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We carried out a systematic high-precision relativistic study of the forbidden magnetic dipole and electric
quadrupole transitions in Ca+, Rb, Sr+, Cs, Ba+, Fr, Ra+, Ac2+, and Th3+. This work is motivated by the
importance of these transitions for tests of fundamental physics and precision measurements. The relative
importance of the relativistic, correlation, and Breit correction contributions and contributions of negative-
energy states is investigated. Recommended values of reduced matrix elements are presented together with their
uncertainties. The matrix elements and resulting lifetimes are compared with other theoretical values and with
experiment where available.
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I. INTRODUCTION

Forbidden transitions have been of much interest in recent
years due to their applications in optical clocks [1], tests
of fundamental physics [2–7], and quantum information [8].
These applications require long-lived metastable states and
therefore knowledge of their atomic properties, including
various multipolar transition rates and branching ratios. While
many accurate measurements of the electric dipole matrix
elements exist, there are many fewer precision benchmarks
for the M1 and E2 transitions.

The interest in forbidden transitions is further motivated by
the emergence of the highly charged ions (HCIs) as potential
candidates for the development of ultraprecise atomic clocks
and tests of variation of fundamental constants [3–5,9,10].
Highly charged ions with optical transitions suitable for
metrology exhibit a particularly rich variety of low-lying
multipolar transitions, even including the metastable levels
that can decay only via the M3 decay channel. Until recently,
the HCI proposals remained a theoretical possibility, but the
first proof-of-principle demonstration of sympathetic cooling
of Ar13+ with laser-cooled Be+ [11] paved the way toward
the experimental realization of the HCI clock proposals. The
experimental work toward these new applications of HCIs
has already started [12], and reliable predictions of transition
properties are urgently needed. While this paper deals with
ions with a lower degree of ionization, up to Th3+, the general
conclusions concerning the computational accuracy and the
importance of various contributions are also applicable for
HCI with a few valence electrons.

We consider examples of the forbidden transitions in Rb,
Cs, and Fr alkali-metal atoms and monovalent Ca+, Sr+, Ba+,
Ra+, Ac2+, and Th3+ ions with similar electronic structure
owing to their particular interest in the applications described
above as well as the availability of some experimental
measurements. M1 transitions in Rb, Cs, Ba+, Fr, and Fr-like
ions are of particular interest due to studies of parity violation
[6,7,13–15]. The M1 and E2 transitions in Rb, Cs, Ba+, Yb+,

Ra+, Ac2+, and Th3+ ions were recently studied by Gossel
et al. [16], raising the issue of the accuracy of the M1 transition
matrix elements.

The goals of parity-violation studies with heavy atoms are
to test the standard model of particle physics and to study the
weak interaction inside the nucleus. In addition, atomic parity
violation is uniquely sensitive to possible “dark forces” which
are motivated by the intriguing possibility of a “dark sector”
extension to the standard model [17].

The most accurate, to 0.3%, atomic parity-violation mea-
surement was carried out in 6s-7s transition is Cs [2]. The
analysis of this experiment in terms of a comparison with the
standard model, which required a theoretical calculation of the
parity-violating amplitude, was carried out in [18,19].

Here, we carry out the calculations of the E2 and M1
matrix elements for monovalent atoms and ions using a form-
independent many-body perturbation theory and relativistic
linearized coupled-cluster methods. Previous calculations of
the M1 transitions [20–22] generally assumed that there are
no significant corrections beyond the random-phase approx-
imation (RPA). Both of the methods employed in this work
allow us to include corrections beyond RPA. We find that the
corrections beyond RPA are large enough to modify the results
by a factor of 2 or more for heavier systems. We also find very
strong cancellations of the various corrections beyond RPA
for the s-s (but not the s-d) transitions, causing numerical
problems in the calculations, associated with the incomplete
cancellation of large contributions. We found a way to resolve
these problems by using a form-independent perturbation
theory as described in the paper. We have also considered the
contributions of other effects on the M1 transitions, including
the two-body Breit and negative-energy state contributions.
We have included the study E2 transitions due to their interest
for atomic clock and quantum information applications as well
as the availability of the experimental lifetimes for benchmark
tests of the theory. We have conducted a systematic study
of our theoretical uncertainties for the E2 matrix elements
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to provide recommended values for these quantities and
compare them with the experimental and other theoretical
values.

We start with a review of previous experimental and
theoretical studies of the E2 transitions for the systems of
interest. The s-d E2 transition in monovalent ions is used in
clock and quantum information applications, and lifetimes of
nd states have been the subject of numerous studies described
below.

II. SUMMARY OF PRIOR RESULTS FOR THE
E2 TRANSITIONS

Ca+. Lifetime measurements of the metastable 3d levels
of Ca+ were reported by Knoop et al. [23] using the Ca+ ions
stored in a Paul trap. The natural lifetimes were determined to
be 1111(46) and 994(38) ms for the 3d3/2 and 3d5/2 states,
respectively, in agreement with previous experiments. An
improved measurement of the 3d5/2 lifetime, 1168(7) ms, was
carried out by Barton et al. [24] using quantum jumps of a
single cold calcium ion in a linear Paul trap. An experimental
and theoretical study of the 3d lifetimes was reported by
Kreuter et al. [25]. This work introduced a measurement
technique based on a high-efficiency quantum state detection
after coherent excitation to the 3d5/2 state or incoherent
shelving in the 3d3/2 state and subsequent free, unperturbed
spontaneous decay, yielding the value of 1168(9) ms, in
agreement with the value reported in Ref. [24]. The lifetime
of the 3d3/2 state, 1176(11) ms, was measured with a single
ion, improving the statistical uncertainty of the previous best
result by a factor of 4. The experimental lifetimes were found
to be in excellent agreement with the high-precision ab initio
all-order calculations [τ (3d3/2) = 1196(11) ms and τ (3d5/2) =
1165(11) ms], reported in the same work [25]. Sahoo et al.
[26] used the relativistic coupled-cluster theory to calculate
the 3d lifetimes. A large-scale study of the Ca+ properties,
motivated by the development of an atomic clock based on
the 4s-3d5/2 transition in a Ca+ single ion, was carried out
in [27]. It included the calculation of the blackbody radiation
shift of the clock transition, multipole polarizabilities, oscil-
lator strengths, lifetimes, hyperfine constants, and excitation
energies.

Sr+. A lifetime measurement of the metastable 4d3/2 level
in Sr+ was carried out by Mannervik et al. [28] using optical
pumping of a stored ion beam. Collinear laser excitation in
the storage ring transferred the main part of the ion beam
into the metastable 4d3/2 level. Subsequent observation of
the forbidden electric quadrupole transition to the ground
state yielded information about the radiative lifetime of the
metastable state, 435(4) ms. The lifetimes of the 4d levels
were determined both experimentally and theoretically by
Biémont et al. [29]. The experiment was performed at an ion
storage ring utilizing collinear laser excitation. The calculation
was performed using the Hartree-Fock method including
relativistic effects and core polarization. The 4d5/2 lifetime
was measured to be 390(1.6) ms with a single laser-cooled,
trapped ion by Letchumanan et al. [30] using Dehmelt”s
electron shelving method to monitor the ion’s electronic state.
Sahoo et al. [26] used the relativistic coupled-cluster theory
to calculate the 4d lifetimes. A systematic study of Sr+

atomic properties was carried out in [31], motivated by the
development of the Sr+ clock and the need for the evaluation
of the blackbody radiation shift of the clock transitions.
Safronova [31] used the relativistic linearized coupled-cluster
approach, which included single, double and partial triple
excitations, to obtain 441(3) and 394(2) ms for the lifetimes of
the 4d3/2 and 4d5/2 states, respectively, in excellent agreement
with the experimental values [29,30].

Ba+. Lifetimes of the 5d states of Ba+ are much longer
than the corresponding values in Ca+ and Sr+, making their
accurate measurement particularly difficult. A single Ba+

atom was confined in a radio-frequency ion trap and cooled
by near-resonant laser light by Madej and Sankey [32]. A
measurement of quantum-jump distributions together with
careful measurements of the absolute partial pressures of
all residual gas species enabled accurate measurements of
the quenched 5d5/2 lifetime as a function of quenching gas
pressure, 34.5 ± 3.5 s [32]. The measurement of the Ba+ 5d3/2

lifetime was carried out by Nagourney and Dehmelt [33] using
a single trapped Ba+ ion in ultrahigh vacuum. The collisional
quenching was found insignificant in the experiment, but there
were indications of a non-negligible fine-structure mixing
effect [33]. The resulting value of 79.8 ± 4.6 s resolved the
discrepancy existing at that time. Laser-probing measurements
and calculations of lifetimes of the 5d levels were reported by
Gurell et al. [34]. The lifetimes, 89.4 ± 15.6 s for the 5d3/2

level and 32.0 ± 4.6 s for the 5d5/2 level, were measured in
a beam-laser experiment performed at the ion storage ring
CRYRING. The electric quadrupole transition amplitudes for
Ba+ were evaluated by Gopakumar et al. [35] using the
relativistic coupled-cluster method, giving lifetimes of the
5d3/2 and 5d5/2 levels equal to 81.4 and 36.5 s, respectively.
Sahoo et al. [26] used the relativistic coupled-cluster theory
to obtain 80.0(7) and 29.9(3) s for these levels, respectively,
followed by another calculation of the same group [36].
Reduced electric quadrupole matrix elements were calculated
using both many-body perturbation theory and the all-order
method including single, double, and partial triple excitations
by Safronova [37]. The resulting lifetimes, 81.5(1.3) and
30.3(0.4) s for the 5d3/2 and 5d5/2 levels, respectively, were
found to be in good agreement with the measured values [34].

Cs. While in alkaline-earth metal ions, the first nd levels
are metastable, that is not the case in neutral alkali-metal
atoms, where the first np levels are below the nd levels and the
E1 decay of the nd levels is allowed. Glab and Nayfeh [38]
measured the transition probability of the electric quadrupole
6s-5d transition Cs, 21 ± 1.5 s−1, by two-photon ionization
of the ground 6s state, using 5d as an intermediate state.
Previous measurements of this quantity yielded conflicting
results. The authors of [38] noted that their measurement was in
agreement with a laser absorption-fluorescence measurement
and in disagreement with the results of anomalous dispersion,
emission, and electron-impact techniques.

Fr and Fr-like ions. Theoretical studies of the E2 6d-7s

transition rates were carried out in [39]. Safronova et al. [40]
calculated reduced matrix elements of the E2 6d-7s transitions
in Fr-like Ra and Ac ions using the relativistic linearized
coupled-cluster method.

The M1 and E2 transitions in Rb, Cs, Ba+, Yb+, Ra+,
Ac2+, and Th3+ ions were studied by Gossel et al. [16].
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III. ELECTRIC QUADRUPOLE TRANSITIONS

For electric quadrupole transitions, we carried out all
calculations using four different variants of the linearized
coupled-cluster (all-order) method. A review of the all-order
method, which involves summing series of dominant many-
body perturbation terms to all orders, is given in [41]. In
the single-double (SD) all-order approach, single and double
excitations of the Dirac-Fock orbitals are included, and the SD
state vector of a monovalent atom in state v is

|�v〉 =
⎡
⎣1 +

∑
ma

ρmaa
†
maa + 1

2

∑
mnab

ρmnaba
†
ma†

nabaa

+
∑
m�=v

ρmva
†
mav +

∑
mna

ρmnvaa
†
ma†

naaav

⎤
⎦∣∣�(0)

v

〉
, (1)

where |�(0)
v 〉 is the lowest-order atomic state vector and a

†
i

and aj are creation and annihilation operators. The quantities
ρma and ρmv are single-excitation coefficients for core and
valence electrons, and ρmnab and ρmnva are double-excitation
coefficients for core and valence electrons, respectively. In
Eq. (1), the indices m and n range over all possible virtual
states, while indices a and b range over all occupied core
states. The single, double, partial-triple (SDpT) method also
includes classes of the triple excitations.

In either the SD or SDpT all-order method, the matrix
elements of any one-body operators, such as M1 and E2,

Z =
∑
ij

zij a
†
i aj , (2)

are obtained as

Zwv = 〈�w|Z|�v〉√〈�v|�v〉〈�w|�w〉 , (3)

where |�v〉 and |�w〉 are given by the expansion (1). The
numerator of Eq. (3) consists of the sum of the lowest-order
Dirac-Fock (DF) matrix element zwv and 20 other terms that
are linear or quadratic functions of the excitation coefficients
ρmv , ρma , ρmnva , and ρmnab.

The largest terms are frequently

Z(a) =
∑
ma

zamρ̃wmva +
∑
ma

zmaρ̃
∗
vmwa, (4)

Z(c) =
∑
m

zwmρmv +
∑
m

zmvρ
∗
mw. (5)

The first of these terms Z(a) is associated with the RPA
corrections, while the second Z(c) is associated with the
Brueckner-orbital corrections; however, there is not a one-
to-one correspondence to the many-body classification of
corrections to matrix elements.

Omitted higher excitations can also be estimated by the
scaling procedure described in [41], which corrects the ρmv

excitation coefficients and the corresponding terms containing
these quantities in Eq. (3), such as term c. The scaling
procedure can be applied to either SD or SDpT approxi-
mations. The resulting values are labeled with the subscript
sc, SDsc and SDpTsc. Comparing values obtained in different
approximations, ab initio SD and SDpT and scaled SD and
SDpT allow us to evaluate the uncertainty of the calculations
in the cases where the contributions that can be corrected by
scaling are dominant. We find that this condition is satisfied

TABLE I. Recommended values of the reduced electric quadrupole matrix elements in atomic units. Dirac-Fock (DF), third-order many-body
perturbation theory (MBPT3), and all-order SD are listed. Final recommended values are given in the “Final” column. The relative uncertainties
of the final values are given as percentages in the “Unc. %” column. The rows labeled NBr and Br contain results excluding and including the
Breit interaction, respectively. Absolute values are given.

Breit
interaction Transition DF MBPT3 SD Final Unc. % Transition DF MBPT3 SD Final Unc. %

Th3+ NBr 7s-6d3/2 7.781 6.918 7.063 7.110 0.66 7s-6d5/2 10.008 8.986 9.153 9.211 0.64
Br 7s-6d3/2 7.781 6.917 7.062 7.109 0.66 7s-6d5/2 10.002 8.979 9.145 9.204 0.64

Ac2+ NBr 7s-6d3/2 10.682 9.218 9.515 9.585 0.28 7s-6d5/2 13.655 11.956 12.281 12.366 0.22
Br 7s-6d3/2 10.679 9.216 9.512 9.585 0.25 7s-6d5/2 13.644 11.944 12.270 12.362 0.15

Ra+ NBr 7s-6d3/2 17.263 13.744 14.587 14.736 0.81 7s-6d5/2 21.771 17.802 18.689 18.859 0.70
Br 7s-6d3/2 17.252 13.734 14.578 14.737 0.74 7s-6d5/2 21.749 17.778 18.667 18.855 0.61

Fr NBr 7s-6d3/2 43.096 30.292 31.976 33.427 0.58 7s-6d5/2 52.740 37.632 40.017 41.582 0.43
Br 7s-6d3/2 43.092 30.241 31.937 33.431 0.59 7s-6d5/2 52.729 37.567 39.963 41.582 0.54

Cs NBr 6s-5d3/2 43.846 30.815 31.548 33.612 0.83 6s-5d5/2 53.712 38.087 39.147 41.464 0.57
Br 6s-5d3/2 43.830 30.763 31.505 33.620 1.01 6s-5d5/2 53.686 38.013 39.082 41.515 0.85

Ba+ NBr 6s-5d3/2 14.763 11.821 12.498 12.627 0.90 6s-5d5/2 18.384 14.863 15.651 15.809 0.85
Br 6s-5d3/2 14.753 11.813 12.489 12.627 0.83 6s-5d5/2 18.362 14.844 15.632 15.800 0.79

Rb NBr 5s-4d3/2 38.896 31.793 32.444 32.943 0.42 5s-4d5/2 47.636 38.945 39.755 40.367 0.42
Br 5s-4d3/2 38.901 31.788 32.156 32.883 0.24 5s-4d5/2 47.642 38.938 39.414 40.295 0.24

Sr+ NBr 5s-4d3/2 12.968 10.588 11.010 11.133 0.35 5s-4d5/2 15.972 13.100 13.602 13.747 0.37
Br 5s-4d3/2 12.961 10.581 11.003 11.133 0.30 5s-4d5/2 15.957 13.088 13.588 13.745 0.29

Ca+ NBr 4s-3d3/2 9.767 7.407 7.788 7.945 0.48 4s-3d5/2 11.978 9.099 9.561 9.750 0.47
Br 4s-3d3/2 9.761 7.401 7.782 7.945 0.47 4s-3d5/2 11.967 9.088 9.552 9.750 0.47
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for the E2 transitions considered in the present work, where
term c given by Eq. (5) strongly dominates.

In Table I, we list our recommended values for the s-d E2
reduced matrix elements in Fr and Fr-like ions, Cs, Ba+, Rb,
Sr+, and Ca+. The absolute values are given in units of ea2

0 ,
where a0 is the Bohr radius and e is the elementary charge.
Results of first-order Dirac-Fock, third-order many-body per-
turbation theory, and the four all-order calculations described
above are listed in the columns labeled DF, MBPT3, SD, SDpT,
SDsc, and SDpTsc. We also carried out the calculations using
the form-independent third-order many-body perturbation
theory (MBPT3) method introduced in [42,43]. The lowest-
order values, given in the DF column, illustrate the size of
the correlation corrections. The difference in the MBPT3 and
the all-order results illustrates the size of the higher-order
corrections beyond random-phase approximation, which are
included to all orders in MBPT3. Final recommended values
are given in the “Final” column. The next column gives the
absolute uncertainties. The evaluation of the uncertainty of
the matrix elements in this approach was described in detail
in [44,45]. The differences in the all-order values for each
transition calculated in different approximations were used to
estimate uncertainty in the final results based on the algorithm
that accounted for the importance of the specific dominant
contributions. The column labeled “Unc. %” in Table I gives
relative uncertainties of the final values in percentages. The
uncertainties are small and range from 0.1% to 1%.

We also investigated the effect of the Breit interaction on the
E2 matrix elements. Table I lists the results calculated with
and without the Breit interaction. The one-body part of the
Breit interaction was included in the construction of the finite
basis set which was used in all of the all-order calculations.
The two-body Breit correction to matrix elements is small, as
discussed in detail in [46]. The Breit contribution is very small,
less than 0.01% for all cases. The relative uncertainties given
in the last column of Table I are less than 1%.

In Table II, our recommended values of the reduced electric
quadrupole matrix elements are compared with recent theoret-
ical calculations of Ref. [16]. Most of the other theoretical

TABLE II. Recommended values of the reduced electric
quadrupole matrix elements (in a.u.) are compared with experimental
measurements and other theoretical values.

Transition Present study Expt. Theory

Th3+ 7s-6d3/2 7.110(47) 7.10 [16]
Ac2+ 7s-6d3/2 9.585(27) 9.58 [16]
Ra+ 7s-6d3/2 14.74(12) 14.77 [16]
Fr 7s-6d3/2 33.43(19) 35.96(60) [39]

33.59 [16]
Cs 6s-5d3/2 33.61(28) 34.2(1.2) [38] 33.60 [16]
Ba+ 6s-5d3/2 12.63(11) 12(1) [34] 12.74 [36]

12.76(35) [33] 12.63 [35]
Rb 5s-4d3/2 32.94(14) 33.42 [16]
Sr+ 5s-4d3/2 11.13(39) 11.21(5) [28] 11.33(10) [26]

11.21(5) [29] 11.13(4) [31]
Ca+ 4s-3d3/2 7.94(4) 8.01(4) [25] 7.94(4) [25]

7.92(3) [24] 7.97(2) [26]

and all of the experimental papers give the results for the
lifetimes of the nd states of ions levels rather than the s-d
matrix elements. For the nd3/2 lifetimes τ , the E2 matrix
elements Z(nd3/2 − n′s) (in a.u.) may be accurately extracted
using

Z =
[

(2j + 1)λ5

1.11995 × 1018 τ

]−1/2

,

where j = 3/2, λ is the wavelength of the ns-n′d3/2 transition
(in Å), and lifetime τ is in seconds. The contribution of the
ns-n′d3/2 transitions is negligibly small.

For the nd5/2 states, there is an additional contribution to
the lifetime from the nd5/2-nd3/2 M1 transition. In light ions,
Ca+ and Sr+, the contribution of this M1 decay channel to
the lifetime is very small, but it becomes significant for Ba+,
with an 18% branching ratio, i.e., the relative contribution
of the M1 rate to the sum of the M1 and E2 transition
rates. Our matrix elements for the 6s-5d3/2 transitions in
Cs are in excellent agreement with experimental measure-
ments given in Ref. [38], with the theoretical prediction
having much smaller uncertainty. Our values are in agree-
ment with the experiment for alkaline-earth ions within the
uncertainties.

Table III gives the comparisons of the present lifetime
results with the experiment [23–26,29,33,34,49,57–60] and
with other theory [15,26,28,29,35,47,47–56]. No experimental
lifetimes are available for the 6d levels of the Fr-like
ions.

In alkali-metal neutral atoms, nd states are not metastable,
and E2 or M1 contributions to the lifetimes are negligible.

IV. MAGNETIC DIPOLE MATRIX ELEMENTS

The M1 matrix elements for the s-s and s-d transitions
are much more difficult to calculate accurately than the E2
ones. For the E2 transitions, the correlation contributes at most
25% to the total, while for the M1 transitions the lowest-order
values are very small, and the final result comes almost entirely
from the correlation corrections. The Breit interaction is more
significant as well. Moreover, the negative-energy states, εi <

mc2, may contribute.
The influence of the negative-energy states (NESs) on

forbidden magnetic dipole s-s transitions in alkali-metal atoms
was investigated by Savukov and Johnson [66]. The NES
contributions were significant in almost all cases and, for ru-
bidium, reduced the transition rate by a factor of 8. Derevianko
et al. [67] derived the leading term in an αZ expansion for the
negative-energy (virtual electron-positron pair) contributions
to the transition amplitudes of heliumlike ions, finding a strong
dependence on the choice of the zeroth-order Hamiltonian,
which defines the negative-energy spectrum. The ratio of
negative-energy contributions to the total transition amplitudes
for some nonrelativistically forbidden transitions was shown
to be of order 1/Z. In the particular case of the magnetic
dipole transition 3 3S1-2 3S1, the authors noted that neglecting
negative-energy contributions in an otherwise exact no-pair
calculation would lead one to underestimate the decay rate in
helium by a factor of 1.5 in calculations using a Hartree basis
and by a factor of 2.9 using a Coulomb basis [67].
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TABLE III. Lifetimes τ of the nd states in Ca+, Sr+, Ba+, Ra+,
and Ac2+ (in s).

Ion State Present study Theory Experiment

Ca+ 3d3/2 1.194(11) 0.98 [47] 1.111(46) [23]
1.271 [48] 1.17(5) [49]
1.16 [50] 1.20(1) [24]
1.080 [51] 1.176(11) [25]
1.196(11) [25]

1.185(7) [26]
Sr+ 4d3/2 0.437(14) 0.454 [48] 0.435(4) [28]

0.422 [29] 0.435(4) [29]
0.426(7) [26] 0.455(29) [29]
0.441(3) [52]

Ba+ 5d3/2 81.4(1.4) 83.7 [48] 79.8(4.6) [33]
81.5 [53] 89(16) [34]
81.4 [35]
80.1(7) [26]
82.0 [34]
81.5(1.2) [54]
84.5 [15]

Ra+ 6d3/2 0.6382(94) 0.638(10) [55]
0.627(4) [56]
0.642 [53]
0.642 [15]

Ac2+ 6d3/2 1.171(6)×106 1.19 ×106 [15]

Ca+ 3d5/2 1.163(11) 0.95 [47] 0.994(38) [23]
1.236 [48] 1.064(17) [57]
1.14 [50] 0.969(21) [58]
1.045 [51] 1.09(5) [49]
1.165(11) [25] 1.100(18) [59]
1.110(9) [26] 1.168(7) [24]

1.168(9) [25]
1.174(10) [60]

Sr+ 4d5/2 0.3945(22) 0.405 [48] 0.372(25) [61]
0.384 [29] 0.408(22) [29]
0.357(12) [26] 0.3908(16) [30]
0.394(3) [52]

Ba+ 5d5/2 30.34(48) 37.2 [48] 32(5) [62]
30.3 [53] 34.5(3.5) [32]
36.5 [35] 32.0(4.6) [34]
29.9(3) [26] 31.2(09) [63]
31.6 [34]
30.4(4) [54]

Ra+ 6d5/2 0.3028(37) 0.303(4) [55] 0.232(4) [64]
0.297(4) [56] 0.232(4) [65]
0.302 [53]

Ac2+ 6d5/2 2.326(34)

The contribution from the negative-energy states for the
M1 transitions in Be-like ions was studied by Safronova
et al. [68], demonstrating that the NES contribution scales
as α2Z for both Breit and Coulomb interactions. The relative
contribution of the NES was about 0.03% for transitions inside
the 2l2l′ configuration space and 3% for the 2l12l2-2l33l4
transition. The authors concluded that the NES contributions
were important for the weakest transitions in a given transition
array.

The E1, E2, M1, and M2 transitions in the nickel
isoelectronic sequence were investigated by Hamasha et al.
[69]. The contributions from negative-energy states were
included in the second-order E1, M1, E2, and M2 matrix
elements. In second-order matrix elements, such contributions
arise explicitly from those terms in the sum over states for
which εi < mc2. The NES contributions drastically change the
second-order Breit-Coulomb matrix elements B(2). However,
the second-order Breit-Coulomb correction contributes only
2%–5% to uncoupled M1 matrix elements, and as a result,
negative-energy states changed the total values of M1 matrix
elements by only a few percent [69].

The contributions from negative-energy states were in-
cluded in the second-order E1, M1, E2, M2, E3, and M3
matrix elements in [70]. The NES contributions to the second-
order Breit-Coulomb matrix elements for the transition from
the 3d5/25d3/2(1) state in Ni-like ions weakly increases with
Z; however, the relative NES contribution for this transition
decreases with Z (2% and 0.6% for Z = 40 and Z = 90,
respectively). Reference [70] noted that the NES contribution
for this transition is of the same order as the positive-energy
state contribution to the second-order Breit-Coulomb matrix
elements, causing severe cancellation and drastically reducing
the B(2) values in this case. Therefore, we include the
contributions of the NES as well as retardation corrections
and correlation effects for the M1 transitions in detail in the
second-order MBPT calculation.

In Table IV, we list the M1 magnetic matrix elements
evaluated in second-order relativistic many-body perturbation
theory (RMBPT) approximation. We employ customary units
for reduced matrix elements as given by NIST [71]. These
units are e2a2

0 for E2 transitions and μB for M1 transitions.
The lowest-order DF values are evaluated with the rel-

ativistic version of the M1 operator without retardation.
The DF(Ret) values include retardation. Table IV illustrates
that the retardation corrections are particularly large for
the s-d transition in Rb, Cs, and Fr. The second-order
Coulomb and Breit contributions are listed in the “Cl” and
“Brpos” columns. The second-order Breit correction, which
includes the negative-energy contributions, is given in next
column, Brneg. The final second-order results, MBPT2 =
Cl + Brpos + Brneg, are listed in the last column. We find
that the NES effect on the Coulomb correlation correction is
negligible and can be omitted without the loss of accuracy,
and it is not shown in Table IV. The contribution of the
NES to the second-order Breit correction is significant, as
illustrated by the significant differences of the Bpos and Bneg

values. However, Table IV clearly indicates that the Coulomb
correlation correction dominates the final values, and an
accurate calculation of this correction presents a significant
challenge. As noted above, the M1 transitions between levels
of different electronic configurations are extremely sensitive
to the correlation correction since the lowest-order M1 values
are very small and the final result comes almost entirely from
the correlation correction.

While it was previously assumed that only RPA corrections
contribute significantly to the M1 matrix elements, we find
that for the transitions studied in this work that is not the case.

In Table V, we list our values for the M1 s-d reduced matrix
elements in units of 105μB . The final results are obtained using
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TABLE IV. The M1 matrix elements evaluated in the second-order RMBPT approximation. The lowest-order matrix elements without and
with retardation are listed in columns labeled “DF” and “DF(ret).” The second-order Coulomb and Breit contributions are listed in the “Cl” and
“Brpos” columns. The second-order Breit correction calculated with the inclusion of the negative-energy contributions is given in next column,
“Brneg.” The final second-order results, MBPT2 = Cl + Brpos + Brneg, are listed in the last column. Units are 105μB .

Transition DF DF(ret) Cl Brpos Brneg MBPT2

Th3+ 7s-8s1/2 14.44 11.78 −127.9 − 0.232 3.177 −125.1
Ac2+ 7s-8s1/2 10.07 8.336 −130.1 − 0.136 2.304 −128.1
Ra+ 7s-8s1/2 6.085 5.141 −129.8 0.142 1.252 −128.5
Fr 7s-8s1/2 −2.559 −2.229 56.82 − 0.277 − 0.353 56.22
Cs 6s-7s1/2 1.952 1.631 −5.001 0.236 0.171 −4.617
Ba+ 6s-7s1/2 4.952 4.021 −12.710 0.140 0.821 −11.80
Rb 5s-6s1/2 1.824 1.479 0.288 0.207 0.116 0.588
Sr+ 5s-6s1/2 4.800 3.784 −2.123 0.057 0.730 −1.390
Ca+ 4s-5s1/2 −4.395 −3.308 −0.063 − 0.014 − 0.530 −0.557

Th3+ 7s-6d3/2 1.545 1.560 147.3 0.024 − 1.127 146.3
Ac2+ 7s-6d3/2 1.120 1.121 145.2 0.029 − 1.266 144.1
Ra+ 7s-6d3/2 −0.596 −0.641 −39.46 − 0.099 1.380 −38.25
Fr 7s-6d3/2 −0.063 0.074 26.53 0.159 − 0.971 25.75
Cs 6s-5d3/2 0.094 −0.026 −2.705 − 0.091 0.732 −2.089
Ba+ 6s-5d3/2 −0.551 −0.562 −14.52 0.036 0.736 −13.81
Rb 5s-4d3/2 −0.289 −0.120 −0.731 0.054 − 0.505 −1.165
Sr+ 5s-4d3/2 0.155 0.206 2.612 − 0.019 − 0.713 1.945
Ca+ 4s-3d3/2 −0.041 −0.090 −0.347 0.024 0.625 0.237

the same all-order approach as for the E2 matrix elements.
The four variants of the all-order calculations are carried
out for the M1 transitions like for the E2 transitions. We
also carried out the calculations of the M1 matrix elements
using the form-independent MBPT3 method introduced in
[42,43]. The all-order values are taken to be final. We find
that while using the form of the M1 operator that includes
retardation changes the DF values, its effect on the final result
is negligible at the present level of accuracy and is omitted in

Table V. Results with and without the inclusion of the Breit
interaction are listed, with the Breit contribution being more
important for the M1 transitions in comparison with the E2
transitions.

Comparing the third-order MBPT3 and RPA results demon-
strates that corrections beyond RPA are large for all cases,
particularly Fr and Fr-like ions. The MBPT3 classification and
formulas for such corrections, which include Brueckner orbital
(BO), structure radiation (SR), and normalization, are given in

TABLE V. Recommended values of the reduced magnetic M1 dipole matrix elements in 105μB . The first-order and all-order SD values
are listed. Final recommended values are given in the “Final” column. RPA includes lowest-order DF results; the third-order MBPT results
(MBPT3) include both DF and RPA results. The results are compared with DF and RPA values from [16].

Breit
interaction Transition DF DF [16] RPA RPA [16] MBPT3 SD Final

Th3+ No Breit 7s-6d3/2 1.545 214.4 111.9 121.9 121.9
Breit 7s-6d3/2 4.394 4.432 216.0 212.2 123.8 123.1 123.1

Ac2+ No Breit 7s-6d3/2 1.119 216.3 123.1 129.6 129.6
Breit 7s-6d3/2 3.513 3.510 214.5 213.6 113.2 130.3 130.3

Ra+ No Breit 7s-6d3/2 0.596 213.7 142.5 138.4 138.4
Breit 7s-6d3/2 2.368 2.401 212.8 210.3 142.5 138.6 138.6

Fr No Breit 7s-6d3/2 0.063 128.5 146.3 125.9 125.9
Breit 7s-6d3/2 0.570 0.737 127.9 126.9 145.8 125.6 125.6

Cs No Breit 6s-5d3/2 0.094 12.70 13.52 13.23 13.23
Breit 6s-5d3/2 0.429 0.566 12.95 11.98 14.05 13.84 13.84

Ba+ No Breit 6s-5d3/2 0.551 22.72 13.54 15.65 15.65
Breit 6s-5d3/2 2.009 2.006 23.65 22.06 14.86 16.94 16.94

Rb No Breit 5s-4d3/2 − 0.289 1.214 0.849 1.553 1.553
Breit 5s-4d3/2 0.017 0.245 1.448 1.019 1.238 2.006 2.006

Sr+ No Breit 5s-4d3/2 0.155 4.125 1.853 3.380 3.380
Breit 5s-4d3/2 1.463 5.210 3.193 4.693 4.693

Ca+ No Breit 4s-3d3/2 0.041 −0.657 0.040 0.817 0.817
Breit 4s-3d3/2 1.203 1.708 1.183 2.012 1.973
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TABLE VI. Magnetic dipole (M1) matrix elements (in units of 105μB ). Relative signs of the present results are adjusted so that final matrix
elements are positive. RPA includes lowest-order DF results; the third-order MBPT results (MBPT3) include both DF and RPA. The results
are compared with DF and RPA values from [16].

Transition DF DF [16] RPA RPA [16] MBPT3

Th3+ NBr 8s-7s −14.44 158.8 64.68
Br 8s-7s −15.78 −13.23 155.2 −2549 61.66

Ac2+ NBr 8s-7s −10.07 172.8 86.97
Br 8s-7s −11.13 −8.911 169.4 −2390 84.18

Ra+ NBr 8s-7s −6.085 185.3 112.7
Br 8s-7s −6.935 −5.744 182.0 185.1 110.0

Fr NBr 8s-7s −2.559 177.1 139.9
Br 8s-7s −3.000 −2.49 174.4 176.5 137.4

Cs NBr 7s-6s −1.952 14.22 12.45
Br 7s-6s −2.189 −1.652 13.66 14.13 11.83

Ba+ NBr 7s-6s −4.952 13.24 8.042
Br 7s-6s −5.366 −4.050 12.46 13.53 7.257

Rb NBr 6s-5s −1.824 1.004 0.859
Br 6s-5s −1.998 −1.473 0.740 1.216 0.553

Sr+ NBr 6s-5s 4.800 1.706 2.392
Br 6s-5s 5.099 2.099 2.828

Ca+ NBr 5s-4s 4.395 4.400 4.579
Br 5s-4s 4.570 4.579 4.791

[72]. The form-independent variant of the third order used here
includes further corrections due to the replacement of the DF
matrix elements with the “dressed” RPA values in all formulas.
This approach is discussed in detail in [42,43]. The all-order
SD calculations include all of the third-order and additional
higher-order correlation corrections. The comparison of the
MBPT3 and all-order SD values demonstrates that the fourth-
and higher-order contributions are significant for these M1
transitions.

The same calculations were carried out for the s-s
transitions. The results are presented in Table VI, where DF,
RPA, and the MBPT3 final values are listed. Our M1 values
are compared with the theoretical results from Ref. [16]
obtained in the DF and RPA approximations. Negative-energy
and retardation corrections are omitted; these contributions are
smaller than the uncertainty in the correlation corrections, as
demonstrated in Table IV. DF energies are used to define ω in
all RPA calculations. The MBPT3 values are taken to be final.

We identified two issues in the calculations of these matrix
elements. First, we find that there are significant numerical
instabilities in Dirac-Fock computations of the M1 s-s matrix
elements (the effect is small for the s-d case). The DF
codes used to generate the several low-level orbitals do not
usually orthonormalize the resulting wave functions since
orthonormalization is done by subsequent basis set codes.
In the relativistic case one expects the accuracy of the M1
radial matrix element to be limited by the size of the overlap
matrix integral (gvgw + fvfw)dr , where g and f are the large
and small components of the wave function and v and w

indicate initial and final electron states. If the ns orbitals are
not orthonormal to good numerical precision, the respective
integral is not numerically stable, leading to spurious errors,
generally of a few percent. This problem does not arise in
the present RPA, MPBT3, and all-order calculations since we
do all computations with the orthonormalized basis-set wave

functions. However, it explains the difference from the DF
and RPA results of [16], which used DF functions in the RPA
calculations. This issue is a potential source of the drastic
difference of our RPA values from [16] for the Fr-like Ac and
Th ions. The M1 matrix elements for Fr-like Ac and Th ions
are not expected to be significantly different from the Fr and
Fr-like Ra values, and present RPA and final MBPT3 values
for Fr-like isoelectronic sequence show smooth changes.

The second problem with the calculation of the s-s
transitions is a strong cancellation of the large BO and SR
corrections. In the all-order case, the BO-type term c given by
Eq. (5) is very large but is strongly canceled by SR-type term,

Z(p) =
∑
mnra

zmnρ̃
∗
rmwaρ̃rnva. (6)

Either of these terms is at least an order of magnitude larger
than the RPA. This issue makes the all-order computation
of the M1 s-s matrix elements unreliable in its current
implementation. Most likely, omission of the triple and
higher excitations leads to incomplete cancellations, and full
inclusion of the other high-order corrections, such as those
from nonperturbative triple excitations, nonlinear terms, and
others, is needed. An inclusion of the perturbative triples or
scaling exacerbates the problem instead of correcting it since
they directly affect only BO-type terms but not the structural
radiation. The s-d transitions do not present such problems: we
find some significant contributions from the non-RPA terms
described above but no strong cancellations.

To improve upon the RPA results for the s-s transition, we
use a form-independent third-order MBPT method introduced
in [42,43]. This approach yields electric dipole transition
amplitudes that are equal in length and velocity forms for
transitions in atoms with one valence electron within the
framework of relativistic many-body perturbation theory
starting from the Dirac-Hartree-Fock approximation. For the
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M1 transitions, where the matrix elements are in the velocity
form, such an approach appears to provide more accurate
cancellations of the large BO and SR many-body corrections.
Even with the strong cancellations, the remaining corrections
are still significant for the s-s M1 matrix elements. Further
improvement of the theoretical accuracy may be achieved with
the development of the form-independent all-order approach.

V. CONCLUSION

In summary, we carried out a systematic relativistic study of
s-s and s-dM1 transitions in Fr and Fr-like ions, Cs, Ba+, Rb,
Fr, Cs, Ba+, Rb, SR+, and Ca+ atomic systems. Benchmark
comparisons of the nd lifetimes were carried out. Relativistic,
correlation, Breit, and negative-energy contributions were

studied. The estimated accuracy of the theoretical s-d E2
matrix elements is very high, better than 1%, and is good
for the s-d M1 matrix elements. A rough estimate of the
accuracy of s-d M1 matrix elements is given by the difference
between the SD and MBPT3 values listed in Table IV, which
can exceed 10%. We find that inclusion of the correction
beyond RPA is essential for accurate calculations of the M1
matrix elements considered in this work. New high-precision
experimental results are urgently needed for the M1 transitions
to test theoretical predictions.
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