
element of the operator A between the basis functions
e−ai r1−bi r2 and e−aj r1−bj r2 . We set a = ai + aj and b = bi + bj .

(i) Evp(R): the Uehling potential expectation value,

〈i|Uvp(r1)|j 〉 = − 4

15
Z1α

3e−bR

[
1 − 25πα

128
a + 3α2

28

(
3a2 + b2 − 2b

R

)
− 105πα3

2048
a

(
a2 + b2 − 2b

R

)
+ . . .

]
.

(ii) Ec(R): the Darwin term in the Uehling relativistic correction,

1

8
〈i|�Uvp(r1)|j 〉 = Z1α

4e−bR

[
3π

32
a − α

30

(
3a2 + b2 − 2b

R

)
+ 5π α2

384
a

(
a2 + b2 − 2b

R

)
+ . . .

]
.

(iii) E (el)
b (R): the second-order term in the Uehling relativistic correction. In order to evaluate the first two terms of Eq. (40)

the following matrix elements are required:

α2

2
〈i|

(
Z1

r1

)
Uvp(r1)|j 〉 = Z2

1α
4e−bR

[
− 3π

16
+ 2α

15
a − 5π α2

1152

(
3a2 + b2 − 2b

R

)
+ . . .

]
,

α2

2
〈i|

(
Z2

r2

)
Uvp(r1)|j 〉 = Z1Z2α

5 e−bR

R

[
− 2

15
+ 5πα

192
a + . . .

]
,

α2〈i|(−Z2
1 ln r1

)
Uvp(r1)|j 〉 = Z3

1α
5e−bR

[(
4

15
ln α − 4

15
γE − 17

225

)
+ πα

(
5

96
ln α − 5

96
γE − 5 ln 4

96
+ 107

1152

)
a + . . .

]
,

α2〈i|(−Z2
2 ln r2

)
Uvp(r1)|j 〉 = Z1Z

2
2α

5e−bR ln(R)

[
4

15
− 5πα

96
a + . . .

]
.

We have checked that the numerical results obtained by using these expansions coincide (at the required level of accuracy)
with those of numerical integration with the approximate form [29] of the Uehling potential. For example, the values of Evp(R)
agree within eight digits for the whole range of internuclear distances. For illustration we give both values at the equilibrium
distance R = 2.0 a.u.: E (exp)

vp (R = 2.0) = −0.110 830 184 4α3 and E (num)
vp (R = 2.0) = −0.110 830 185 3α3.

2. Three-body problem: Matrix elements of Uvp(r1)/r1

For the calculation of �E
sing
b the following integral is required (using the notations of [18]):

I
(i)
−1,1,1(α,β,γ ) =

∫ ∫ ∫
dr1dr2dr12

r2r12

r1
e−αr1−βr2−γ r12

∫ ∞

1
du e−2xuri

√
u2 − 1(2u2 + 1)

u4
, (A1)

where x = 1/(αfscm1) (αfsc is the fine-structure constant). Changing the order of integrations we obtain

I−1,1,1(α,β,γ ) =
∫ ∞

1
du e−2xuri

√
u2 − 1(2u2 + 1)

u4

∫ ∫ ∫
dr1dr2dr12

r2r12

r1
e−αr1−βr2−γ r12 . (A2)

The integral over spatial coordinates is [33]

�−1,1,1(α,β,γ ) = β2 + γ 2 + αβ + αγ

2(β − γ )2(β + γ )2x2

1

(u + a)(u + b)
+ β + γ

(β − γ )2(β + γ )2x

u

(u + a)(u + b)

− 8βγ

(β − γ )3(β + γ )3

[
ln

(
1 + a

u

)
− ln

(
1 + b

u

)]
, (A3)

with a = (α + β)/2x, b = (α + γ )/2x. Then we get

I−1,1,1(α,β,γ ) = β2 + γ 2 + αβ + αγ

2(β − γ )2(β + γ )2x2
I1(a,b) + β + γ

(β − γ )2(β + γ )2x
I4(a,b) − 8βγ

(β − γ )3(β + γ )3
(I5(a) − I5(b)), (A4)

where

I1(a,b) =
∫ ∞

1
du

√
u2 − 1(2u2 + 1)

u4(u + a)(u + b)
(A5)
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was obtained in [18], and

I4(a,b) =
∫ ∞

1
du

√
u2 − 1(2u2 + 1)

u3(u + a)(u + b)
, (A6)

I5(a) =
∫ ∞

1
du

√
u2 − 1(2u2 + 1) ln

(
1 + a

u

)
u4

. (A7)

We find, for a �= b,

I4(a,b) = 4ab(a + b) − π (2a2 + 2ab + 2b2 + 3a2b2)

4a3b3
−

√
1 − a2(1 + 2a2) arccos(a)

a3(a − b)
+

√
1 − b2(1 + 2b2) arccos(b)

b3(a − b)
(A8)

and

I5(a) = 12a + 56a3 − π (6 + 27a2) + 9π2a3 + 12
√

1 − a2(1 + 5a2) arccos(a)

36a3
− arccos(a)2. (A9)

In order to obtain the last expression, it is convenient to calculate dI5
da

and then integrate with respect to a.

3. Three-body problem: Matrix elements of �r1 Uvp(r1)

Using that

�

(
e−�r

r

)
= −4πδ(r) + �2 e−�r

r
(A10)

and inverting the order of integration as previously, it can be seen that the following integral is required for calculation of �Ec:

Ic(α,β,γ ) =
∫ ∞

1
du

√
u2 − 1(2u2 + 1)

u4

(
4x2u2I0,1,1(α + 2ux,β,γ ) − 4

(β + γ )3

)
. (A11)

Algebraic manipulations lead to

Ic(α,β,γ ) = 1

x(β + γ )

{
1

2x
I6(a,b) + 1

β + γ
I7(a,b) − α2 + αβ + αγ + βγ

x(β + γ )2
I1(a,b) − 2(2α + β + γ )

(β + γ )2
I4(a,b)

}
, (A12)

with

I6(a,b) =
∫ ∞

1
du

√
u2 − 1(2u2 + 1)

u2(u + a)2(u + b)2
, (A13)

I7(a,b) =
∫ ∞

1
du

√
u2 − 1(2u2 + 1)

u2

(
1

(u + a)2(u + b)
+ 1

(u + a)(u + b)2

)
. (A14)

One obtains

I6(a,b) = −2(a2 + ab + b2 + 2a2b2)

a2b2(a − b)2
+ π (a + b)

a3b3
+ 1

(a − b)3

(
(2a5 + 2a4b − a3 − a2b − 4a + 2b) arccos(a)

a3
√

(1 − a2)

− (2b5 + 2b4a − b3 − b2a − 4b + 2a) arccos(b)

b3
√

(1 − b2)

)
, (A15)

I7(a,b) = −2ab(a + b) + π (a2 + ab + b2)

a3b3
+ (2 − a2 + 2a4) arccos(a)

a3
√

(1 − a2)(a − b)
− (2 − b2 + 2b4) arccos(b)

b3
√

(1 − b2)(a − b)
.
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