
PHYSICAL REVIEW A 95, 042509 (2017)

Photoelectron recoil in CO in the x-ray region up to 7 keV
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Carbon 1s photoelectron spectra of CO molecules in gas phase were recorded in the tender x-ray energy
range, from 2.3 to 6.9 keV. The intensity ratios of individual peaks from ν = 0 to 3 within the vibrational
progression of the C 1s photoelectron spectrum were determined at the various photon energies and are shown to
be strongly affected by the photoelectron recoil effect. The experimental vibrational intensity ratios are compared
with theoretical predictions at different levels of accuracy. Developments of the recoil model, using generalized
Franck-Condon factors, rovibrational coupling, Morse potential energy curves, and accurate angular averaging
are presented and applied to the analysis of the experimental results.
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I. INTRODUCTION

The carbon monoxide molecule has been the source for
many new observations and physical insights obtained by core-
level x-ray ionization or excitation. As a common diatomic
molecule, its neutral ground state has been characterized
with high precision, and its core-ionized states have been
investigated by numerous experimental and theoretical works.
The carbon 1s photoelectron spectrum of CO is characterized
by a clearly defined single vibrational progression with levels
up to ν = 3 easily visible and it is thus well suited for studying
the interplay of the electronic transitions and changes in the
molecular geometry. In our recent paper [1], the intensity ratios
of the peaks (v = 1/v = 0) in the C 1s photoelectron spectrum
were obtained over an extended photoelectron kinetic-energy
range from the C 1s ionization threshold up to 1200 eV. In the
simplest approximation, once beyond the resonance effects
very close to the threshold, the vibrational peak ratios in
the photoelectron spectra (referred to as the v ratios from
here on) are expected to be independent of the electron
kinetic energy. They are expected to be determined by the
Franck-Condon factors, which reflect the changes in molecular
geometry upon core ionization; in this particular case the
vibrational progression arises from the contraction of the C-O
bond. The excitation arising from this source is referred to as
“Franck-Condon” excitation.

A more careful inspection of the dependence of the v

ratios on the photoelectron kinetic energy reveals pronounced
oscillations hundreds of eV above the ionization threshold and,
at even higher energies where these oscillations dampen, the
v ratios continue to increase steadily. We have demonstrated
by theoretical modeling [1] that the oscillatory behavior of
the v ratios, observed also in several other molecules [2–4],
is caused by photoelectron scattering on neighboring atoms.

The outgoing electron wave from the emitter atom is scattered
by the molecular potential; the scattered wave then interferes
with the original one and, depending on the wavelength of the
electron waves, this interference leads to periodic suppression
or enhancement of the wave amplitude. The oscillations in
the v ratio are a manifestation of that interference pattern,
persisting even after averaging over all electron emission
directions, but the higher-order interference terms at shorter
wavelengths (higher kinetic energy) quickly dampen.

Another effect, superimposed on these oscillations, is a
continuous increase of the v ratio of the intensity of the
ν = 1 peak over ν = 0, R10. This increase is caused by
the photoelectron recoil effect, where some of the available
energy is transferred into internal motion—vibrations and
rotations—of the molecule [5–8]. Upon photoionization, an
electron is ejected with a certain momentum, and the molecular
ion is left with a corresponding equal and opposite momentum,
referred to as the “recoil” momentum. Core-level electrons
such as C 1s, which do not participate in molecular bond
formation, can be viewed as essentially atomic, bound to a
single atomic nucleus. Crucially then, the recoil momentum
is initially attached to that particular nucleus, as well as
to the center of mass of the entire molecule. Simple total
momentum conservation then dictates how this momentum is
shared between the translational recoil of the entire molecule
and the excitations of the internal degrees of freedom. Since
increasing the photoelectron energy also increases the recoil
momentum, the momentum and energy transferred to the
internal motion also increases. Quantum mechanically, this
is seen as an increase in the excitation probabilities of higher
vibrational levels, in addition to the Franck-Condon excitations
that are always present when the molecular potential changes,
independently of the photoelectron energy.
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The energy range over which the v ratios of gas-phase
molecules can be investigated is limited by experimental
factors—decreasing photoionization cross sections, low trans-
mission of electron analyzers at high energies, difficulties in
obtaining sufficient energy resolution and, most importantly,
lack of suitable x-ray sources for gas-phase electron spec-
troscopy. The earlier investigations of photoelectron recoil
effects were carried out at soft x-ray synchrotron radiation
beamlines dedicated to gas-phase experiments. The grating
monochromators used at these sources limit the practical
photon energy range to 1500 eV or less. The present study
was carried out at the GALAXIES beamline of the SOLEIL
synchrotron which, by combining a crystal monochromator
with a gas-phase experimental arrangement and with a
dedicated high-energy electron analyzer, dramatically extends
the practicable energy range to about 10 keV—covering the
so-called tender x-ray region. An advantage of the broader
energy range is that it provides an opportunity to obtain reliable
data on the v = 0 → 2 and v = 0 → 3 transitions, which
have not been previously available. Whereas the intensity for
the v = 0 → 1 transition varies approximately linearly with
the photoelectron energy, the photoelectron energy depen-
dence of the v = 0 → 2 and v = 0 → 3 intensities is de-
scribed by quadratic and cubic polynomials, respectively, and
this behavior becomes apparent only at higher energies than
have heretofore been available.

In the tender x-ray region, the steadily increasing recoil
effects are transformed from slight modifications to the
Franck-Condon-determined vibrational profiles into a major
factor determining the v ratios. Consequently, more stringent
tests of our current assumptions are possible and more precise
models need to be implemented. Here we discuss a model to
deal with these theoretical questions and then compare the
theoretical predictions with our experimental results. Finally
we consider some further details and implications of the
theoretical model.

II. RECOIL MODEL

Recoil energy and excitations

To see how the photoelectron recoil affects the molecular
excitation we consider the ejection of a photoelectron with
kinetic energy Ekin and linear momentum �pe from atom A

of a diatomic molecule AB. Momentum conservation requires
that the whole molecule undergo a momentum change � �pM =
− �pe, which leads to a change in the translational motion of
its center of mass. This results in an increase in the average
translational energy of the molecule of �Etrans = p2

e /(2M),
where M is the molecular mass. On the other hand, the recoil
energy of the emitter atom, �EA = p2

e /(2MA), is larger than
�Etrans. The energy difference between these, which we refer
to as Erec, goes into internal excitation of the molecule and is
given in Eq. (1):

Erec = �EA − �Etrans

= p2
e

2M

MB

MA

= Ekin
mMB

MMA

, (1)

where m is the electron mass. For a diatomic molecule this
internal excitation divides between vibrational and rotational

excitation according to the projection of �pe on the molecular
axis. Thus

Evib = Erec cos2 θ, (2)

Erot = Erec sin2 θ, (3)

where θ is the angle between �pe and the molecular axis.
We see from Eqs. (1)–(3) that the internal excitation

increases linearly with the photoelectron kinetic energy. For
a typical photoelectron spectrum the vibrational structure is
resolved but the rotational structure is not. To measure the
recoil-induced rotational excitation it is necessary to measure
the shift of peak centroids relative to an internal standard, as has
been done for the valence photoelectron spectrum of N2 [9,10].
For vibrational excitation it is possible to measure this effect
by recognizing that the recoil-induced vibrational excitation
[Eq. (2)] must be reflected in the excitation probabilities
of the vibrational energy levels—that is, in the Franck-
Condon factors. From an experimental point of view these
probabilities are conveniently represented by intensity ratios,
Rv0 = Iv′/Iv′=0, where Iv′ is the observed intensity for the
indicated peak in the spectrum.

These ratios are affected by Franck-Condon excitation,
by recoil-induced vibrational excitation, and by the effects
of the recoil-induced rotational excitation on the final-state
vibrational wave functions. In addition, the experimental
intensities are determined in systems where the molecules are
randomly oriented with respect to the photoelectron direction.

An appropriate theoretical model must take all of these
effects into account and we discuss such a model in the
following section. However, even without a detailed model
certain qualitative conclusions can be drawn and we discuss
these in the following paragraphs.

Take CO as an example and assume for simplification that
it has zero angular momentum and that we can ignore the one
unit of angular momentum associated with dipole ionization.
Since the equilibrium bond length shrinks upon ionization,
there will be some Franck-Condon profile of vibrational states
excited even at low energy excitation. At higher energies
we must take into account the recoil-induced ionization. For
emission at 0◦ to the molecular axis, there will be an increase
in the vibrational energy, but no change in the energies
of the individual vibrational states. Therefore, the increase
in vibrational energy must appear as a modification of the
Franck-Condon profile, which becomes shifted to a higher
average value of the vibrational quantum number, v′. For
emission at 90◦ there will be excitation of rotational motion,
leading to a final-state angular momentum of J ′ given by
J ′(J ′ + 1)h̄2 = (pR)2, where p is the recoil momentum in
the center-of-mass system and R is the equilibrium bond
length. Within the rigid-rotor approximation, the final-state
vibrational wave function is independent of J ′, with the result
that the Franck-Condon factors are the same in this case as
they are for the case of no recoil-induced excitation. However,
the rovibrational energies are shifted to higher values by
the rotational energy J ′(J ′ + 1)h̄2/(2μR′2), where R′ is the
equilibrium bond length for the ionized molecule and μ is the
reduced mass of the molecule.
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Thus, we see that the rovibrational profile is dependent
on the angle of emission of the photoelectron with respect
to the molecular axis. For 0◦ the rovibrational energies
are approximately equal to h̄ω′(v′ + 1/2), where ω′ is the
vibrational frequency, and the Franck-Condon profile is shifted
to higher values of v′. At 90◦ the rovibrational energies are ap-
proximately equal to h̄ω′(v′ + 1/2) + J ′(J ′ + 1)h̄2/(2μR′2),
but the Franck-Condon factors are approximately the same as
the no-recoil values. So far, there has been no observation of
these angularly resolved profiles; the only measurements are
for angle-averaged profiles. In interpreting these experiments,
it is necessary, therefore, to calculate these angle-averaged
profiles and to do this we need predictions of the profiles over
the angular range from 0◦ to 90◦.

In closer detail, the picture outlined above is not quite
correct. The portion of the recoil energy that goes into
internal excitation, Erec, is equal to p2/(2μ). For emission
at 90◦ the angular momentum is, as noted above, given by
J ′(J ′ + 1)h̄2 = (pR)2 = 2μErecR

2. The rotational energy of
the ionized molecule is

J ′(J ′ + 1)h̄2/(2μR′2) = ErecR
2/R′2. (4)

For carbon 1s ionization of CO, R′ < R, with the result that the
rotational excitation is higher than the recoil energy. This extra
energy arises from Coriolis coupling. As the newly formed
rotating molecule shrinks from the equilibrium bond length
of the neutral molecule to the equilibrium bond length of the
ionized molecule, the Coriolis interaction leads to a transfer
of energy from the vibrational mode to the rotational mode.
Thus, the average rotational energy is larger than the recoil
energy by Erec(1/R′2 − 1/R2) and the average vibrational
energy is smaller than the energy expected from the usual
Franck-Condon factors by the same amount. The existence
of this effect of the Coriolis coupling has previously been
explored from a classical point of view [11]. In order to see
this effect from a quantum mechanical point of view, it is
necessary to explore the effects of the angular momentum on
the eigenvalues and eigenfunctions of the rotating oscillator as
well as on the Franck-Condon factors that connect the rotating
ionized molecule to the initial neutral molecule.

III. THEORETICAL MODELS

A. Generalized Franck-Condon factors

If we are not concerned with recoil-induced excitation of
vibrational motion, then the relative intensities, Iv′ , of the
rovibrational peaks are given by the usual Franck-Condon
factors, FCF:

Iv′ ∝ FCF =
∣∣∣∣
∫

ψ ′
v′J ′ (r)ψv=0J (r)dr

∣∣∣∣
2

, (5)

where r is the coordinate along the bond direction. The
unprimed symbols refer to the initial state, assumed to be
in its vibrational ground state, and the primed symbols refer to
the ionized state.

The wave functions ψvJ are the r-dependent vibrational
wave functions for the molecule or ion [12]. If the effects
of rotation are included, they are also J dependent and are

eigenfunctions of the Hamiltonian

Ĥ = Ĥ0 + J (J + 1)h̄2

2μr2
, (6)

where Ĥ0 is the Hamiltonian for the oscillator in the absence
of angular momentum.

In order to include the effects of recoil-induced excitation it
is necessary to use generalized Franck-Condon factors [13,14]:

Iv′ ∝ GFCF(v′,J ′,v,J,p,θ )

=
∣∣∣∣
∫

ψ ′
v′J ′ (r)eirp cos θ/h̄ψv=0J (r)dr

∣∣∣∣
2

. (7)

Here p is the magnitude of the recoil momentum (in the
center-of-mass system), and θ is the angle of emission of the
photoelectron with respect to the molecular axis.

For comparison between experimental observations and
predictions it is necessary to average Eq. (7) over the initial
values of J and the emission angles θ , and to sum it over the
final values of J ′. For the case at hand, this procedure is more
complicated than is necessary. First, in a typical core-electron
photoelectron spectrum, the rotational states are not resolved.
Second, for high-energy photoelectrons J ′ is likely to be much
larger than J . Accordingly, it is appropriate to introduce the
simplifying approximations that the initial angular momentum
is zero and that the one unit of angular momentum associated
with the dipole ionization can be ignored. Then the term
in J disappears from the initial-state Hamiltonian and we
can replace J ′(J ′ + 1)h̄2 with (pR)2 sin2 θ in the final-state
Hamiltonian [15]. We can rewrite Eq. (7) as

GFCF(v′,J ′ = pR sin θ,v = 0,J = 0)

=
∣∣∣∣
∫

ψ ′
v′pR sin θ (r)eirp cos θ/h̄ψ00(r)dr

∣∣∣∣
2

. (8)

The left-hand wave functions are eigenfunctions of the
Hamiltonian

Ĥ = Ĥ0 + (pR)2 sin2 θ

2μr2
. (9)

The right-hand wave function is the ground-state wave
function for the neutral molecule.

Evaluation of the generalized Franck-Condon factors,
Eq. (8), requires that we specify a model and its Hamiltonian.
Two possibilities are considered in the following two sections:
the linear-coupling model with a rigid rotor, and a Morse
potential plus an angular momentum term.

B. Linear-coupling rigid-rotor model

Before looking at the generalized Franck-Condon factors
in detail, we consider first a simple model that illustrates the
main features of the results that will be seen in the more exact
calculations. This is the linear-coupling model, which assumes
that the initial- and final-state wave functions are harmonic
oscillator functions and that the characteristic frequency for
the oscillators, ω, is the same for both initial and final states.
In addition, for this approximation, we also assume the rigid-
rotor approximation, with the result that the effects of the
rotational motion on the wave functions are ignored. These
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approximations lead to a semiquantitative picture of what to
expect from the more general results.

For the linear-coupling model, the generalized Franck-
Condon factors for the transition from the ground vibrational
state of the neutral molecule to vibrational state v′ of the ion
are given by a Poisson distribution [14].

Pv′ = Sv′
e−S/v′! (10)

S includes a contribution from Franck-Condon excitation SFC ,
arising from the change in equilibrium bond length between
the initial and final states, and a recoil contribution Srec, arising
from the recoil-induced excitation of vibrational motion. SFC

can be calculated from the change in bond length, and Srec =
Erec cos2 θ/(h̄ω). The cos θ dependence arises because only
the component of the recoil momentum along the molecular
axis contributes to the vibrational excitation, as indicated in
Eq. (2). The two terms are additive [14], and we have

S = SFC + Erec cos2 θ/(h̄ω). (11)

We see immediately the result discussed qualitatively above,
that the generalized Franck-Condon distribution broadens (S
increases) as cos θ increases and more of the recoil momentum
contributes to motion along the molecular axis.

For θ > 0 there will be rotational as well as vibrational
excitation, and, as a consequence, the rovibrational energies
will be given by the expression

E(v′,J ′) = (v′ + 1/2)h̄ω + J ′(J ′ + 1)h̄2

2μR2

= (v′ + 1/2)h̄ω + Erec sin2 θ. (12)

The factor of sin2 θ arises because only the component of
recoil momentum perpendicular to the molecular axis gives
rise to rotational excitation, as indicated in Eq. (3). The
difference between R and R′ is ignored for this example,
which is intended to be illustrative rather than quantitative.
This approximation is consistent with the rigid-rotor model.
The average value of the excitation energy is given by

〈E(v′,J ′)〉 =
∑
v′

E(v′,J ′)
Sv′

e−S

v′!
(13)

= SFCh̄ω + Erec + h̄ω/2. (14)

Equation (14) is obtained by substituting Eqs. (11) and (12)
into Eq. (13). Thus the average energy (centroid of the
rovibrational distribution) is independent of the angle of
emission and is equal to the zero-point energy plus the
Franck-Condon excitation and the recoil excitation.

By a similar exercise we can show that the variance of the
rovibrational distribution is given by the following expression:

〈E(v′,J ′)2〉 − 〈E(v′,J ′)〉2

= (h̄ω)2S = (h̄ω)2SFC + h̄ωErec cos2 θ. (15)

Thus the centroid of the rovibrational distribution is indepen-
dent of θ , but the variance of the distribution varies linearly
with cos2 θ . These features will be seen in the more detailed
results discussed below.

From an experimental point of view, it is relatively easy
to make a precise measurement of the centroid of an isolated

peak, or even the centroids of overlapping peaks of comparable
intensity. However measuring the centroid for the entire
rovibrational profile is difficult because of the low intensity
of the peaks for higher values of v′. These may be too small
to provide reliable information, but because of their high v′
values they make significant contributions to the centroid.
This problem is even more acute for determining the variance.
An alternative approach has been to measure the intensity
ratios Rv0 = Iv′/I0, which can be used as measures of the
recoil-induced excitation, and this is the quantity reported in
our experimental results.

For a Poisson distribution we have the following relation-
ships:

Rv′0 = [SFC + Erec cos2 θ/(h̄ω)]v
′
/v′!, (16)

R10 = SFC + Erec cos2 θ/(h̄ω), (17)

R20 = S2
FC/2 + SFCErec cos2 θ/(h̄ω)

+ [Erec cos2 θ/(h̄ω)]2/2, (18)

and thus we can expect R10 to vary linearly with cos2 θ with a
slope equal to Erec/(h̄ω) and an intercept equal to SFC . For R20

we have a quadratic relationship, Eq. (18). The first term in this
expression arises from direct excitation of the v′ = 2 state via
normal Franck-Condon excitation. The second term represents
the process where one unit of the change in v′ comes from
Franck-Condon excitation and one unit from recoil-induced
excitation. The third shows the contribution of two units of
excitation by recoil. For the case of CO, the Franck-Condon
excitation is strong, with the result that the energy dependence
of R20 is dominated by the linear term for small values of Erec.
We will see these features in the more detailed calculations
presented below.

The discussion above is appropriate for a particular value
of θ , that is for a system where the orientation of the molecule
with respect to the photoelectron is known. However, the
measurements that have been made so far on recoil effects have
involved randomly oriented molecules, and it is, therefore,
necessary to find appropriate angular averages. A convenient,
but approximate, approach is to average Rv0 over angles,
assuming an isotropic distribution of the photoelectrons in
the molecular frame. For R10 this gives

〈R10〉 = SFC + Erec

3h̄ω
. (19)

This expression, which since Ref. [7] has been used to
predict recoil-induced vibrational excitation, indicates that the
observed value of R10 should vary linearly with the recoil
energy and with the photoelectron energy.

However, the measured quantity, 〈R10m〉, is not 〈R10〉 but
〈Iv′ 〉/〈I0〉 = 〈GFCFv′ 〉/〈GFCF0〉. For the linear-coupling
model we show in the Appendix, Eq. (A9), that

〈R10m〉 = SFC + Erec

3h̄ω
− 4

5

(
Erec

3h̄ω

)2

. . . . (20)

For low values of the recoil energy 〈R10m〉 follows the linear
dependence of Eq. (19), but at higher values of Eexc there is a
downward quadratic trend. We will see precisely this behavior
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in the results of the more accurate calculations described
below.

The previous discussion has ignored the effects of the
rotational motion on the generalized Franck-Condon factors
and on the intensity ratios. The ion is initially created with
angular momentum J ′ in a vertical transition at the equilibrium
bond length R of the neutral molecule. The rotational energy is
J ′(J ′ + 1)h̄2/(2μR2). As the molecule contracts towards the
equilibrium bond length of the ion R′, the angular momentum
remains constant but the average rotational energy increases
to J ′(J ′ + 1)h̄2/(2μR′2). The additional energy comes from
the vibrational energy via Coriolis coupling, with the conse-
quence that the average vibrational energy is lowered by the
amount J ′(J ′ + 1)h̄2(R2/R′2 − 1)/(2μR2). This change must
be reflected in the generalized Franck-Condon factors.

We can use the approach that the generalized Franck-
Condon factors are given approximately by a Poisson dis-
tribution to gain some insight into this question. As described
in the Appendix, Eq. (A8),

〈R10mJ 〉 = SFC + (1 − 2f )
Erec

3h̄ω
− 4

5

(
(1 + f )

Erec

3h̄ω

)2

. . . ,

(21)

where 〈R10mJ 〉 is the predicted value of the observed ratio
including the effects of rotation, and f = R2/R′2 − 1 = 0.093
for CO. Thus the coefficient of the linear term in Eq. (20) is
expected to be decreased by the Coriolis effect by about 19%,
and the coefficient of the quadratic term is expected to be
increased by about the same amount. We will see that this is
indeed the case for the more accurate calculations.

The linear-coupling model thus provides a framework
within which to understand the results of the more accurate
calculations.

C. Morse model

For a more detailed study the linear-coupling rigid-
rotor model is replaced by a Morse model. The Morse
potential is completely characterized by the frequencies ωe

and ωxe, and the radius parameter re. For neutral CO,
ωe = 2169.813 58 cm−1, ωxe = 13.288 31 cm−1, and re =
1.128 323 Å [16]. For illustrative examples of the theoretical
results we have used the following values for carbon 1s

ionized CO: ω′
e = 2456.765 cm−1, ωx ′

e = 10.001 cm−1, and
r ′
e = 1.079 005 Å [1].

It is necessary to average Eq. (7) over the initial values
of J and over the angle θ and to sum over the values of J ′.
For the case at hand, however, we can introduce a simplifying
approximation. At room temperature, the initial values of J

are small, whereas at the photoelectron energies considered
here J ′ is large. Accordingly, we use the approximations that
J = 0 and that the one unit of angular momentum associated
with the photon can be ignored. In this case, we can set J ′ ≈
pR sin θ/h̄, or, more accurately, J ′(J ′ + 1) = p2R2 sin2 θ/h̄2,
where R is the equilibrium bond length in the neutral molecule.

The wave functions ψ ′
v′J ′ (r) and ψv=0J (r) in Eq. (7) are

eigenfunctions of the Hamiltonian Ĥ [Eq. (6)], where Ĥ0 is
the Hamiltonian for the oscillator in the absence of angular
momentum. For the present analysis Ĥ0 is based on the

Morse potential. The eigenfunctions and eigenvalues for this
Hamiltonian must be evaluated numerically. For this we have
used the Numerov method, using a procedure created by
Mueller and Huber [17] for Maple. For the ground state,
the only eigenfunction needed is for v = 0 and J = 0. For
the ionized state it is necessary to consider a range of v′
values and a value of J ′ appropriate to the recoil energy
and angle being considered according to the relationship
J ′(J ′ + 1) = (pR)2 sin2 θ/h̄2. Once suitable wave functions
have been calculated it is straightforward to evaluate the
generalized Franck-Condon factors using Eq. (8). For the
ionized state we also consider a rigid-rotor Hamiltonian

Ĥ = Ĥ0 + J (J + 1)h̄2

2μR′2 , (22)

where R′ is the equilibrium bond length for the ion. In this
case, the wave functions do not depend on J ′, and are simply
Morse functions, and the eigenvalues are the Morse values
plus J (J + 1)h̄2/(2μR′2).

The eigenvalues are nearly the same for both rigid and
nonrigid rotors, differing primarily in the contribution from
vibration-rotation interaction, which is present for the nonrigid
rotor and absent for the rigid rotor. For the current example
this is quite small. When the rovibrational wave functions
are used in calculating the GFCFs, the vibrational excitation
probabilities and the v ratios are decreased in comparison to
the calculation with purely vibrational wave functions of a
rigid rotor. The vibrational ratios are lower for the nonrigid
rotor because of Coriolis coupling between the rotational
and vibrational modes. The role of the Coriolis interaction
is discussed in more detail below and in Ref. [11].

A comparison of the calculated ratios with the observed
ones is presented in the following section. A more detailed
view of theoretical results is presented in a subsequent section.

IV. EXPERIMENTAL PROCEDURES AND RESULTS

A. Experimental procedures

The results were obtained at the SOLEIL Synchrotron,
France, on the GALAXIES beamline equipped with an end
station dedicated to hard and tender x-ray photoelectron
spectroscopy [18,19]. Linearly polarized light is provided by
a U20 undulator and monochromatized by a Si(111) double
crystal monochromator. At some energies it was necessary
to reduce the photon flux at the sample in order to avoid
nonlinearity effects associated with the readout of the charge-
coupled device (CCD) detector of the Scienta spectrometer.
This was achieved by introducing Al foil filters of 6 and 12 μm
thickness into the beam. The CO sample and the calibration
gas argon were introduced into a differentially pumped gas
cell.

The photoelectron spectra were recorded by a large
acceptance angle EW4000 Scienta hemispherical analyzer,
optimized for high kinetic-energy measurements. The spec-
trometer was mounted with the lens axis colinear with the
polarization vector of the x rays. In this experiment, the
spectrometer was operated at 100-eV pass energy and with
the entrance slit of 0.3 mm, except for the photon energy of
6900 eV, at which the larger slit of 0.5 mm was used.
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FIG. 1. Carbon 1s photoelectron spectra of CO at (a) hν =
400 eV, (b) hν = 2300 eV, and (c) hν = 6900 eV. Circles: experiment;
red curves: vibrational peaks; blue curve: their sum.

B. Data analysis

The primary goal of the analysis of the photoelectron
spectra was to extract accurate values for the v ratios. In
the earlier experiments using the soft x-ray excitation, the
combined total energy resolution was sufficient to resolve
the vibrational progression in the C 1s spectra, which has
the ν = 0–1 peak spacing of 302 meV—see Fig. 1(a). This
figure shows, for reference, a C 1s photoelectron spectra
recorded at hν = 400 eV at the PLEIADES beamline of the
SOLEIL synchrotron, previously analyzed and reported in
Ref. [1]. The Lorentzian lifetime broadening of 92 meV and the
vibrational spacings for ν = 0–3 were obtained from the least-
squares curve fitting of this spectrum; these values were then
used in analyzing the new spectra at the tender x-ray region.

TABLE I. Spectral linewidths in C 1s photoelectron spectra, as
Gaussian full width at half maximum (FWHM) (in meV). Dplrt and
Dplrr refer to the translational and rotational Doppler broadenings,
respectively.

hν(eV) Instr. Dplrt Dplrr Total Fitted

2300 195 106 99 243 253
2500 200 111 104 251 261
2700 231 116 109 280 290
3000 252 123 115 303 310
6900 210 192 180 337 344

In the tender x-ray range various contributions to the prac-
tically obtainable resolution combine to make the progression
unresolved—see Figs. 1(b) and 1(c). The v ratios can still
be extracted using least-squares curve fitting, but only with
careful application of constraints in order to reduce the number
of free parameters and to increase reliability.

At each photon energy (spectra for hν = 2500, 2700, and
3000 eV are not shown in Fig. 1), a calibration spectrum of Ar
2p photoelectrons was measured with the same settings as for
CO. The Ar 2p spin-orbit doublet was fitted with Voigt profiles
using the SPANCF macros for Igor Pro [6,20]. It became
apparent that in the photon energy range from 2300 to 3000 eV
a single profile could not give a satisfactory representation of
the spectral peaks, due to the fact that the photon band from
the double-crystal monochromator strongly deviates from the
Gaussian shape. However, a statistically near-perfect fit was
obtained by using two Voigt profiles of equal Gaussian and
Lorentzian widths for each peak. The intensity ratio and energy
separation of these two profiles then gave a template for
the instrument function, to be applied to the analysis of the
CO 1s spectra. The individual peaks in Fig. 1(b) are in fact
composites of two Voigt profiles, obtained as described above.
The Ar 2p photolines recorded at hν = 6900 eV, on the other
hand, are well described by single Voigt profiles. Here, the
monochromator is operated at the third order of diffraction and
the optical conditions produce a Gaussian-like photon band.
Thus the corresponding CO 1s spectra in Fig. 1(c) were also
fitted with a single Voigt profile per peak.

Neither the Lorentzian nor Gaussian widths of the Voigt
profiles can be directly transferred from the Ar 2p results.
The former differs due to different core-hole lifetimes. In
the curve fitting, the fixed value of 92 meV from the
reference spectrum at hν = 400 eV was used. The latter has
contributions, in addition to the purely instrumental ones from
the monochromator and electron analyzer, also from both
the translational and rotational Doppler broadenings, which
are sample specific. The instrumental contribution can be
derived from the Ar 2p spectra after removing the translational
Doppler broadening for argon. These various contributions
are summarized in Table I. As can be seen, the convolution
of the three contributions (total) accounts fairly well for the
experimental (fitted) Gaussian component of the peak width.

C. Vibrational intensity ratios

The intensity ratios were calculated from the intensities
for the first four peaks in the vibrational progression. These
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FIG. 2. v ratios in the C 1s photoelectron spectra. Blue circles:
earlier measurements [1]; red filled circles: present data and the
reference at hν = 400 eV. Dashed black line: LCM; dash-dotted black
line: harmonic oscillator; thin red line: Morse oscillator; thick red
line: Morse oscillator with rovibrational coupling. Dotted green line
in panel (a) (mostly overlapping with the “Morse” curve) is static
exchange density functional theory (DFT) scattering calculations
extended from Ref. [1].

intensities were obtained from the spectra by least-squares
curve fitting as described above. In addition to the peak
intensities, the energy of the ν = 0 peak, the common Gaussian
width and the background intensity were the adjustable
parameters in the fit. The v ratios R10, R20, and R30 are shown
in Fig. 2 together with their values in the soft x-ray range
from earlier measurements (for R10 and R20) [1]. The error
bars represent the statistical uncertainty in the peak intensity
values; an additional systematic component to the error can

arise from uncertainties in the peak separation values or in the
Lorentzian lifetime width.

The figure also shows theoretical predictions at various
levels of accuracy. The lower-accuracy models are included
for two reasons: they have been used in the analysis of the
recoil effects in earlier publications [1], they are also easier to
apply and computationally much less demanding.

First, the dashed lines in Fig. 2 represent the v ratios
obtained using the linear-coupling model as presented in
Sec. III B, with the ground-state fundamental frequency of
269.0 meV and the bond contraction of �R = −5.0 pm. This
calculation also neglects the effects of molecular rotation.
The averaging over the electron emission angles in the
molecular frame, however, was done accurately, according to
Eq. (20) (and similar expressions for the higher v ratios). The
accurate angular averaging is the cause of the visible deviation
downwards from the expected linear form of R10 and has a
similar effect on the other curves. The curves have a significant
vertical offset with respect to the experimental values for both
R10 and R30, although they happen to match very well with
the experiment in the case of R20. These offsets are due to
the neglect of both the anharmonicity and the change of the
frequency. On the other hand, the slope of the curves is in
a good agreement with the data points, which suggests that
the linear-coupling model, although crude, is still useful as an
easy-to-apply first estimate of the recoil-induced vibrational
excitations even in the tender x-ray range.

The next step towards a more accurate model is given by
the dash-dotted black line in Fig. 2 (labeled “harmonic”),
which represents the v ratios obtained using the generalized
Franck-Condon factors (GFCFs) as described in Sec. III A. The
model now accounts for the fundamental frequency change
from 269.0 to 301.9 meV upon core ionization but retains the
harmonic oscillator approximation. The calculation also still
does not include the effects from molecular rotations. Although
the simple formulas of the LCM model are not applicable
any more, analytical forms of the harmonic wave functions
can be used in GFCFs. The result is a clear improvement for
R10, but is much worse for R20 and R30 in terms of vertical
offsets. However, the recoil-related behavior (the slopes) does
not change from the linear-coupling model. This is expected,
since it is the ground-state fundamental frequency, not that
of the ionic state, that affects the strength of the recoil
excitations [14].

Next, wave functions obtained numerically from Morse
potential-energy curves were used in calculating the GFCFs
and v ratios (thin red lines in Fig. 2), giving a good agreement
with the experiment both in offsets and slopes (except for
the high-energy point in R30). For the ground state the
parameters of the Morse potential are re = 1.128 323 Å,
h̄ωe = 0.269 022 eV, and h̄ωxe = 0.001 647 54 eV [16]. These
are the same values that we have used to obtain the results
described in the theoretical section.

For the ionized state we have derived new values for h̄ω′
e

(0.3057 ± 0.0004 eV) and h̄ωx ′
e (0.001 89 ± 0.000 15 eV)

from analyzing ten low-energy, high-resolution spectra for
C 1s ionization of CO, taken at various times and various
synchrotron facilities (ALS, MAX II, SPring-8, and SOLEIL).
The value for r ′

e can be determined from reported values of
the bond-length change, �R, which are close to −5.0 pm.
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However, almost all of these values are based on analysis
of vibrational spectra for core-ionized CO in the low-energy
region, where the intensities are strongly affected by scattering
and interference. Consequently we have chosen to use the
value of −4.96 pm, which has been obtained in a multirefer-
ence average coupled-pair functional calculation [21], and is
independent of these effects.

Accurate angular averaging was performed numerically,
first calculating the GFCFs for a range of emission angles
relative to the molecular axis for each emission energy and
then averaging with the weighting factors that correspond to
an isotropic distribution.

Finally, we add the effects of molecular rotations, as dis-
cussed in Sec. III. This is the computationally most expensive
model, requiring numerical integration of the rovibrational
wave functions of the core-ionized state for every emission
energy and angle. For the ground state, according to the
approximations described in Sec. III, we need only the single
wave function ψ00. The thick red curves representing this
model show the expected behavior—that the slopes of the
v ratios are lowered due to the Coriolis coupling between the
vibrational and rotational motions. This effect is as large as
20% (see Secs. III B and V C) and is an essential element of
the recoil model.

This model, which includes rotational effects, gives poorer
agreement with the experiment for R10 than do the less
complete models. The data are not sufficient at this point to
assess the significance of this discrepancy, which could arise
from larger uncertainties in the data than we have indicated,
from unknown systematic experimental errors, or from effects
that may have been omitted from the theoretical analysis (such
as possible anisotropy for the photoelectron emission).

Figure 2(a) reproduces (by the red dotted line labeled
“DFT”) also earlier scattering calculations [1] that were
extended up to a photoelectron kinetic energy of 8 keV, in
order to demonstrate that the v ratios in the tender x-ray
region are essentially free from the intramolecular scattering
induced oscillations. The theoretical treatment of Sec. III
(which neglects scattering) is therefore well suited for this
energy range. The scattering calculation matches closely with
the GFCF recoil model using Morse potentials, but neglecting
rotational coupling.

V. THEORETICAL RESULTS

Here we consider some more detailed results of the
theoretical models that have been discussed earlier.

A. Rovibrational profiles

As a specific illustration, we have done a set of calculations
with the momentum in the center-of-mass system p equal to
8 a.u. This corresponds to a photoelectron energy of 2667 eV.
The average energy of excitation due to the change in equilib-
rium bond length upon ionization (Franck-Condon excitation)
is 2609.39 cm−1 and the recoil excitation is 561.86 cm−1

for a total excitation of 3171.25 cm−1. If the emission is
perpendicular to the axis, J ′ ≈ 17. The calculations have
been done for five angles corresponding to cos θ = 0(0.25)1.
Results from these calculations are seen in Fig. 3.
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FIG. 3. (a) Generalized Franck-Condon factors for 0◦ (black)
and 90◦ (grey) emission of a photoelectron with a center-of mass
momentum of p = 8 a.u. Plotted against the rovibrational energy.
The lines show the same results dispersed with a Gaussian with a
FWHM of 2400 cm−1. The crosses show the Franck-Condon factors
for p = 0. (b) Variances of the rovibrational distribution plotted
against cos2 θ . The line shows a linear fit to the points. (c) Intensity
ratios Rv0 for v′ = 1 (closed circles) and 2 (open circles), plotted
against cos2 θ . The solid line shows a linear fit and the dashed line a
quadratic fit.

Figure 3(a) shows the rovibrational profiles for two
angles of emission with respect to the molecular axis,
0◦ (black) and 90◦ (grey). In each case the generalized
Franck-Condon factors for each value of v′ are plot-
ted against the rovibrational energy for that v′. We see
here the behavior expected from the earlier discussion.
For θ = 0◦ the Franck-Condon distribution is broadened,
but the rovibrational energies are those for a molecule
with no rotational excitation. By contrast, for θ = 90◦
the Franck-Condon factors are very close to those expected
for no recoil-induced excitation (shown as the crosses), but
the rovibrational energies are shifted to higher values by the
rotational energy. In spite of the obvious visible differences in
the two profiles, the average rovibrational energies (centroids)
are the same, 3170.20 cm−1 at 0◦ and 3171.23 cm−1 at
90◦, as we expect from the discussion of the linear-coupling
model [22].
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Also shown in Fig. 3(a) are lines representing the bars
dispersed with a Gaussian function with a width of 2400 cm−1

(300 meV), which is typical of the resolution that can be
obtained at this photoelectron energy. The features that are
seen in the stick spectra are still evident in these dispersed
spectra.

Although the centroids are independent of angle, this is not
the case for the variances, which are plotted against cos2 θ

in Fig. 3(b). The straight line in this figure is a linear fit to
the calculated points, and we see that the fit is quite good, in
keeping with our expectations from Eq. (15).

Figure 3(c) shows the intensity ratios R10 (solid circles) and
R20 (open circles), plotted against cos2 θ . The solid line shows
a linear fit to the R10, which fits well, in keeping with the
linear-coupling model. For R20 a quadratic fit (dashed line) is
necessary, in keeping with Eq. (18). The quadratic term, which
goes as E2

rec is, however, relatively small compared with the
linear term.

B. Coriolis effect

Forty eigenvalues have been calculated in this exercise,
covering the range in v′ from 0 to 7 and in J ′ from 0 to 17. We
expect these energies to be described by the relationship

E(v′,J ′)/hc = (v′ + 1/2)ω′
e − (v′ + 1/2)2ωx ′

e

+B ′J ′(J ′ + 1) − α′(v′ + 1/2)J ′(J ′ + 1).

(23)

Fitting the calculated eigenvalues to this equation gives the
spectroscopic constants for the ionized molecule, which are
summarized in Table II. Also shown here are the original values
of ω′

e and ωx ′
e that were used to generate the Morse potential

from which the wave functions and eigenvalues were derived.
We see that there is satisfactory agreement between the input
set and the derived set.

We can apportion Eq. (23) into two equations giving
approximately the contributions of vibrational motion, on the
one hand, and rotational motion, on the other,

E(v′)/hc ≈ (v′ + 1/2)ω′
e − (v′ + 1/2)2ωx ′

e

−α′(v′ + 1/2)J ′(J ′ + 1)/2, (24)

E(J ′)/hc ≈ B ′J ′(J ′ + 1)

−α′(v′ + 1/2)J ′(J ′ + 1)/2. (25)

(The rotational-vibrational term, which has been divided
equally between the two forms of motion, is quite small.) Using
these equations together with the constants in Table II and

TABLE II. Spectroscopic constants from fitting the eigenvalues.
Also shown are the input values of ω′

e and ωx ′
e. Units are in cm−1.

Constant Fit Input

ω′
e 2456.74 2456.76

ωx ′
e 10.003 10.001

B ′ 2.119
α′ 0.013

the generalized Franck-Condon factors for 90◦ we can obtain
values for the average vibrational and rotational excitation at
90◦. These are 2556.7 and 614.7 cm−1. The first of these is
to be compared with the Franck-Condon excitation that would
be found in the case for θ = 0◦ where there is no rotational
excitation. This is 2609.4 cm−1, which is greater than the
90◦ value by 53 cm−1. The second is to be compared with the
recoil energy, 561.9 cm−1, which is smaller by 53 cm−1. These
differences arise from Coriolis coupling.

The ionized molecule is created in a vertical transition with
the bond length of the neutral molecule. At this point the
vibrational excitation—2609.4 cm−1—is equal to the extra
potential energy arising because the ion is not at its equilibrium
distance. The rotational energy, equal to BJ ′(J ′ + 1), is, at this
point, equal to the recoil energy Erec. As the molecule shrinks
towards its equilibrium radius the angular momentum remains
constant and the rotational energy increases. This increase in
energy is taken from the vibrational energy by the Coriolis
interaction. The rotational energy averaged over a vibrational
cycle is B ′J ′(J ′ + 1). Thus the average rotational energy is
greater than the recoil energy by the amount

�Erot = J ′(J ′ + 1)(B ′ − B)

= p2R2

2μ

(
1

R′2 − 1

R2

)

= Erec(R2/R′2 − 1), (26)

as noted in the Introduction. For carbon 1s ionization of
CO, the two bond lengths are R = 1.128 323 Å and R′ =
1.079 005 Å. With these values R2/R′2 − 1 = 0.0935 and
�Erot = 53 cm−1, as observed.

This decrease in the vibrational energy is reflected in the
generalized Franck-Condon factors, as can be seen in Fig. 3(a).
Here the grey bars show the generalized Franck-Condon
factors in the case where there is recoil-induced angular
momentum; the crosses show the Franck-Condon factors when
there is no recoil excitation. For v′ = 0, the factor for the
former is greater than that for the latter. For v′ = 1, they are
nearly the same and for v′ > 1 the the factors for no recoil
are greater. Thus, in this case (R′ < R) the recoil-induced
rotational excitation leads to a shift in the Franck-Condon
distribution and to the observed lowering of the average
vibrational energy.

C. Averaging over angles

The foregoing discussion has dealt with photoelectron
spectra measured at specific angles with respect to the
molecular axis. However, up to the present, no angular
resolved measurements of recoil-induced excitation have been
made. Reported results have involved measurements that are
averaged over all angles. In these experiments the most easily
measured quantity has been the ratio of the intensity for v′ = 1
to that for v′ = 0, the so-called v ratio R10. It is, therefore,
appropriate to develop predictions for this angle-averaged
ratio.

In the case of the linear-coupling model, we see from
Eq. (17) that R10 varies linearly with cos2 θ . In Fig. 3(c) we see
that the results from the Morse potential follow this prediction
fairly closely. Consequently, we can take as one measure of
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as (c), except that the rotational potential has been included. The
lines show fits of polynomials to the calculated results.

R10 averaged over angles as

〈R10〉 = SFC + Erec〈cos2 θ〉/h̄ω

= SFC + Erec/(3h̄ω) (27)

(assuming that the distribution of photoelectrons is isotropic
with respect to the molecular axis). Since Erec is proportional
to the photoelectron energy, it follows that 〈R10〉 varies
linearly with the photoelectron energy. This is a convenient
approximation and has been used in the past to provide
predictions of the recoil-induced vibrational excitation. Values
of 〈R10〉 calculated from the Morse results are plotted versus
the photoelectron energy as the open squares points in Fig. 4.
The dotted line in this figure is a fit of a quadratic function to
the points. The fitting parameters are listed in Table III, where
we see that the quadratic term is very small; the values are well
fit by a linear function, in accordance with the linear-coupling
model, Eq. (27).

Although 〈R10〉 is easily calculated and provides a conve-
nient guide to estimate the effects of recoil-induced vibrational
excitation, it is not the quantity that is measured in an
experiment. The photoelectron spectra that are measured give
the intensities Iv′ for each final vibrational state, averaged over
all emission angles. Therefore, the measured values of Rv0 are
given by the expression

〈Rv0m〉 = 〈Iv′ 〉/〈I0〉, (28)

where the averages on the right-hand side are taken over all
angles of emission. This quantity differs from 〈R10〉, as can be
seen in Fig. 4, where 〈R10m〉 is plotted as the open circles.

TABLE III. Parameters of the lines fitting the points in Fig. 4.

Linear Quadratic

〈R10〉 3.20×10−5 −4.7×10−12

〈R10m〉 3.20×10−5 −7.94×10−10

〈R10mJ 〉 2.61×10−5 −9.37×10−10

The dashed line represents a fit of a cubic polynomial to
these points; the linear and quadratic coefficients are listed in
Table III. From these parameters, we see that the two quantities
agree at low photoelectron energies, but that 〈R10m〉 becomes
nonlinear at high energies. We can understand this behavior
by considering the linear-coupling model.

In the discussion of the linear-coupling model we have seen
that

〈R10m〉 = SFC + Erec

3h̄ω
− 4

5

(
Erec

3h̄ω

)2

. . . . (29)

The linear term is the same as in Eq. (27), in agreement with
the linear terms shown in the first two rows of Table III. The
quadratic term for 〈R10〉 is not significant, whereas for 〈R10m〉
it is and leads to the downward turn of the dashed curve.
From Eq. (29) we can see that the quadratic term should
be approximately equal to −4/5 of the square of the linear
term, or, in this case about −8.20×10−10. The actual value
for the Morse results, listed in Table III, is −7.94×10−10, in
approximate agreement with this expected value.

The results indicated by curves (a) and (b) in Fig. 4 do
not contain the effects of rotational motion on the generalized
Franck-Condon factors. These effects are included in the solid
circles (c), designated by the label 〈R10mJ 〉. The solid curve
is a fit of a quartic function to the points, with the linear and
quadratic coefficients listed in Table III. We see that these
results differ from those in which the rotational excitation has
not been considered. In particular the slope of 2.61×10−5 for
(c) is about 19% lower than the value of 3.20×10−5 for (a)
and (b), indicating that the effects of the rotational excitation
are noticeable even at low photoelectron energies. Similarly
the quadratic term for (c) is about 18% higher than that for
(b). These values are in accord with the predictions of the
linear-coupling model discussed earlier.

VI. CONCLUSIONS

The present study demonstrates experimentally that in the
tender x-ray region the photoelectron recoil effects become
a major factor in determining the vibrational structure of the
photoemission spectrum. These effects are observed clearly
not only for the single-quantum recoil excitation from the
ground vibrational level, but also for higher recoil excitations
and combined recoil and Franck-Condon excitations. These
much more extensive experimental data have necessitated also
further developments in the theoretical models for treating
recoil, such as the use of generalized Franck-Condon factors in
actual numerical calculations, accurate angular averaging, use
of Morse potentials and incorporating rovibrational coupling
into the model. In this paper, we have applied and tested these
developments in the particular case of C 1s photoemission
in CO. We saw that the simplest, pen-and-paper model, the
linear-coupling model, is still quite useful even in the tender
x-ray region as the first approximation, if one is specifically
interested in the recoil contributions to the v ratios. However,
clear overall improvement is obtained by employing GFCFs
and accurate Morse potentials for the ground and ionized
states. Furthermore, including the rovibrational coupling was
shown theoretically to have a significant impact on the v ratios
as it redistributes the recoil energy from the vibrational to
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rotational degrees of freedom. It has not yet been proven
conclusively that the inclusion of the rovibrational coupling
actually brings the model to a better agreement with the
experiment, but we anticipate that further investigations in
the tender x-ray region will shed light on this as well as on
the questions of whether there are more approximations in
the recoil model that need to be revised, such as the isotropic
emission assumption.
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APPENDIX: AVERAGING OVER EMISSION ANGLES:
A SIMPLE MODEL

A simple model provides insight into the results of
averaging over emission angles for both the case in which
the rotational excitation is ignored and the case in which it is
included. We start with the approximation that the generalized
Franck-Condon factors that describe the rovibrational intensity
distribution Pv are given by a Poisson distribution,

Pv = Sve−S/v!. (A1)

We also assume that the rovibrational levels are spaced
harmonically with frequency ω. Although neither of these
approximations is accurate, the results obtained using these
approximations aid in understanding those obtained from the
more complete calculations.

For a Poisson distribution, the average energy (relative to
the energy of the lowest energy state of the distribution) is equal
to Sh̄ω. This energy contains contributions from the Franck-
Condon excitation SFCh̄ω, the recoil energy Erec cos2 θ , and
the Coriolis correction −Erec sin2 θ [(R/R′)2 − 1]. Thus

Sh̄ω = SFCh̄ω + Erec cos2 θ − Erec sin2 θ [(R/R′)2 − 1],

S = SFC + Erec

h̄ω
cos2 θ − f

Erec

h̄ω
(1 − cos2 θ )

=
[
SFC − f

Erec

h̄ω

]
+

[
(1 + f )

Erec

h̄ω

]
cos2 θ

= A + B cos2 θ, (A2)

where f = (R/R′)2 − 1 and the terms A and B replace the
bracketed quantities. The angle-averaged generalized Franck-

Condon factors are then

〈GFCFv〉 =
∫ π/2

0
exp(−A − B cos2 θ )

× (A + Bcos2 θ )
v

v!
sin θdθ

= e−A

√
B

∫ √
B

0
e−x2 (A + x2)v

v!
dx, (A3)

where the substitution x2 = B cos2 θ has been made in the last
line. Specifically,

〈GFCF0〉 = e−A

√
B

∫ √
B

0
e−x2

dx, (A4)

〈GFCF1〉 = e−A

√
B

∫ √
B

0
e−x2

(A + x2)dx. (A5)

The angle-averaged expression for R10 is

R10 = 〈GFCF1〉/〈GFCF0〉 = A +
∫ √

B

0 x2e−x2
dx∫ √

B

0 e−x2
dx

. (A6)

Expanding the two integrands in a Taylor series and integrating
gives

R10 ≈ A + B/3 − B2/5 . . .

1 − B/3 . . .
≈ A + B

3
− 4

5

(
B

3

)2

. . . .

(A7)

Replacing the symbols A and B with their definitions gives

R10 = SFC − f
Erec

h̄ω

+ (1 + f )
Erec

3h̄ω

(
1 − 4

15
(1 + f )

Erec

h̄ω
. . .

)

= SFC + (1 − 2f )
Erec

3h̄ω
− 4

5

(
(1 + f )

Erec

3h̄ω

)2

. . . .

(A8)

If we ignore the effect of the Coriolis interaction, then
f = 0 and we have

R10 = SFC + Erec

3h̄ω
− 4

5

(
Erec

3h̄ω

)2

. . . . (A9)
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