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Universal scaling relations for the energies of many-electron Hooke atoms
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A three-dimensional harmonic oscillator consisting of N � 2 Coulomb-interacting charged particles, often
called a (many-electron) Hooke atom, is a popular model in computational physics for, e.g., semiconductor
quantum dots and ultracold ions. Starting from Thomas-Fermi theory, we show that the ground-state energy of
such a system satisfies a nontrivial relation: Egs = ωN 4/3fgs(βN 1/2), where ω is the oscillator strength, β is
the ratio between Coulomb and oscillator characteristic energies, and fgs is a universal function. We perform
extensive numerical calculations to verify the applicability of the relation. In addition, we show that the chemical
potentials and addition energies also satisfy approximate scaling relations. In all cases, analytic expressions
for the universal functions are provided. The results have predictive power in estimating the key ground-state
properties of the system in the large-N limit, and can be used in the development of approximative methods in
electronic structure theory.
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I. INTRODUCTION

Scaling relations obtained through the Thomas-Fermi ap-
proach [1,2] provide an efficient way to assess the energetic
properties of many-particle systems, especially in the regime
that is beyond the reach of first-principles electronic structure
methods. On one hand, the prediction of energy components
in atoms, molecules, and electron droplets brings generic
information on the role of electron-electron interactions under
varying particle numbers and confining potentials. On the other
hand, the predictive power up to high particle numbers enables
comparisons with experimental data, as well as benchmark
results for the development of computational techniques.

The harmonic oscillator is one of the cornerstone models
in various fields of physics. In material and condensed matter
physics the three-dimensional harmonic oscillator consisting
of two Coulomb-interacting particles is often called the Hooke
atom (or hookium or harmonium). This system is analytically
solvable, in contrast with its better known counterpart, a
helium atom. The many-electron Hooke atom (HA) consisting
of N > 2 interacting particles is much more complex, and
the solution of its Schrödinger equation requires numerical
methods. In practice, numerically accurate methods such as
exact diagonalization, (quantum) Monte Carlo, and coupled-
cluster schemes are restricted to the few-particle regime.
For tens and hundreds of electrons other electronic structure
methods such as density-functional theory [1,3,4] (DFT)
are needed.

The many-electron Hooke atom is not only a curious
physical example, but also a popular model for semicon-
ductor quantum dots—alongside its numerically simpler two-
dimensional (2D) counterpart—as well as for atomic clusters
and ion plasmas [5]. In quantum dots, for example, it has
been shown that the conduction band electrons are confined
by harmonic potential in a good approximation [6,7]. In this
case, the confinement arises from the semiconductor structure
and external gate voltages.

In recent works, we have shown the existence of universal
scaling relations for the ground-state energy [8], ionization
potentials and electron affinities [9], and the correlation energy

[10] of 2D parabolic quantum dots. Here we turn our attention
to the energies of the three-dimensional (3D), many-electron
Hooke atom. Previous studies on the energy scaling in 3D have
mainly focused on atoms [2,11,12] and atomic ions [13,14].
Thus, in the present work we bridge the gap by considering
scaling relations in a realistic 3D model that has general
applicability for several classes of physical systems.

The paper is organized as follows. In Sec. II we present
the general scaling relation for the ground-state energy of
a Hooke atom based on the Thomas-Fermi approach. In
Sec. III we, first, find a two-point Padé approximant for the
ground-state energy based on an extensive set of reference
results and, second, demonstrate the performance of the scaling
against several sets of numerical results for different ranges of
parameters. In Sec. IV we derive the scaling relations for the
electrochemical potentials and addition energies and, again,
compare the scaling against numerical results. The paper is
summarized in Sec. V.

II. SCALING RELATION FOR THE
GROUND-STATE ENERGY

Here, a HA is defined as a system of N electrons confined
in a three-dimensional harmonic potential vext(r) = ω2r2/2,
where ω is the oscillator strength. Following the procedure
carried out in 2D systems in Ref. [8], the Thomas-Fermi (TF)
energy functional [2] (in the units of ω) can be written as

ETF

ω
=

∫
dr

(
αρ5/3(r) + ρ(r)r2

2

)

+β

∫ ∫
dr dr ′ ρ(r)ρ(r ′)

|�r − �r ′ | , (1)

where α is a numerical constant and β = ω−1/2 is the ratio of
the Coulomb and harmonic-oscillator characteristic energies.
We rescale the radial coordinate r and the density ρ(r) in such
a way that the right-hand side of the normalization condition∫

ρ(r)dr = N (2)
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becomes equal to 1. This leads to the scaling relation

Egs

ωN4/3
= fgs(βN1/2) = fgs(z), (3)

where fgs is a universal function depending on z =
(N/ω)1/2 —a particular combination of the system parameters.
As demonstrated below, the scaling relation in Eq. (3) is
numerically consistent with previous results in the literature
as well as our calculations.

III. NUMERICAL RESULTS AND THE
PADÉ APPROXIMANT

In order to corroborate the scaling property in Eq. (3), we
carry out a large set of calculations within DFT [3,4] and path
integral Monte Carlo [15–20] (PIMC) methods. In the DFT
we apply the OCTOPUS software package [21–25] using the
Perdew-Burke-Ernzerhof [26,27] (PBE) exchange-correlation
functional. The PIMC method is used to obtain highly accurate
many-electron reference data for the ground state. Since PIMC
is a finite-temperature approach, we have chosen a simulation
temperature that accurately describes the ground state, i.e.,
T/TF = 0.025, for all simulations. In order to ensure high
accuracy and an upper bound estimate, we have extrapolated
our PIMC values to the zero time-step limit from the energetics
of six different time steps. Fermi statistics is incorporated by
the use of the so-called free particle nodes within the fixed-
node PIMC formalism [20].

In the DFT calculations we consider the following com-
binations for the confinement strength and the number of
electrons: {ω = 0.1; N = 8,20,58,132,438,1502}, {ω = 0.5;
N = 106,198,398,1490}, and {ω = 1; N = 106,198,440,

790,1100}. With these combinations of ω and N we cover
a wide range of values for the scaling variable z in Eq. (3),
including the important large-N limit. Additionally, for each
system we also compute the ground-state energies {Ni − 1,ωi}
used in the calculations for the electrochemical potentials
defined in Sec. IV.

An analytical expression for fgs(z) in Eq. (3) can be found
with Padé approximants in the large-N limit. We interpolate
the strong-confinement limit with weak correlations as

Egs

ωN4/3
=

limx→∞
b0 + b3x

3 + · · · , (4)

and the weak-confinement limit with strong correlations as

Egs

ωN4/3
=

limx→∞
x2

(
a2 + a0

x2

)
+ · · · , (5)

where x = β1/3N1/6 = z1/3 [28,29]. Now, the P3,2 approxi-
mant, for example, can be written as

P3,2 = b0 + a0x
2

(
1 − 1

1 + q1x + q2x2

)
, (6)

where q1 = b3/a0 > 0 and q2 = a2/(b0 − a0) > 0 with b0 =
(34/3)/4 and a2 = 9/10 [30]. The other two coefficients, a0

and b3, are determined numerically from a two-parameter fit
to our main data set, i.e., a combination of the PBE results for
“intermediate” confinements (ω = 0.5,1.0) and PIMC results
for {ω = 0.5; 2 � N � 9,N = 40}. From the numerical fit,
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FIG. 1. Density-functional (PBE) and PIMC results for the
scaled ground-state energies of HAs as a function of z = (N/ω)1/2

(symbols). The solid line represents the function fgs(z) of Eq. (7).
The fitting region contains systems with ω = 1.0 and ω = 0.5. The
control region contains systems with ω = 0.1.

our scaling relation for the ground-state energy reads

Egs

ωN4/3
= 34/3

4
+ (2.651 × 10−7)z + 0.6197z4/3

1 + (2.946 × 10−7)z1/3 + 0.6885z2/3
,

which, after neglecting the low-order coefficients, leads to

Egs

ωN4/3
= 1.571 + 1.0817z2/3 + 0.9z4/3

1.452 + 1.0z2/3
. (7)

Figure 1 shows the DFT (PBE) and PIMC results for the
scaled Egs (symbols) together with the function fgs (solid line)
in Eq. (7). We can see that the scaling behavior is apparent and
consistent across the parameter ranges of ω and N . Let us
stress that the subset of systems with ω = 0.1 was not used
for the fitting but as “control cases”. In terms of the variable
z, the “control region” is twice the size of the “fitting region”
(see Fig. 1), going from z ≈ 10 to z ≈ 125, i.e., deep into the
strong correlation regime.

Figure 2 shows additional DFT results for Egs to-
gether with the function fgs in Eq. (7). We consider
the local density approximation (LDA) results reported
in Ref. [31]. The systems considered in this case are
{ω = 0.1; N = 8,20,58,100,132,438,800,1200,1500}, {ω =
0.5; N = 100,200,400,800,1206,1490}, and {ω = 1; N =
100,200,440,800,1200,1500}. With these combinations of ω

and N we cover a similar range of values for the scaling vari-
able z in Eq. (3) as for the PBE calculations. These numerical
results agree remarkably well with the scaling relation.

The inset of Fig. 2 shows additional numerical re-
sults from three independent calculations: (1) coupled-
cluster results of Yakobi et al. [32] (ω = 0.5, 2 � N � 60),
(2) diffusion Monte Carlo (DMC) results for few-
particle systems {ω = 0.5, 2 � N � 9} of Wilkens [33],
and (3) DMC results for four-electron systems and ω =
0.5,0.04,0.034,0.028,0.024,0.020,0.014,0.010 of Amovilli
and March [34]. All additional data sets fit very well with
the proposed scaling.

As an additional confirmation of the generality of our scal-
ing relation, the results reported in Ref. [32] for the particular
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FIG. 2. LDA results (symbols) for the scaled ground-state en-
ergies of Hooke atoms with varying confinement strengths up to
N ≈ 1500 in comparison with the scaling function fgs(z) (solid line)
of Eq. (7). Inset: Additional numerical results from Refs. [32–34].

case of ω = 0.5, i.e., Egs(N,ω = 0.5) = 0.5761N5/3, can be
obtained from the large-N expansion of Eq. (7):

Egs(N,ω = 0.5) ≈ 0.5670N5/3 − 0.1127N4/3

+ 0.7534N + · · · O
(

1

N

)1/3

.

Next, in order to assess the accuracy of our scaling relation,
we analyze the relative error of some of our numerical results
with respect to ground-state energies resulting from Eq. (7).
The relative errors of PIMC results for {ω = 0.1; N = 8,20}
are shown in the upper panel Fig. 3 together with some PBE
results. The lower panel of Fig. 3 shows the corresponding
LDA results. The large-N limits were estimated by extrapo-
lating from numerical fits, assuming that the dependence of
relative error on N follows simple power laws. The values are
similar in all cases, meaning that the accuracy of ground-state
energies calculated with Eq. (7) is surprisingly good even at
very weak confinements. Equally surprising is that, in contrast
to the two-dimensional case [35], in 3D the coefficient coming
from the Thomas-Fermi theory, i.e., a2 in Eq. (5), agrees with
the scaling even for small N . We find that for N � 500 the
relative error is always below 1%. In fact, the accuracy of the
obtained scaling relation is so high that, in principle, it could
be used not only to predict total energies of arbitrary Hooke
atoms, e.g., in the large-N limit, but also as a benchmark to
assess the convergence of first-principles calculations.

To find the limits for the applicability of the scaling
relation at very strong electron-electron correlations, we have
compared the scaling against PIMC results for small N and
small ω. In this regime the Coulomb interaction dominates
over the other energy components and the system can be
characterized by Wigner crystallization. In practice, we find
that the computed ground-state energies deviates from the
scaling in Eq. (7) for N = 8 and 0.01 > ω > 0.001, which
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FIG. 3. Upper panel: Relative error of numerical PBE calcula-
tions with respect to ground-state energies resulting from Eq. (7).
Lower panel: Same for LDA calculations. Hooke atoms with varying
confinement strengths and particle numbers up to N = 1500 were
considered (see main text for details).

means that a different value of a2 in Eq. (5) is required to
describe the Wigner regime. It is noteworthy, however, that
these values for ω are much smaller than what has been
estimated for semiconductor quantum dots, for example, where
the confinement strengths are typically around ω � 0.1 [7].

IV. SCALING RELATIONS FOR THE CHEMICAL
POTENTIALS AND ADDITION ENERGIES

Next, we proceed with the scaling of the electrochemical
potential defined as μ(N ) = Egs(N ) − Egs(N − 1). The scal-
ing relations for 2D systems have proven to be rather useful in
the interpretation of Coulomb blockade experiments [9]. The
behavior of chemical potentials—when measured or calculated
from the first principles—also gives useful information of the
shell structure of the system.

From Eq. (3) we obtain

μ ∼ ∂

∂N
Egs = ∂

∂N
[ωN4/3fgs(z)] (8)

or
μ

ωN1/3
= fμ(z). (9)

By approximating fgs(z) with Eq. (7) in Eq. (3) we can express
fμ(z) as

fμ(z) = 3.0423 + 4.1893z2/3 + 4.05653z4/3 + 1.5z2

(1.4524 + 1.z2/3)2
.
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FIG. 4. Scaled chemical potentials (PBE results) of Hooke atoms
as a function of z. The solid line represents the function fμ in Eq. (10).
Inset: Results from additional coupled-cluster (singles and doubles)
calculations of systems with {N = 18,58} and confinement strengths
ranging from 0.1 to 25.0 a.u. [32].

Following the same reasoning, we can proceed with the
addition energy defined as �μ(N ) = μ(N ) − μ(N − 1) =
Egs(N + 1) − 2Egs(N ) + Egs(N − 1). We can now find
an expression

�μ ∼ ∂

∂N
μ = ∂

∂N
[ωN1/3fμ(z)] (10)

or
�μ

ωN−2/3
= f�μ(z). (11)

Function f�μ(z) can also be expressed in terms of two
polynomials, i.e., f�μ(z) = r(z)/s(z), where

r(z) = 1.4723 + 3.0423z2/3 + 5.8916z4/3

+ 4.2569z2 + 1.0z8/3 (12)

and

s(z) = (1.4524 + 1.0z2/3)3. (13)

Figure 4 shows the scaled values of μ as a function
of z, computed from our PBE results. No fitting process
is performed in this case. Similarly to the previous results
for the total energy, we find excellent agreement between
the scaling relation, Eq. (10), and the calculated values of
μ. The additional numerical results calculated within the
coupled-cluster (singles and doubles) method [32] correspond
to the chemical potentials of systems with N = 18,58 and
ω = 0.1,0.5,1.0,2.0,5.0,10.0,25.0 for both N . This additional
data set also agrees very well with the scaling relation (inset
of Fig. 4).

In the case of the addition energies �μ in Fig. 5, we add
three data sets for small electron numbers and ω = 0.5. The
data sets correspond to the LDA, variational Monte Carlo
(VMC), and DMC calculations for {ω = 0.5,2 � N � 9} [33].
The solid line in Fig. 5 corresponds to

�μ(N,ω = 0.5) = v(N )(1.1528N2/3 + 1.0N )−3 (14)
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FIG. 5. Addition energies of few-particle Hooke atoms as a
function of zN (symbols). The results correspond to the local-density
approximation (LDA) within density-functional theory, variational
quantum Monte Carlo (VMC), and diffusion Monte Carlo (DMC).
The solid line represents the function �μ(N,ω = 0.5) in Eq. (14).

with

v(N ) = 0.3682 + 0.9583N1/3 + 2.3381N2/3

+ 2.1285N + 0.6299N4/3, (15)

obtained from f�μ(z) by explicitly substituting z = (N/ω)1/2

and setting ω = 0.5.
The agreement for the addition energies is good except

for two outliers at N = 2 and N = 8, where all the reference
results show large peaks. They correspond to completely filled
energy shells, which are known to be energetically very stable
[7]. The shell effects are beyond the reach of our model based
on the Thomas-Fermi approach, where the kinetic energy is
an explicit orbital-free functional of the density. We expect,
however, that f�μ(z) performs much better in the large-N
limit, where, as in the 2D case [9], jumps in the additional
energy are less pronounced.

V. SUMMARY

In summary, we have used the Thomas-Fermi approach
to derive scaling relations for several energetic quantities of
many-electron Hooke atoms, i.e., three-dimensional harmonic
electron droplets consisting of N � 2 interacting electrons.
The analytic scaling relations have been supplemented by
density-functional results to determine the parameter values
in the scaling. The obtained full expressions for the total
energy, electrochemical potential, and addition energy have
then been compared to additional results obtained with
alternative methods such as coupled-cluster calculations and
variational, diffusion, and path-integral Monte Carlo methods.
In most cases, excellent numerical agreement has been found
throughout a large regime of parameter values, excluding
extremely weak confinements (strong correlations).

The obtained scaling relations are useful to assess energetic
quantities of very large harmonically confined systems that
are beyond the reach of current electronic structure methods.
Moreover, the accuracy of the scaling provides a way to
assess the accuracy of the convergence obtained within a first-
principles method. Given the general character of the scaling
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properties, they could be employed in the developments of
density functionals for the exchange and correlation, or as a
starting point for approximations in self-consistent orbital-free
methods. The present work can be continued in different direc-
tions: for example, to study how the obtained scaling relations
are affected by anharmonicity effects in the external
potential.
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