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The probability of the E0 transition between the components of the magnetic hyperfine (MHF) structure of the
ground 5/2+(0.0) and the low-energy 3/2+(7.8 ± 0.5 eV) levels is calculated in the muonic atom (μ−

1S1/2

229Th)∗.
[The MHF splitting taking into account the Bohr-Weisscopf effect and the mixing of the F = 2 sublevels was
found earlier in the paper E. V. Tkalya, Phys. Rev. A 94, 012510 (2016)] The mean-square charge radius of
the isomeric state in 229Th is estimated from the data for the 3/2+(0.0) state of the 223,227Ra nuclei and the
5/2+(0.0) state of the 221,229Ra nuclei. The resulting E0 transition probability is found to be anomalously small
in comparison to the known value for the 0+ → 0+ nuclear transitions, which is explained by the similarity
between the mean-square charge radii of the ground and low-energy isomeric states in 229Th.
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I. INTRODUCTION

The 229Th nucleus has the anomalously low-energy level
Jπ (E) = 3/2+(7.8 ± 0.5 eV) [1,2]. The “optical” character of
the magnetic dipole (M1) transition between the ground state,
5/2+(0.0), and the first excited state of the 229Th nucleus was
first noticed by the authors of Refs. [3,4]. Direct confirmation
that this isomeric level lies in the range 6.3–18.3 eV, has
been given recently by the authors of Ref. [5]. The most
common restrictions on the parameters of the 3/2+ level were
established in Refs. [6,7].

From the point of view of the nuclear spectroscopy this
is an absolutely unique situation. The isomeric transition
3/2+(7.8 ± 0.5 eV) → 5/2+(0.0) (with energy close to the
optical range) makes the 229Th nucleus suitable for the study of
various new physical phenomena: the cooperative spontaneous
emission [8] of the excited 229Th nuclei, the “nuclear light”
[9,10] and the electronic bridge [11–13], the α decay of the iso-
meric state [14], the Mößbauer effect in the optical range [15],
tests of the variation of the fine-structure constant [16] and
the strong interaction parameter [17–20], a check of the
exponentiality of the decay law [21], and others. A “nuclear
clock” [22–25] and a nuclear laser (or gamma ray laser) in the
optical range [15,26] are of particular interest. These devices,
if they can be created, will have great potential for applications.
That is why the intensive experimental study of this transition
and its properties are currently under way in several research
teams [1,5,6,23–25,27–33].

With regard to the characteristics of the low-lying isomeric
level 3/2+(7.8 ± 0.5 eV), at the present time we have theoret-
ical estimations of its magnetic moment [34], the quadrupole
moment [35], and the nuclear matrix element of the transition
to the ground state [7,34]. All these parameters are obtained
by the conventional methods of nuclear spectroscopy.

On the other hand, it is well known that muonic atoms are a
powerful tool for investigating the nuclear forces and structure.
The muon mass is about 200 times that of the electron. That
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makes the Bohr radius for the muonic atom aBμ
200 times

smaller. In addition, the orbital electrons practically do not
screen the nucleus for the muon in the 1S1/2 state. And the
system “nucleus + muon” resembles a hydrogen-like ion with
the characteristic size aBμ

/Z (Z is the nucleus charge), which
is comparable to the size of the nucleus itself. Therefore the
muon is sensitive to the distribution of currents and charges
in the nucleus. This allows us to study the nuclear properties
with much higher accuracy.

The measurement of the nucleus mean-square charge radius
in muonic atoms is a well-known example of such research.
The mean-square charge radius is an important parameter,
directly related to the nuclear forces and nuclear structure.
Currently the problem of the charge radius of the proton
[36–41] and the deutron [42] is studied intensively by using
muonic atoms. This problem is known in the scientific
literature as “the proton (deutron) radius puzzle.” The fact
is that the Lamb shift and transitions between the components
of the hyperfine structure of the 2S1/2 and 2P1/2,3/2 levels
in muonic atoms are extraordinarily sensitive to the root
mean-square charge radius of nuclei. As a consequence, one
can extract the required data on the nuclear structure directly by
measuring the Lamb shift and the energy of these transitions.
However, another approach is also possible.

In this paper, we show that there is a fundamental possibility
to determine the unknown mean-square charge radius of the
229Th nucleus in the 3/2+(7.8 ± 0.5 eV) state in the muonic
atom. In contrast to the measurements of the energy of the
2P1/2,3/2 − 2S1/2 and 2P1/2,3/2 − 1S1/2 transitions, this can
be done by measuring the E0 transition probability between
components of the magnetic hyperfine structure of the ground-
state doublet in (μ−

1S1/2

229Th)∗ [43]. This E0 transition occurs
after the muon reached the 1S1/2 state and all the fast relaxation
processes in the electron shell of the atom ended.

II. E0 TRANSITION IN MUONIC ATOM

The E0 component is always present in the nuclear
Jπ → Jπ transitions, i.e., in transitions between states with
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FIG. 1. The magnetic hyperfine structure of the 229Th ground-
state doublet in muonic atom, Ref. [43], which takes into account the
mixing of sublevels, the distribution of the magnetic dipole moment
over the nuclear volume [52], and the penetration effect [53].

the same spin and parity. Here we will investigate the E0
transition, which links the states with different spins. This
is somewhat unusual. The possible occurrence of the E0
component at the transition in Fig. 1 is an interesting feature
of the muonic atom (μ−

1S1/2

229Th)∗. In this atom the magnetic
dipole interaction between the orbital muon in the 1S1/2 shell
and the nucleus in the ground and isomeric states leads to a
number of interesting effects: a partial inversion of levels, the
spontaneous decay of the ground state to the isomeric state,
the mixing of the states with the same quantum number F

(F = J ± 1/2) [44], and the existence of the E0 component
in the transition between the F = 2 states [43].

It is well known that the E0 transition is a signature of a
mixing of configurations with different mean-square charge
radii [45]. This is also true for the transition in Fig. 1. In the
even-odd nucleus 229Th, which consists of 90 protons and 139
neutrons, the first two levels are characterized by the state of
the unpaired neutron in the Nilsson model [46]: Kπ [NnZ�] =
5/2+[633] for the ground state, and 3/2+[631] for the first
excited state [35]. The unpaired neutron in the states 3/2+[631]
and 5/2+[633] polarizes the core, namely, the 228Th nucleus
a little bit differently. This leads to a small difference in the
mean-square charge radii and provides the E0 transition in the
muonic atom (μ−

1S1/2

229Th)∗.
Since the radiation of the E0 photon is not possible, such

a nuclear transition occurs with the transfer of excitation
energy to the atomic shell, described by the second-order
diagram in the the framework of the perturbation theory for
the quantum electrodynamics. A corresponding process is
called the internal conversion (IC). E0 Transitions are usually
observed in even-even nuclei between the 0+ states [47],
when transitions of other multipoles are forbidden. Internal
conversion in such transitions takes place mainly due to the
inner shells of atoms because the characteristic energies of
the transitions are of about hundreds keV to several MeV.
Corresponding atomic matrix elements are calculated and
tabulated in Refs. [48–50].

The energy of the E0 transition in 229Th, computed with
the currently accepted values for the intrinsic g factor gK

of the 3/2+[631] rotational band and the nuclear reduced
probability B(M1; 3/2+ → 5/2+) of the interband transition
between the ground and isomeric states is about 370 eV. Large
uncertainties in the values of gK and B(M1; 3/2+ → 5/2+)
lead to the following range for the E0 transition energies
ωE0 = 370+30

−140 eV [43].
The internal-conversion process for the E0 (370 eV)

transition in (μ−
1S1/2

229Th)∗ occurs through the 5S1/2, 6S1/2,
7S1/2, 5P1/2, and 6P1/2 shells. However, E0 transitions with
very low energies have not been considered, and the electronic
factors �OI,II

, �PI,II
, �QI

for them have not been calculated
and tabulated [49,51]. Therefore, here we present the necessary
calculations including the electronic parts.

III. PROBABILITY OF E0 INTERNAL CONVERSION

The probability of the E0 internal electronic conversion is
calculated from Fermi’s golden rule

WE0 = 2π |〈�f |Ĥint|�i〉|2ρe , (1)

where �i,f are the wave functions of the initial and final
states, ρe is the density of the electron final state: ρe =
(2π )−3d3p/dE = (2π )−3mpd�e, m is the electron mass,
p = √

2mE is the electron momentum in the final state, i.e.,
the momentum of the conversion electron which has the energy
E (the adopted system of units is h̄ = c = 1).

The Hamiltonian of the interaction between the electron
and the “nuclei + muon” ion has the form

Ĥint = Ĥ
(p)
int + Ĥ

(μ)
int , (2)

where

Ĥ
(p)
int =

Z∑
p=1

−e2

|Rp − re| (3)

is the Hamiltonian of the interaction between electron and
nuclei protons (Z is the nuclei charge), and

Ĥ
(μ)
int = e2

|rμ − re| (4)

stands for the interaction between the electron and the muon
(in the 1S1/2 shell), Rp, rμ, and re are the radius vectors of the
pth proton, muon, and electron, respectively.

The wave functions �i,f of mixed F = 2 states (shown in
Fig. 1) have the form [43]

�i({R},rμ,re) = φi({R},rμ)ψi(re),

�f ({R},rμ,re) = φf ({R},rμ)ψf (re). (5)

where ψi(re), ψf (re) are the electron wave function in the
atomic and continuum state, respectively, while φi,f ({R},rμ)
are the muon-nucleus wave functions

φi({R},rμ) =
√

1 − b2�i({R})ϕi(rμ) + b�f ({R})ϕf (rμ),

φf ({R},rμ) =
√

1 − b2�f ({R})ϕf (rμ) − b�i({R})ϕi(rμ).

(6)

Here �({R}) and ϕ(rμ) are the wave functions of the nucleus
and the muon.
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In Eqs. (5) to (6) {R} = {Rn,Rp} is a set of radius vectors
of neutrons (n), and protons (p), for the nucleus. The value
of the mixing coefficient b � 0.47 for the muonic atom
(μ−

1S1/2

229Th)∗ in Eq. (6) was found in Ref. [43] by taking into
account: (a) the dynamic effect of the nuclear volume [53] (or
what is the same, the penetration effect [54]) for the interaction
of the muon and nuclear currents, and (b) the distribution of the
magnetic dipole moment over the nuclear volume for the static
interaction of the muon with a magnetic field created by the
nucleus in the ground and isomeric states (the Bohr-Weisskopf
effect [52]).

In our case �i({R}) is the isomeric state 3/2+(7.8 eV) of
the 229Th nucleus, and �f ({R}) is the ground state 5/2+(0.0).
The muon wave functions ϕi,f (rμ) describes the muon at the
1S1/2 shell with different projections of the muon spin.

For the calculation we shall use the standard multipole
expansion

1

|r< − r>| = 4π

r>

∑
L,M

1

2L + 1

(
r<

r>

)L

Y ∗
LM (�>)YLM (�<),

(7)
where r< is a smaller vector and r> is a bigger vector. In the
simplest case of the E0 internal conversion we get 1/|r< −
r>| → 1/r>.

The matrix element for the Hamiltonian (3) is given by

〈�f |Ĥ (p)
int |�i〉 =

Z∑
p=1

∫ ∞

0
d3rμ

∫ ∞

0
d3{R}

×φ∗
f ({R},rμ)φi({R},rμ)

×
[∫ ∞

Rp

d3reψ
∗
f (re)

−e2

re

ψi(re)

+
∫ Rp

0
d3reψ

∗
f (re)

−e2

Rp

ψi(re)

]
. (8)

(Here and below, the notation
∫ b

a
d3x means∫ 2π

0 dϕ
∫ π

0 sin(θ )dθ
∫ b

a
x2dx.)

In Eq. (8) we make the substitution
∫ ∞
R

d3re → ∫ ∞
0 d3re −∫ R

0 d3re. The integral
∫ ∞

0 d3reψ
∗
f (re)(−e2/re)ψi(re) is a con-

stant that can be taken outside the integration. In this case the
remaining integrals give zero∫ ∞

0
d3rμ

∫ ∞

0
d3{R}φ∗

f ({R},rμ)φ({R},rμ) = 0

since all the wave functions are orthonormal:∫ ∞
0 d3{R}�∗

f ({R})�i({R}) = δif and
∫ ∞

0 d3rμϕ∗
f (rμ)

ϕi(rμ) = δif , where δif is the Kronecker symbol.
As a result, the expression in square brackets in Eq. (8) is

simplified and one gets

〈�f |Ĥ (p)
int |�i〉 =

Z∑
p=1

∫ ∞

0
d3rμ

∫ ∞

0
d3{R}

×φ∗
f ({R},rμ)φi({R},rμ)

×
∫ Rp

0
d3reψ

∗
f (re)

(−e2

Rp

− −e2

re

)
ψi(re).

(9)

The upper limit of the integrals in Eq. (9) satisfies the
condition Rp � R0 = 1.2A1/3 fm, where R0 is the radius
of the nucleus with the atomic number A. Therefore, we
can take the approximate values of the electron wave func-
tions ψi,f (re) inside the nucleus: ψi,f (0) � ci,f /

√
4π [53].

Here ci = gnS1/2 (0)/a3/2
B for the nS1/2 binding electron states

normalized by the condition
∫ ∞

0 drer
2
e [g2(re) + f 2(re)] = a3

B ,
and cf = gS1/2 (0) for the continuum states. The wave function
of the final state has the asymptotic behavior of a plane
wave plus a convergent spherical wave. The functions g(re)
and f (re) are the large and small components of the Dirac
bispinor, aB is the Bohr radius. Similarly, for the P1/2 states we
have ci = fnP1/2 (0)/a3/2

B for the nP1/2 binding electron state,
and cf = fP1/2 (0) for the continuum states. Other electronic
states have close to zero amplitude of the wave functions
at the nucleus and do not contribute to the probability
of the E0 internal conversion. Now the integrals over the
electron coordinate re in Eq. (9) can be easily calculated:∫ R

0 d3re(. . .) = −e2cic
∗
f (−R2/6), and we finally obtain

〈�f |Ĥ (p)
int |�i〉 = −e2

cic
∗
f

6
b
√

1 − b2(〈R2〉i − 〈R2〉f ), (10)

where

〈R2〉i(f ) =
Z∑

p=1

∫
d3{R} �∗

i(f )({R})R2
p�i(f )({R}) (11)

is the mean-square charge radius of the nucleus in the
state i(f ).

The same calculation for the matrix element of the electron–
muon Hamiltonian (4) leads to zero

〈�f |Ĥ (μ)
int |�i〉 = e2

cic
∗
f

6
b
√

1 − b2
(〈
r2
μ

〉
i
− 〈

r2
μ

〉
f

) = 0, (12)

since the muon remains in the 1S1/2 state in the considered
E0 transition, and therefore 〈r2

μ〉i = 〈r2
μ〉f . [We recall that the

muon wave functions ϕi(rμ) and ϕf (rμ) differ only by the spin
projection.]

Substituting Eq. (10) to Eq. (1) and integrating over the
angles d�e we obtain for the probability of the E0 internal
conversion

WE0 = e4m

36π
b2(1 − b2)(〈R2〉i − 〈R2〉f )2|ci |2|cf |2p. (13)

For the E0 transition in the in muonic atom (μ−
1S1/2

229Th)∗

we have

WE0 = e4m

36π
b2(1 − b2)(〈R2〉3/2+ − 〈R2〉5/2+ )2

×2
∑

n

(
|gnS1/2 (0)|2

a3
B

|gS1/2 (0)|2pS1/2

+|fnP1/2 (0)|2
a3

B

|fP1/2 (0)|2pP1/2

)
. (14)

(The factor of 2 on the right hand side is accounted for by two
electrons in each electron shell.) The electron momentum in
the final state is pS1/2(P1/2) = √

2m(ωE0 − EnS1/2(nP1/2)), where
EnS1/2(nP1/2) is the binding energy of the nS1/2(nP1/2) subshell.

042512-3



E. V. TKALYA PHYSICAL REVIEW A 95, 042512 (2017)

0.000 0.002 0.004 0.006 0.008 0.010
0

50

100

150

200

250

0.0 0.2 0.4 0.6 0.8 1.0
-6
-4
-2
0
2
4
6

1/2

x = r/aB

g5S (x)

1/2
gS (x)

1/2
f5P (x)

1/2
fP (x)

gS (x)
1/2

g5S (x)

x = r/aB

1/2

f5P (x)
1/2

fP (x)
1/2

FIG. 2. The electron continuum wave functions gS1/2 and fP1/2

and the binding electron states g5S1/2 and f5P1/2 for the E0 internal
conversion in the Ac atom.

For ωE0 = 370 eV n = 5, 6, and 7 for the nS1/2 states and
n = 5, and 6 for the nP1/2 states.

The muon in (μ−
1S1/2

229Th)∗ is located practically inside
the thorium nucleus. Electronic shell experiences the system
“muon + Thorium nucleus” as the Actinium nucleus of charge
89. The calculation of the electron wave functions in the shell
of the Ac atom was performed using the code developed by
the authors of Ref. [55] on the basis of the codes [56], and then
advanced in Ref. [11]. The results of the electron calculations
are quoted in Fig. 2 and Table I. The precise calculations of the
gi(0) and fi(0) values within the density functional method by
the code [57,58] gave practically the same result.

IV. NUCLEAR MATRIX ELEMENT

To calculate the probability of the E0 transition we need
to know the values of 〈R2〉3/2+ , and 〈R2〉5/2+ . There are
no experimental data about the magnitude of the mean-
square charge radius of the low-lying isomeric state in the
229Th nucleus. Therefore, as an estimation of the difference
〈R2〉3/2+ − 〈R2〉5/2+ , we use the available experimental data
[59] for the mean-square charge radius of the states 5/2+[633]
and 3/2+[631] in the neighboring isotopes of radium (see
Fig. 3).

TABLE I. The amplitudes of the wave functions at the nucleus
(re = 0).

Initial state gi(0) Final state gf (0)

5S1/2 252 S1/2 129
6S1/2 112 S1/2 174
7S1/2 35 S1/2 178

Initial state fi(0) Final state ff (0)
5P1/2 82 P1/2 51
6P1/2 34 P1/2 62
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FIG. 3. Upper panel. The mean-square charge radii (a) of the
even-even nuclei with the atomic number A and the spin 0+, and (b)
the related A + 1 nuclei with the same Z and unpaired neutron in the
ground states 5/2+[633] and 3/2+[631] (data from Ref. [59].) Lower
panel: The quantities β3/2+ and β5/2+ , Eq. (16).

Let us now consider the change of the mean-square charge
radius of the even-even nuclei with the spin 0+ when one
neutron is added to the states 5/2+[633] and 3/2+[631]

d〈R2〉A→A+1

dA
≡ 〈R2〉3/2+(5/2+) − 〈R2〉0+ . (15)

(Notice that in Eqs. (15)–(16) the nucleus with the atomic
number A has the spin 0+ and the mean-square charge radius
〈R2〉0+ . The nuclei with the atomic number A + 1 have the
spins 3/2+ or 5/2+ and the mean-square charge radii 〈R2〉3/2+

or 〈R2〉5/2+ , respectively.)
In Fig. 3 we plot the quantities

β3/2+(5/2+) = d〈R2〉A→A+1

dA

1

R2
03/2+(5/2+)

, (16)

obtained on the basis of the data from Ref. [59]. (The choice
of β3/2+(5/2+) will be justified below.) It can be seen that for
A = 229 the characteristic values of β3/2+(5/2+) are in the range
0–0.003. Therefore, we are led to the relation 0 � |β3/2+ −
β5/2+ | � 3 × 10−3. Since it is impossible to predict the value
of β3/2+ − β5/2+ more precisely using the available data, below
we assume that β3/2+ − β5/2+ � 10−3.

Notice that with the quantities β3/2+(5/2+) introduced in
Eqs. (15) to (16) we have the following relation

〈R2〉3/2+ − 〈R2〉5/2+ = R2
0A=229

(β3/2+ − β5/2+ ) (17)
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FIG. 4. The total electronic factor �tot as the function of the
energy of the E0 transition.

for the 229Th nucleus. Equation (17) now can be substituted in
Eq. (14). (As will be shown below, the difference β3/2+ − β5/2+

coincides with the standard nuclear matrix element, used in the
theory of the E0 transitions.)

V. NUMERICAL ESTIMATIONS AND DISCUSSION

Taking into account obtained estimation for the nuclear part
and the data of Table I for the electron part we calculated the in-
ternal conversion probability in the muonic atom (μ−

1S1/2

229Th)∗

and obtained WE0(370 eV) = 1.6 × 10−13 eV. Correspond-
ingly, the boundary values of WE0 are WE0(400 eV) = 1.9 ×
10−13 eV, and WE0(320 eV) = 3.7 × 10−14 eV.

The graph of the total electronic factor

�tot = WE0/[b2(1 − b2)(β3/2+ − β5/2+ )2]

is represented in Fig. 4 for the entire range of the E0 energy
uncertainty. The increase in the probability of the internal
conversion for ωN > 266 eV is due to the inclusion of the
5S1/2 shell.

The calculated values for WE0 are significantly lower than
the total width of the M1 transition in Fig. 1: W

γ+IC

M1 � 7 ×
10−7 eV [43]. Such a small probability of the E0 transition is
accounted for by the very small difference β3/2+ − β5/2+ . Let
us consider this question in more detail.

From Eq. (17) one can see that the matrix element of the
nuclear E0 transition 3/2+ → 5/2+ in 229Th

ρ(E0; 3/2+ → 5/2+) ≡ β3/2+ − β5/2+

= 〈R2〉3/2+ − 〈R2〉5/2+

R2
0A=229

(18)

is an analog (up to the factor b
√

1 − b2) of the nuclear matrix
element ρf i

ρf i(E0) = 〈f | ∑k ekR
2
k |i〉

eR2
0

, (19)

the well known in the theory of E0 transitions [47]. Note that
ρf i containing the nuclear structure information describes the
strength of the E0 transition.

Typical values of ρ2
f i given in Ref. [47] are 10−1 − 10−3 for

the 0+ → 0+ and 2+ → 2+ transitions. This is 3 to 5 orders of
magnitude greater than the value of ρ2(E0; 3/2+ → 5/2+) for
the 229Th nucleus. However, as we already noted, usually E0
transitions occur between the nuclear levels whose energies
differ by hundreds keV to several MeV. Consequently, the
shape and charge radius of the nucleus in such states may
strongly differ from one another.

The situation is very different for the 229Th nucleus. The
low-lying isomeric state and the ground state are practically
degenerate in energy. They have fairly close configurations in
the quantum numbers of the Nilsson model, and are connected
with each other by the weakly forbidden M1 transition. As a
consequence, the shapes of the 229Th nucleus in these states
and the mean-square charge radii are probably very close. This
view is supported by the mean-square charge radii of the Ra
nuclei in the 3/2+[631] and 5/2+[633] ground states shown
in Fig. 3. Thus, the estimate WE0 � 10−13 eV obtained for the
probability of the E0 transition in 229Th looks conceivable.
However, the final answer can be given only by the experiment.

VI. CONCLUSION

In conclusion, we derived formulas and obtained numerical
estimates for the probability of the E0 transition between com-
ponents of the magnetic hyperfine structure of the ground-state
doublet in the muonic atom 229Th. The mean-square charge
radius of the 229Th nucleus in the 3/2+(7.8 eV) state and the
nuclear matrix element of the E0 transition 3/2+(7.8 eV) →
5/2+(0.0) were estimated from the experimental data for
the mean-square charge radii of the Ra nuclei. The electron
wave functions in the bound and continuum states, as well
as the electronic matrix elements have been calculated using
the atomic computer codes [11,55–58], well-proven in the
calculations of the internal conversion. The anomalously
low probability of the E0 transition in the muonic atom
(μ−

1S1/2

229Th)∗ can be explained by a very small difference

between the mean-square charge radii of the states of the 229Th
ground-state doublet.
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