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Long-range tails in van der Waals interactions of excited-state and ground-state atoms
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A quantum electrodynamic calculation of the interaction of an excited-state atom with a ground-state atom is
performed. For an excited reference state and a lower-lying virtual state, the contribution to the interaction energy
naturally splits into a pole term and a Wick-rotated term. The pole term is shown to dominate in the long-range
limit, altering the functional form of the interaction from the retarded 1/R7 Casimir-Polder form to a long-range
tail—provided by the Wick-rotated term—proportional to cos[2(Em − En) R/(h̄c)]/R2, where Em < En is the
energy of a virtual state, lower than the reference-state energy En, and R is the interatomic separation. General
expressions are obtained which can be applied to atomic reference states of arbitrary angular symmetry. Careful
treatment of the pole terms in the Feynman prescription for the atomic polarizability is found to be crucial in
obtaining correct results.
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I. INTRODUCTION

Recently, the long-range tails of the interaction between an
excited-state and a ground-state atom [1–5], as well as those of
the interaction between an excited 2S state and a conducting
wall [6], have received considerable attention. The question
behind the investigation concerns the existence of long-range
tails for excited reference states, for which partially conflicting
results have been obtained in the past [7–9].

In this article, we reconsider the derivation of the long-
range interaction, with particular emphasis on the interaction
of an excited-state atom with another ground-state atom, their
separation being large compared to the Bohr radius. We follow
a method that deduces the long-range interaction from the
scattering amplitude (see Chap. 85 of Ref. [10]). This method
requires the use of the Feynman prescription for the Green
functions of the photon field and the time-ordered product of
atomic dipole operators.

We also aim to generalize the recent treatments in Refs. [1]
and [2] to reference states of arbitrary symmetry and to clarify
the role of the virtual-state energy in the calculation of the final
expressions, without any approximations. In our formalism,
we aim to calculate the long-range tails of the van der Waals
and Casimir-Polder energy shifts on the basis of a unified
formalism, which can be applied to both ground-state and
excited-state interactions with an atomic state of arbitrary
symmetry. The general idea is to use the matching of the
forward scattering amplitude from quantum electrodynamics
(QED) against the effective potential that describes the long-
range interaction.

The paper is organized as follows. In Sec. II, we reconsider
the derivation of the van der Waals and Casimir-Polder
interaction from first principles, using the matching of the
S-matrix element with the effective interaction potential.
Applications are discussed in Sec. III. First, in order to check
our results and connect them to the literature, we rederive the
familiar form of the ground-state interaction in Sec. III A and
verify the van der Waals close-range limit in Sec. III B. General
excited states are treated in Sec. III C, and the expressions
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are specialized to excited S states in Sec. III D. Finally,
conclusions are reserved for Sec. IV.

II. DERIVATION

A. S-matrix and matching with effective interaction

We consider two atoms in states ψA(�rA) and ψB(�rB) which
scatter into states ψ ′

A(�rA) and ψ ′
B(�rB) under the action of a

potential U (�rA,�rB, �R). Here, the absolute electron coordinates
are �xA and �xB ; the relative coordinates are �rA = �xA − �RA and
�rB = �xB − �RB , where �RA and �RB are the coordinates of the
nuclei. Their distance is �R ≡ �RA − �RB . We denote the initial
state i (atoms are in states ψA and ψB , respectively) and the
final state by the subscript f (atoms are in states ψ ′

A and ψ ′
B).

The corresponding S-matrix element reads as [11]

SA′B ′AB = − i

h̄

∫
d3rA

∫
d3rB ψ ′∗

A (�rA) ψ ′∗
B (�rB)

×U (�rA,�rB, �R) ψA(�rA) ψB(�rB)

×
∫

dt exp

[
− i

h̄
(E1 + E2 − E′

1 − E′
2) t

]
(1)

= − i

h̄
T

∫
d3rA

∫
d3rB ψ ′∗

A (�rA) ψ ′∗
B (�rB)

×U (�rA,�rB, �R) ψA(�rA) ψB(�rB), (2)

where we have assumed energy conservation (E1 + E2 =
E′

1 + E′
2) and denoted the (long) time interval over which

the transition from initial to final state occurs as
∫

dt = T .
The matching of the effective perturbative Hamiltonian Heff

and the S-matrix element thus is

〈ψ ′
A,ψ ′

B |Heff|ψA,ψB〉 = 〈ψ ′
A,ψ ′

B |U (�rA,�rB, �R)|ψA,ψB〉

= ih̄

T
SA′B ′AB. (3)

On the level of a scattering matrix element, the matching is
obtained in an “averaged” sense, where the “averaging” (i.e.,
the integration) occurs over the wave functions of the initial
and final states of the two-atom system. In the following, we
concentrate on forward scattering, i.e., |ψA′ 〉 = |ψA〉, |ψB ′ 〉 =
|ψB〉.
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B. Interaction Hamiltonian

We are inspired by the derivation outlined in Chap. 85 of
Ref. [10]. We use time-dependent QED perturbation theory,
where the interaction is formulated in the interaction picture
[11,12]. This means that the second-quantized operators in
the interaction Hamiltonian have a time dependence which
is generated by the action of the free Hamiltonian [13]. We
use a second-quantized approach for the operators describing
the electromagnetic field, so that a time-ordered product of
the four-vector potential operators results in the Feynman
propagator of the photon [11]. For the position operators of the
atomic electrons, though, we use a first-quantized approach,
i.e., we treat these on the level of quantum mechanics, without
the introduction of fermion creation and annihilation operators.

The interaction Hamiltonian in the dipole approximation is
then

V (t) = − �E(�xA,t) · �dA(t) − �E(�xB,t) · �dB(t)

≈ − �E( �RA,t) · �dA(t) − �E( �RB,t) · �dB(t), (4)

where �di = e�ri is the dipole operator for atom i (for atoms with
more than one electron, one has to sum over all the electrons
in the atoms i = A,B). The �RA and �RB are the positions
of the atomic nuclei. A clarifying remark is in order: In the
standard formulation of QED, one would use the interaction

Hamiltonian density H = jμ Aμ, where jμ = ψ̂ γ μ ψ̂ is the
fermionic current operator, γ μ are the Dirac γ matrices, and
Aμ is the four-vector potential [11,12]. The fermionic field
operator ψ̂ contains the fermionic creation and annihilation
operators. However, in the nonrelativistic limit, one may
renounce the quantization of the fermion field and treat the
electronic degrees of freedom using first quantization [13,14].

The fourth-order contribution to the S matrix is (the full
matrix, not a single element)

S(4) = (−i)4

4!h̄4

∫
dt1

∫
dt2

∫
dt3

∫
dt4

× T [V (t1)V (t2)V (t3)V (t4)], (5)

where T denotes the time ordering of all operators, pertaining
both to the atomic and to the field degrees of freedom.
According to the Wick theorem, the time-ordered product is
equal to the normal-ordered product, plus all contractions.
We need to calculate the fourth-order S-matrix element
〈ψ,0|S(4)|ψ,0〉 for forward scattering of the atomic reference
state |ψ〉 = |ψA,ψB〉 = |ψA〉 ⊗ |ψB〉 with the vacuum |0〉 of
the electromagnetic field (the product state is |ψ,0〉). After the
subtraction of terms which pertain to the self-energies of the
atoms, one obtains four contributions, which are proportional
to (T denotes the time ordering of dipole operators)

C1 ≡ 〈ψA|T dAi(t1) dAk(t3)|ψA〉〈ψB |T dBj (t2) dB�(t4))|ψB〉, (6a)

C2 ≡ 〈ψA|T dAi(t1) dA�(t4)|ψA〉〈ψB |T dBj (t2) dBk(t3)|ψB〉, (6b)

C3 ≡ 〈ψB |T dBi(t1) dB�(t4)|ψB〉〈ψA|T dAj (t2) dAk(t3)|ψA〉, (6c)

C4 ≡ 〈ψB |T dBi(t1) dBk(t3)|ψB〉〈ψA|T dAj (t2) dA�(t4)|ψA〉. (6d)

Contributions C2 and C4 correspond to the crossed-ladder diagram (in the language of Feynman diagrams; see Fig. 1), whereas
C1 and C3 correspond to the two-photon ladder exchange. The contributions of atoms A and B to the atomic reference state
are denoted |ψA〉 and |ψB〉, respectively. All terms C1, C2, C3, and C4 lead to equivalent contributions, and we finally arrive at
(T denotes the time ordering of field operators)

〈ψ,0|S(4)|ψ,0〉 = 1

2h̄4

∫
dt1

∫
dt2

∫
dt3

∫
dt4〈0|T [Ei( �RA,t1) Ej ( �RB,t2)]|0〉〈0|T [Ek( �RA,t3) E�( �RB,t4)]|0〉

× 〈ψA|T dAi(t1) dAk(t3)|ψA〉〈ψB |T dBj (t2) dB�(t4)|ψB〉. (7)

C. Temporal gauge and propagator

The time-ordered product of electric-field operators can be
evaluated as follows:

DE
ik(x1 − x2) = 〈0|T [Ei( �RA,t1) Ek( �RB,t2)]|0〉. (8)

With �E = −∂t
�A, we have, for the “electric-field propagator”

DE
ik(x1 − x2),

DE
ik(x1 − x2) =

(
− ∂

∂t1

) (
− ∂

∂t2

)

×〈0|T [Ai( �RA,t1) Ak( �RB,t2)]|0〉. (9)

One can relate the time-ordered product of field operators to
the photon propagator,

〈0|T Aμ(x) Aν(x ′)|0〉 = −i Dμν(x − x ′). (10)

We resort to the Fourier representation for the temporal
gauge (also known as the Weyl gauge, with vanishing

scalar components D00 = 0 and Di0 = D0i = 0). According to
Eq. (76.14) of Ref. [10], one has

Dik(ω,�k) = − h̄

4πε0c2

1(
ω
c

)2 − �k2 + iε

(
δik − c2 ki kk

ω2

)
.

(11)
According to Eq. (76.16) of Ref. [10], the propagator in the
mixed frequency-position representation is given by

Dik(ω, �R) = −
(

δik + c2 ∇i ∇k

ω2

)
D(ω, �R), (12)

where

D(ω, �R) = − h̄

4πε0c2

ei
√

ω2+iε R/c

R
, (13)

and ε is an infinitesimal parameter used in the frequency-
coordinate representation of the Feynman propagator. In the
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FIG. 1. Feynman diagrams for the excited-state long-range inter-
action of an atom in state |ψA〉 (excited) with a ground-state atom,
B, in state |ψB〉. (a) Ladder diagram; (b) crossed-ladder graph. The
power of using the Feynman propagator in the calculation lies in the
fact that all the time orderings of the electron-photon vertices, which
are otherwise relevant to time-ordered perturbation theory [14], can
be summarized in only two diagrams.

following, we use the nonstandard definition

|ω| ≡
√

ω2 + iε (14)

for the complex photon frequency ω. We carry out the
differentiations, with the result

∇i ∇k

ei
|ω|
c

R

R
=

(ω

c

)2
δik

(
− c2

ω2 R2
+ ic

|ω| R
)

ei
|ω|
c

R

R

+
(ω

c

)2 Ri Rk

R2

(
3c2

ω2 r2
− 3ic

|ω| R − 1

)
ei

|ω|
c

R

R
.

(15)

The temporal gauge photon propagator in the mixed represen-
tation becomes

Dik(ω, �R) = h̄

4πε0c2

[
δik

(
1 + ic

|ω|R − c2

ω2R2

)
ei

|ω|
c

R

R

+ Ri Rk

R2

(
−1 − 3ic

|ω| R + 3c2

ω2 R2

)
ei

|ω|
c

R

R

]

= h̄

4πε0c2

[
αik + βik

(
ic

|ω|R − c2

ω2 R2

)]
ei

|ω|
c

R

R
,

(16a)

where

αik = δik − Ri Rk

R2
, βik = δik − 3

Ri Rk

R2
. (16b)

The photon propagator, which is the propagator for the vector
potential �A, can be translated into the propagator for the
electric field by differentiation with respect to time,

DE
ik(x1 − x2) = ∂

∂t1

∂

∂t2
〈0|T Ai( �RA,t1) Ak( �RB,t2)|0〉

= ∂

∂(t1 − t2)

∂

∂(t2 − t1)
(−i Dik(x1 − x2))

= i
∂2

∂t2
Dik(x), x = x1 − x2. (17)

If we work in the mixed representation, we can implement the
differentiation with respect to time in the Fourier integral as
follows:

DE
ik(t, �R) = 〈0|T Ei( �RA,t1) Ek( �RB,t2)|0〉

= −i

∫
dω

2π
ω2 Dik(ω, �R) e−iωt . (18)

Now, let us proceed to the time-ordered product of dipole
operators, which is given as (for atom A)

αA,ik(t1 − t2) = i

h̄
〈ψA|T(dAi(t1) dAk(t2))|ψA〉

= i

h̄
〈ψA|T(dAi(t1 − t2) dAk(0))|ψA〉, (19)

and analogously for atom B.
Now, according to the prescription that Fourier transforma-

tion is a summation over exponentials with frequency factors
exp(−iωt),

αA,ik(t) =
∫ ∞

−∞

dω

2π
e−iωt αA,ik(ω), (20)

we write

〈ψA|T dAi(t1) dAk(t2)|ψA〉
= −ih̄ αA,ik(t1 − t2)

= −ih̄

∫ ∞

−∞

dω

2π
e−iω(t1−t2) αA,ik(ω). (21)

The time-ordered product of dipole operators can be evaluated
in terms of the polarizability of the atom, with the poles being
displaced according to the Feynman prescription (so that the
integrals converge),

αA,ik(ω) =
∫ ∞

−∞
dt eiωt αA,ik(t) = i

h̄

∑
v

∫ ∞

0
dt e− i

h̄
(Ev−EA−h̄ω−iε) t 〈ψA|dAi |vA〉 〈vA|dAk|ψA〉

+ i

h̄

∑
v

∫ 0

−∞
dt e

i
h̄

(Ev−EA+h̄ω−iε) t 〈ψA|dAk |vA〉 〈vA|dAi |ψA〉

=
∑
vA

( 〈ψA|dAi |vA〉 〈vA|dAk|ψA〉
Ev,A − h̄ω − iε

+ 〈ψA|dAi |vA〉 〈vA|dAk|ψA〉
Ev,A + h̄ω − iε

)
, (22)

042506-3



U. D. JENTSCHURA AND V. DEBIERRE PHYSICAL REVIEW A 95, 042506 (2017)

where ε > 0 and

Ev,A = EvA
− EA (23)

is the difference between the virtual-state energy EvA
and

the reference-state energy EA of atom A. In the last step
of Eq. (22), we have used the fact that the polarizability
has to be purely real rather than complex for real driv-
ing frequency ω, thus replacing 〈ψA|dAk|vA〉 〈vA|dAi |ψA〉 →
〈ψA|dAi |vA〉 〈vA|dAk|ψA〉 in the second term. In assigning the
time dependence of the atomic dipole operators, we have taken
into account the Heisenberg equation of motion, h̄ d

dt
�dA(t) =

i [HA, �dA(t)], where HA is the Schrödinger Hamiltonian of
atom A. The poles in the polarizability αA,ik are displaced
according to the Feynman prescription. Poles occur at h̄ω =
Ev,A − iε and at h̄ω = −Ev,A + iε. If the virtual state is
displaced toward a lower energy, i.e., Ev,A < 0, then the pole
at h̄ω = −Ev,A + iε migrates into the first quadrant of the
complex plane.

The “correct” prescription for the placement of the poles of
the energy denominator of the polarizability has recently been
controversially discussed in the literature [15–19]. A different
prescription, which puts the poles into the lower half of the
complex plane, was recently used in Ref. [20]. In the latter
study, one considers the relative permittivity εr (ω) of a dilute
gas and its relation to the dynamic dipole polarizability α(ω)
of the gas atoms,

εr (ω) = 1 + NV

ε0
αR(ω), (24)

where αR(ω) denotes the polarizability in a pole prescription
corresponding to the retarded Green function, i.e., with a sign
change (−iε → +iε) in the second term on the right-hand side
of Eq. (22). Furthermore, NV is the number density of atoms.
These considerations are valid upon an interpretation of the
dielectric constant in terms of the retarded Green function GR ,
which describes the relation of the dielectric displacement
�D(�r,t) to the electric field �E(�r,t):

�D(�r,t) = ε0 �E(�r,t) + ε0

∫ ∞

0
dτ GR(τ ) �E(�r,t − τ ). (25)

The Fourier transform is

GR(ω) = NV

ε0
αR(ω), (26)

where αR(ω) denotes the “retarded” polarizability. The re-
tarded prescription is thus required for the dielectric function
εr (ω) = 1 + GR(ω). The answer to the question regarding the
correct placement of the poles of the polarizability [15–19]
thus is as follows: Namely, there is no universally correct
displacement for the poles from the real axis. Instead, the
correct placement depends on the form of the Green function
represented by the polarizability, in the context of a particular
application. If the retarded Green function is needed, then
all poles should be displaced into the lower half of the
complex plane, while the Feynman prescription is relevant
for the current calculation, in which the time-ordered product
of dipole operators is sought. Neither the retarded nor the
Feynman prescription is universally correct; it depends on the
context in which the calculation is being performed.

We now reformulate Eq. (7), with the help of Eqs. (16) and (21):

〈ψ,0|S(4)|ψ,0〉 = 1

2h̄4

∫
dt1

∫
dt2

∫
dt3

∫
dt4

(
−i

∫
dω1

2π
ω2

1 Dij (ω1, �R) e−iω1(t1−t2)

)(
−i

∫
dω2

2π
ω2

2 Dk�(ω2, �R) e−iω2(t3−t4)

)

×
(

−i

∫
dω3

2π
h̄ αA,ik(ω3) e−iω3(t1−t3)

)(
−i

∫
dω4

2π
h̄ αB,j�(ω4) e−iω4(t2−t4)

)
. (27)

One now carries out the dti integrations one after the other, with the results
∫

dt2 → 2π δ(ω1 − ω4), then
∫

dt3 → 2π δ(ω2 − ω3),
and

∫
dt4 → 2π δ(ω2 + ω4). As a result, the condition ω1 = ω4 = −ω2 = −ω3 is implemented in the final result, yielding

〈ψ,0|S(4)|ψ,0〉 = 1

2h̄2

∫
dt1

∫
dω1

2π
ω2

1(−ω1)2Dij (ω1, �R) Dk�(−ω1, �R) αA,ik(−ω1) αB,j�(ω1)

= T

2h̄2

∫
dω

2π
ω4 Dij (ω, �R) Dk�(ω, �R) αA,ik(ω) αB,j�(ω), (28)

where we use the invariance of the photon propagator and of the polarizability under the transformation ω ↔ −ω [see Eqs. (16)
and (22)]; we reemphasize that this invariance holds only if the Feynman prescription is used.

D. Energy shift

Using Eq. (3), we obtain the diagonal matrix element of the
effective Hamiltonian, and thus the direct term of the energy
shift �E(dir), as

�E(dir) = 〈ψAψB |Heff|ψAψB〉

= i

2h̄

∫ ∞

−∞

dω

2π
ω4 Dij (ω, �R) Dk�(ω, �R)

×αA,ik(ω) αB,j�(ω). (29a)

This general result can be applied to states of arbitrary
symmetry and is not restricted to ground-state atoms. Invoking
the full symmetry of the integrand under a sign change of ω,
one may write

�E(dir) = i

h̄

∫ ∞

0

dω

2π
ω4 Dij (ω, �R) Dk�(ω, �R)

×αA,ik(ω) αB,j�(ω). (29b)

For convenience, we recall the definition of Dij (ω, �R) accord-
ing to Eq. (16) and the definition of αA,ij (ω) according to
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Eq. (22):

Dij (ω, �R) = h̄ei
|ω|
c

R

4πε0c2 R

[
αij + βij

[
ic

|ω|R − c2

ω2 R2

]]
,

αij = δij − Ri Rj

R2
, βij = δij − 3

Ri Rj

R2
,

αA,ij (ω) =
∑
vA

( 〈ψA|dAi |vA〉 〈vA|dAj |ψA〉
Ev,A − h̄ω − iε

+ 〈ψA|dAj |vA〉 〈vA|dAi |ψA〉
Ev,A + h̄ω − iε

)
. (29c)

Of course, the tensor structures αij and βij need to be
distinguished from the polarizabilities αA and αB .

It is a feature of the time-ordered product of dipole and
field operators that all possible time orderings in time-ordered
perturbation theory (see Fig. 1 of Ref. [8]) are automatically
taken into account using a single propagator.

E. Mixing term

In the case of two identical atoms, an additional interaction
energy term exists which needs to be taken into account. Here,
states |ψA〉 and |ψB〉 are obviously not tied to any of the atoms,
but rather, atom A may assume state |ψB〉, and atom B may
assume state |ψA〉 after the interaction. The eigenstates of the
van der Waals Hamiltonian in this case are states of the form
(1/

√
2) (|ψA,ψB〉 ± |ψB,ψA〉) with an energy

�E = �E(dir) ± �E(mix), (30)

where �E(dir) is given by Eq. (29), and �E(mix) is obtained
by calculating the S-matrix element of the initial state |ψ〉 =
|ψA〉 ⊗ |ψB〉 and the final state |ψ ′〉 = |ψB〉 ⊗ |ψA〉. In order
to calculate the mixing term, one repeats all steps leading from
Eq. (1) to Eq. (29), for the out state |ψ ′〉 and the in state |ψ〉.
The result is

�E(mix) = i

h̄

∫ ∞

0

dω

2π
ω4 Dij (ω, �R) Dk�(ω, �R)

×αAB,ik(ω) α∗
AB,j�(ω). (31)

The definition of Dij (ω, �R) has been recalled in Eq. (29c).
The mixed polarizabilities αAB,ij (ω) and αAB,ij (ω) are given
as follows:

αAB,ij (ω) =
∑
vA

( 〈ψA|dAi |vA〉 〈vA|dAj |ψB〉
Ev,A − h̄ω − iε

+ 〈ψA|dAj |vA〉 〈vA|dAi |ψB〉
Ev,A + h̄ω − iε

)
,

αAB,ij (ω) =
∑
vB

( 〈ψA|dBi |vB〉 〈vB |dBj |ψB〉
Ev,B − h̄ω − iε

+ 〈ψA|dBj |vB〉 〈vB |dBi |ψB〉
Ev,B + h̄ω − iε

)
. (32)

Here, the designations of the dipole transition operators with
regard to atoms A and B, i.e., as dAi and dBi , constitute mere

conveniences; for the mixing term to exist, the two atoms
have to be identical and |ψA〉 and |ψB〉 are different states
of the same atom. The important feature which differentiates
αAB,ij (ω) from αAB,ij (ω), in the case of identical atoms, is the
different reference-state energy in the denominator.

III. APPLICATIONS

A. Ground-state interaction

For a reference S state of atom A, denoted |ψA〉 = |nAS〉,
the polarizability tensor assumes the form

αA,ik(ω) = δik

3

∑
vA

(
〈nAS| �dA|vAP 〉 · 〈vAP | �dA|nAS〉

Ev,A − h̄ω − iε

+ 〈nAS| �dA|vAP 〉 · 〈vAP | �dA|nAS〉
Ev,A + h̄ω − iε

)

= δik αA(ω), (33)

where we denote the S and P states by their respective sym-
metry [in this case, Ev,A = EvA

− EA = E(vA P ) − E(nAS)],
where the reference-state energy is that of the S state with
principal quantum number nA. This leads to the following
tensor structure in Eq. (29):

Dij (ω, �R) Dij (ω, �R)

=
(

h̄

4πε0c2

)2 2 e2i
|ω|
c

R

R2

×
(

1 + 2i c

|ω| R − 5c2

(ωR)2
− 6i c3

(|ω|R)3
+ 3c4

(ωR)4

)
.

A Wick rotation of expression (29) then leads to

�E(dir) = − h̄

πc4(4πε0)2

∫ ∞

0
dω e−2ωR/c ω4

R2

×
(

1 + 2c

ω R
+ 5c2

(ωR)2
+ 6c3

(ωR)3
+ 3c4

(ωR)4

)
×αA(1S; iω) αB (1S; iω), (34)

where we indicate the atomic states relevant to the investiga-
tion, for clarity. Expression (29b) verifies known results (see
Chap. 85 of Ref. [10]).

B. van der Waals (close-range) limit

A classic result which needs to be verified is the close-range
limit. For R � c/ω, where ω is a typical transition wavelength,
we find, from the dominant term in Eq. (16) in this limit,

Dij (ω, �R) ≈ − h̄

4πε0

βij

ω2 R3
. (35)

For arbitrary angular symmetry of the reference state, we thus
have

�E(dir) ≈ ih̄ βij βk�

2 (4πε0)2 R6

∫ ∞

−∞

dω

2π
αA,ik(ω) αB,j�(ω), (36)
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where it is advantageous to keep the integration limits as −∞
and ∞. In view of the general result

h̄

∫ ∞

−∞
dω

(∑
±

1

Ev,A ± h̄ω − iε

)(∑
±

1

Ev,B ± h̄ω − iε

)

= 4πi

Ev,A + Ev,B

, (37)

we have

�E(dir) ≈ − 1

(4πε0)2

βij βk�

R6

∑
vA

∑
qB

1

Ev,A + Eq,B

×〈ψA|dAi |vA〉〈vA|dAk|ψA〉
× 〈ψB |dBj |qB〉〈qB |dB�|ψB〉. (38)

We denote the virtual states of atom B as |q〉 as opposed to
|v〉. This is precisely the expression which would be obtained
using second-order perturbation theory with the van der Waals
potential

V = 1

4π ε0

βij dAi dBj

R3
, (39)

which can be obtained by expanding the electrostatic potential
of the bound electrons and protons in both atoms in the limit
|�rA|,|�rB | � R.

C. General excited reference states

1. Pole term

Let |mA〉 be a virtual state of atom A, accessible by a dipole
transition, We now assume that at least one state in atom A

is energetically lower than the reference state, i.e., Em,A < 0,
while atom B is in the ground state. For the pole term, in the
decomposition, (22), we restrict the sum over virtual states vA

to just one state, whose quantum numbers we denote by the
multi-index mA (see Fig. 2). A Wick rotation of the integration
contour ω ∈ (0,∞) from Eq. (29b) to the imaginary axis then

FIG. 2. The virtual resonant contribution due to a lower-lying
level |mA〉 leads to the pole term, which generates the long-range
interactions for excited states [see Eqs. (43b) and (58b)].

picks up an additional pole term at

h̄ω = −Em,A + iε, Em,A < 0, (40)

which we need to take into account. Consequently, the
interaction energy shift �E due to the energetically lower
virtual-state energy with quantum numbers mA (multi-index)
naturally splits into a pole term Q(dir)

mA
and a Wick-rotated term

W (dir)
mA

:

�E(dir)
mA

= Q(dir)
mA

+ W (dir)
mA

. (41)

The total direct term is

�E(dir) =
⎛
⎝ ∑

Em,A<0

Q(dir)
mA

⎞
⎠ + W (dir), (42)

where the Wick-rotated term W (dir) is obtained after the
summation over all virtual states (including those of higher
energy) and enters the expression in Eq. (45). For the
contribution from the pole, one finds by Cauchy’s residue
theorem that

Q(dir)
mA

= − Res
ω=−Em,A/h̄+iε

ω4

h̄
Dij (ω, �R)Dk�(ω, �R)

(∑
±

〈ψA|dAi |mA〉〈mA|dAk|ψA〉
Em,A ± h̄ω − iε

)
αB,j�(ω)

= −〈ψA|dAi |mA〉 〈mA|dAk|ψA〉
(4πε0)2 R6

αB,j�

(
Em,A

h̄

)
exp

(
−2iEm,AR

h̄c

) [
βij βk�

(
1 + 2i

Em,A R

h̄c

)

− (2αij βk� + βij βk�)

(
Em,AR

h̄c

)2

− 2iαij βk�

(
Em,AR

h̄c

)3

+ αij αk�

(
Em,AR

h̄c

)4]
= P (dir)

mA
− i

2
�(dir)

mA
. (43a)

Here, P (dir)
mA

is the real part of the interaction energy, and �(dir)
mA

is the induced width. The identification of the width term �(dir)
mA

follows the general paradigm that a bound-state energy can be written as E = Re E − i
2�, where � is the width. One obtains

P (dir)
mA

= −〈ψA|dAi |mA〉 〈mA|dAk|ψA〉
(4πε0)2 R6

αB,j�

(
Em,A

h̄

){
cos

(
2
Em,AR

h̄c

)[
βij βk� − (2αij βk� + βij βk�)

(
Em,A R

h̄c

)2

+ αij αk�

(
Em,A R

h̄c

)4]
+ 2

Em,AR

h̄c
sin

(
2
Em,AR

h̄c

)[
βij βk� − αij βk�

(
Em,AR

h̄c

)2
]}

. (43b)
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The width term �(dir)
mA

can be obtained from P (dir)
mA

by the substitution

cos

(
2Em,AR

h̄c

)
→ sin

(
2Em,AR

h̄c

)
, sin

(
2Em,AR

h̄c

)
→ − cos

(
2Em,AR

h̄c

)
(43c)

and an overall factor 2. It reads

�(dir)
mA

= −2
〈ψA|dAi |mA〉 〈mA|dAk|ψA〉

(4πε0)2 R6
αB,j�

(
Em,A

h̄

){
sin

(
2
Em,AR

h̄c

)[
βij βk� − (2αij βk� + βij βk�)

(
Em,A R

h̄c

)2

+αij αk�

(
Em,A R

h̄c

)4]
− 2

Em,AR

h̄c
cos

(
2
Em,AR

h̄c

)[
βij βk� − αij βk�

(
Em,AR

h̄c

)2
]}

. (43d)

The result, (43b), is at variance with the corresponding result
given in Eq. (14) of Ref. [7] and with Eq. (4.1) of Ref. [8]. It
is in better agreement with recently published results, such as
Eq. (19) of Ref. [2] and Eq. (4) of Ref. [1] (provided we average
the latter over the interaction time T > 2R/c). We have used
a symmetry of the integrand according to the replacement
αij βk� + αk� βij + βij βk� → 2αij βk� + βij βk� in the cosine
term in Eq. (43b) and αij βk� + αk� βij → 2αij βk� in the sine
term. This is valid under the same assumptions as used in
Eq. (22).

Written in terms of a sum over states for atom B, we have

αB,j�

(
Em,A

h̄

)
=

∑
qB

〈ψB |dBj |qB〉 〈qB |dB�|ψB〉

×
(

1

Eq,B − Em,A

+ 1

Eq,B + Em,A

)
. (43e)

The authors of Ref. [1] consider a situation with two non-
identical atoms, which have resonance energies h̄ωA and h̄ωB

mutually close. They define Em,A = −h̄ωA (with manifestly
positive ωA) and write Eq,B = h̄ωB , assume that ωA ≈ ωB , and
define �AB = h̄ωA − h̄ωB with |�AB | � h̄ωA,h̄ωB . Further-
more, they restrict the sum over virtual states in Eq. (43e) to the
resonant state, and they keep only the term 1/(Em,A + Eq,B)
in Eq. (43e), because under their assumptions [see Eq. (4) of
Ref. [1]],∣∣∣∣ 1

Em,A + Eq,B

∣∣∣∣ =
∣∣∣∣− 1

�AB

∣∣∣∣ �
∣∣∣∣ 1

Eq,B − Em,A

∣∣∣∣ ≈ 1

2h̄ωB

.

(44)

Our result, given in Eq. (43b), is much more general, as
it includes nonresonant terms of atom B, which enter the
expression αB,j�(Em,A/h̄), and thus not restricted to the
special case of distinct atoms with mutually close resonant
frequencies.

2. Wick-rotated term

Let us now consider the Wick-rotated term in Eq. (29),
which has the following tensor structure:

W (dir) = −1

h̄

∫ ∞

0

dω

2π
ω4 Dij (iω, �R) Dk�(iω, �R)

×αA,ik(iω) αB,j�(iω)

= − h̄

(4πε0)2 c4

∫ ∞

0

dω

2π
e−2ωR/c ω4

R2

×
[
αij +

(
c

ωR
+ c2

(ωR)2

)
βij

]
αA,ik(iω)

×
[
αk� +

(
c

ωR
+ c2

(ωR)2

)
βk�

]
αB,j�(iω). (45)

Here, the full polarizabilities are to be used; i.e., the sum over
virtual states is not restricted to states with an energy lower
than that of the reference state, for atom A. According to the
nonstandard definition, (14), one has

|iω| =
√

(iω)2 + iε = iω, ω > 0, (46)

and the Wick rotation can be carried out as usual.
It is now crucial to verify that, in the sum of the pole term

and the Wick-rotated term, the contribution of the virtual state
mA—which has a lower energy than ψA—to the nonretarded
van der Waals energy, (38), gives the expected result. The Wick
rotation performed in Eq. (45) is not “innocent”; within the
Wick-rotated integral, it changes the sign of the contribution
of the energetically lower state to the van der Waals energy.
A compensating term is offered by the pole term, in a way
discussed in the following.

First, we approximate Eq. (45) for close range using the asymptotic behavior of the photon propagator given by Eq. (35). In
view of the general result

h̄

∫ ∞

−∞
dω

(∑
±

1

Em,A ± ih̄ω

) (∑
±

1

Eq,B ± ih̄ω

)
= 4π sgn(Em,A) sgn(Eq,B )

|Em,A| + |Eq,B | , (47)
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an evaluation of the Wick-rotated integral in the short-range limit leads to

W (dir)
mA

R→0= 1

(4πε0)2R6

∑
qB

βij βk�

|Em,A| + Eq,B

〈ψA|dAi |mA〉〈mA|dAk|ψA〉〈ψB |dBj |qB〉〈qB |dB�|ψB〉

= 1

(4πε0)2R6

∑
qB

βij βk�

−Em,A + Eq,B

〈ψA|dAi |mA〉〈mA|dAk|ψA〉〈ψB |dBj |qB〉〈qB |dB�|ψB〉. (48)

We have assumed that Em,A < 0; the result is not equal to the contribution of the virtual state mA to the van der Waals energy,
(38). The compensating term is obtained by considering the short-range limit of the pole term, which is obtained from Eq. (43b)
in the limit R → 0:

P (dir)
mA

R→0= − 1

(4πε0)2 R6

(∑
qB,±

βijβk�

±Em,A + Eq,B

)
〈ψA|dAi |mA〉〈mA|dAk|ψA〉〈ψB |dBj |qB〉〈qB |dB�|ψB〉.

(49)

For completeness, we also note the short-range asymptotics of the width term,

�(dir)
mA

R→0= 2[Em,A/(h̄c)]3

3 (4πε0)2 R3

(∑
qB,±

βijβk� − 3αij βk�

±Em,A + Eq,B

)
〈ψA|dAi |mA〉〈mA|dAk|ψA〉〈ψB |dBj |qB〉〈qB |dB�|ψB〉.

(50)

The sum of the terms in Eqs. (48) and (49) restores the van der Waals limit,

�E(dir)
mA

= P (dir)
mA

+ W (dir)
mA

R→0= − 1

(4πε0)2 R6

∑
qB

βij βk�

Em,A + Eq,B

〈ψA|dAi |mA〉〈mA|dAk|ψA〉〈ψB |dBj |qB〉〈qB |dB�|ψB〉. (51)

This result precisely corresponds to what would be expected from second-order perturbation theory if the Hilbert space of atom
A were restricted in the two states ψA and mA. Supplementing the energetically higher states |vA〉 for atom A, given in the
Wick-rotated form, Eq. (45), one restores the full van der Waals limit.

Let us now turn our attention to the long-range limit. For the 1S-1S interaction, the classic result for very large interatomic
separation [21] calls for a Casimir-Polder 1/R7 asymptotics. This is valid only, as we now argue, if both atoms are in their ground
state. Indeed, in this situation, only the Wick-rotated contribution subsists, and its asymptotics is indeed of the Casimir-Polder
form. In the general case, however, for arbitrary tensor structure, we have both the Wick-rotated term

W (dir) R→∞= − h̄c

8π

αA,ik(0) αB,j�(0)

(4πε0)2 R7
(3αijαkl + 5αijβkl + 5βijβkl) (52)

and the pole term, which has the long-range asymptotics

P (dir)
mA

R→∞= − 1

(4πε0)2 R2

(
Em,A

h̄c

)4

cos

(
2
Em,AR

h̄c

)
αijαkl 〈ψA|dAi |mA〉〈mA|dAk|ψA〉αB,j�

(
Em,A

h̄

)
. (53)

The long-range form of the width term reads as

�(dir)
mA

R→∞= − 2

(4πε0)2 R2

(
Em,A

h̄c

)4

sin

(
2
Em,AR

h̄c

)
αijαkl 〈ψA|dAi |mA〉〈mA|dAk|ψA〉αB,j�

(
Em,A

h̄

)
. (54)

This result confirms the existence of an extremely long-range van der Waals interaction for excited states.

3. Mixing terms

We now need to start from Eq. (31) for the mixing term and analyze the pole term generated for a virtual state of lower energy, in
atom A, and the Wick-rotated term, as well as its nonretarded limit. The mixing term is relevant only for identical atoms. We recall
that for identical atoms, the eigenstates of the van der Waals Hamiltonian are states of the form (1/

√
2) (|ψA,ψB〉 ± |ψB,ψA〉),

with energy �E(dir) ± �E(mix), where �E(dir) is given by Eq. (29) and �E(mix) by Eq. (31). We write the contribution �E(mix)
mA

from an energetically lower state |vA〉 = |mA〉 with Em,A < 0 as

�E(mix)
mA

= Q(mix)
mA

+ W (mix)
mA

. (55)
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The total mixing term is obtained as the sum

�E(mix) =
⎛
⎝ ∑

Em,A<0

Q(mix)
mA

⎞
⎠ + W (mix), (56)

where W (mix) is the total mixing term, summed over all states, energetically lower as well as higher.
The generalization of Eq. (43a) to the mixed pole term reads as follows:

Q(mix)
mA

= − Res
ω=−Em,A/h̄+iε

ω4

h̄
Dij (ω, �R)Dk�(ω, �R)

( 〈ψA|dAi |mA〉〈mA|dAk|ψB〉
Em,A − h̄ω − iε

+ 〈ψA|dAi |mA〉〈mA|dAk|ψB〉
Em,A + h̄ω − iε

)
αAB,j�(ω)

= P (mix)
mA

− i

2
�(mix)

mA
. (57)

For the pole term generated at ω = −Em,A + iε, we need the second term in parentheses, with the result

Q(mix)
mA

= −〈ψA|dAi |mA〉 〈mA|dAk|ψB〉
(4πε0)2 R6

αAB,j�

(
Em,A

h̄

)
exp

(
−2iEm,AR

h̄c

) [
βij βk�

(
1 + 2i

Em,A R

h̄c

)

− (2αij βk� + βij βk�)

(
Em,AR

h̄c

)2

− 2iαij βk�

(
Em,AR

h̄c

)3

+ αij αk�

(
Em,AR

h̄c

)4]
= P (mix) − i

2
�(mix). (58a)

The real part of the pole contribution to the mixing term is

P (mix)
mA

= −〈ψA|dAi |mA〉〈mA|dAk|ψB〉
(4πε0)2 R6

αAB,j�

(
−Em,A

h̄

){
cos

(
2
Em,AR

h̄c

)[
βij βk� − (2αij βk� + βij βk�)

×
(

Em,A R

h̄c

)2

+ αij αk�

(
Em,A R

h̄c

)4]
+ 2

Em,AR

h̄c
sin

(
2
Em,AR

h̄c

)[
βij βk� − αij βk�

(
Em,AR

h̄c

)2
]}

. (58b)

The corresponding width term is

�(mix)
mA

= −2
〈ψA|dAi |mA〉〈mA|dAk|ψB〉

(4πε0)2 R6
αAB,j�

(
−Em,A

h̄

){
sin

(
2
Em,AR

h̄c

)[
βij βk� − (2αij βk� + βij βk�)

×
(

Em,A R

h̄c

)2

+ αij αk�

(
Em,A R

h̄c

)4]
− 2

Em,AR

h̄c
cos

(
2
Em,AR

h̄c

)[
βij βk� − αij βk�

(
Em,AR

h̄c

)2
]}

. (58c)

The mixed polarizability αAB,j�(ω) has been defined in Eq. (32). The (total) Wick-rotated term from Eq. (56) is

W (mix) = −1

h̄

∫ ∞

0

dω

2π
ω4 Dij (iω, �R) Dk�(iω, �R)αAB,ik(iω) αAB,j�(iω). (59)

The generalization of the energy shift �E given in Eq. (51) to the mixing term, in the van der Waals range, reads as follows:

�E(mix)
mA

R→0= − 1

(4πε0)2 R6

∑
qB

βij βk�

Em,A + Eq,B

〈ψA|dAi |mA〉〈mA|dBk|ψB〉〈ψA|dAj |qB〉〈qB |dB�|ψB〉. (60)

The mixing contribution to the width term, at close range, is

�(mix)
mA

R→0= 2[Em,A/(h̄c)]3

3 (4πε0)2 R3

(∑
qB,±

βijβk� − 3αij βk�

±Em,A + Eq,B

)
〈ψA|dAi |mA〉〈mA|dBk|ψB〉〈ψA|dAj |qB〉〈qB |dB�|ψB〉. (61)

In the long-range limit, the mixed Wick-rotated term is

W (mix) R→∞= − h̄c

8π (4πε0)2R7
(3αijαkl + 5αijβkl + 5βijβkl) αAB,ik(0) αAB,j�(0). (62)

The mixed pole term has the leading long-range asymptotics

P (mix)
mA

R→∞= − 1

(4πε0)2 R2

(
Em,A

h̄c

)4

cos

(
2Em,AR

h̄c

)
αijαkl 〈ψA|dAi |mA〉〈mA|dAk|ψB〉αAB,j�

(
−Em,A

h̄

)
. (63)

Finally, the mixed width term is

�(mix)
mA

R→∞= − 2

(4πε0)2 R2

(
Em,A

h̄c

)4

sin

(
2Em,AR

h̄c

)
αijαkl 〈ψA|dAi |mA〉〈mA|dAk|ψB〉αAB,j�

(
−Em,A

h̄

)
. (64)
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Due to the symmetry of the wave function, the total interaction energy �E(dir) ± �E(mix) and, also, the Wick-rotated term

W = W (dir) ± W (mix) (65)

and the pole and width terms

PmA
= P (dir)

mA
± P (mix)

mA
, �mA

= �(dir)
mA

± �(mix)
mA

(66)

are the sums of the direct and an exchange (mixing) contribution.

D. Excited reference S states

1. Pole term for S states

For S states (i.e., when atom A is in a state with S symmetry), a number of simplifications are possible, as we can replace
αA,ik(ω) → δik αA(ω) [see Eq. (33)]. We restrict the discussion to the direct term. The interaction energy, (29), becomes

�E(dir) = i

h̄

∫ ∞

0

dω

2π
ω4 Dij (ω, �R)Dji(ω, �R) αA(ω) αB(ω). (67)

The pole term for an energetically lower |mAP 〉 state becomes

Q(dir) = − 2

3(4πε0)2R6
〈nAS| �dA|mAP 〉 · 〈mAP | �dA|nAS〉αB

(
Em,A

h̄

)
exp

(
−2iEm,AR

h̄c

)

×
[

3 + 6i
Em,AR

h̄c
− 5

(
Em,AR

h̄c

)2

− 2i

(
Em,AR

h̄c

)3

+
(

Em,AR

h̄c

)4
]
. (68)

The real part is

P (dir) = − 2

3(4πε0)2R6
〈nAS| �dA|mAP 〉 · 〈mAP | �dA|nAS〉αB

(
Em,A

h̄

){
cos

(
2Em,AR

h̄c

)

×
(

3 − 5

(
Em,AR

h̄c

)2

+
(

Em,AR

h̄c

)4
)

+ 2Em,AR

h̄c
sin

(
2Em,AR

h̄c

)(
3 −

(
Em,AR

h̄c

)2)}
. (69)

The corresponding width term is

�(dir) = − 4

3(4πε0)2R6
〈nAS| �dA|mAP 〉 · 〈mAP | �dA|nAS〉αB

(
Em,A

h̄

){
sin

(
2Em,AR

h̄c

)

×
(

3 − 5

(
Em,AR

h̄c

)2

+
(

Em,AR

h̄c

)4
)

− 2Em,AR

h̄c
cos

(
2Em,AR

h̄c

)(
3 −

(
Em,AR

h̄c

)2)}
. (70)

We recognize a number of prefactors also present in Eq. (19) of Ref. [2] and recall the definition of the S-state polarizability
from Eq. (33). In the sum-over-states representation, the polarizability relevant to the pole term reads

αB

(
Em,A

h̄

)
= 1

3

∑
qB

〈nBS| �dB |qBP 〉 · 〈qBP | �dB |nBS〉
(

1

Eq,B − Em,A

+ 1

Eq,B + Em,A

)
. (71)

We recall that the pole term persists only for Em,A < 0.

2. Wick-rotated term for S states

For S states, the Wick-rotated term, (45), becomes

W (dir) = − h̄

πc4(4πε0)2

∫ ∞

0

dω

π
e−2ωR/c ω4

R2

×
(

1 + 2

ω R
+ 5c2

(ωR)2
+ 6c3

(ωR)3
+ 3c4

(ωR)4

)
×αA(iω) αB(iω). (72)

Irrespective of whether the virtual state |mA〉 is energetically
lower or higher than the reference state, the long-range limit

of W due to the virtual P state |mAP 〉 is given as follows:

W (dir)
mA

≈ − 23

9π

h̄c

(4πε0)2

1

R7

× 〈ψAS| �dA|mAP 〉 · 〈mAP | �dA|ψAS〉
Em,A

×
∑
qB

〈ψBS| �dB |qBP 〉 · 〈qBP | �dB |ψBS〉
Eq,B

, R → ∞.

(73)
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Restoring the sum over mA, one verifies that

W (dir) ≈ − 23

4π

h̄c

(4πε0)2

1

R7
αA(0) αB(0), R → ∞, (74)

where the static S-state polarizabilities are given by

αA(0) = 2

3

∑
vA

〈ψAS| �dA|vAP 〉 · 〈vAP | �dA|ψAS〉
Evn,A

, (75a)

αB(0) = 2

3

∑
qB

〈ψBS| �dB |qBP 〉 · 〈qBP | �dB |ψBS〉
Eq,B

. (75b)

IV. CONCLUSIONS

We have investigated the van der Waals interaction between
two atoms in a general setting, allowing for one of the
(conceivably identical) atoms to be in an excited state. The
expressions obtained are widely applicable. We employed
the Feynman prescription propagators for the electromagnetic
field, a prescription which we saw naturally arises out of
time-dependent perturbation theory. Time-ordered expectation
values of the atomic dipole operators are used. Our result, (29),
has been kept in fully tensorial form. Our derivation can be
applied to arbitrary angular symmetry of the atomic reference
states involved. The general result given in Eq. (29) allows us to
split the contribution of an energetically lower state |mA〉 of the
excited atom A into a pole and a width term, given in Eqs. (43b)
and (43d), and a Wick-rotated term, given in Eq. (45). For an
energetically lower virtual state |mA〉, the short-range limit
of the Wick-rotated term has an interesting sign change [see
Eq. (48)] and would lead to a repulsive contribution to the van
der Waals interaction. However, the pole term compensates
this unphysical behavior and restores the correct short-range
limit [see Eqs. (49) and (51)]. The additional mixing term
incurred for identical atoms is discussed in Eqs. (58b), (58c),
and (59).

The formalism used here involves the matching of the
scattering amplitude to the effective Hamiltonian. The use
of Feynman propagators allows us to drastically reduce the
number of diagrams which need to be considered (Fig. 1) in
comparison to time-ordered perturbation theory [1,5], because
all the possible time orderings of the electron-photon vertices
are already contained in the Feynman formalism. The fully
retarded result, and the gerade-ungerade mixing term including
all nonresonant states, is included in one single, coherent
formalism. Indeed, it was the tremendous simplifications
incurred by the use of Feynman propagators which allowed
the simplified evaluation of loop integrals in the early days of
QED [22].

We confirm that for a system involving an atom in an
excited state, the “retarded” 1/R7 Casimir-Polder asymptotics
[21] is never fully reached. Indeed, this 1/R7 behavior
originates in the Wick-rotated version of the integral over
photon frequencies, which gives the interaction energy [see
Eq. (52) for the general tensorial structure of this Wick-rotated
long-range limit]. However, if one of the atoms (say, atom
A) is excited, then poles in the complex energy plane are
picked up upon a Wick rotation of the integration contour.
These poles correspond to virtual states energetically lower

than the reference state and, therefore, are not present in the
ground state. In the large-interatomic-separation limit, these
pole contributions exhibit a surprising 1/R2 asymptotics [see
Eq. (53)]. When the interatomic distance becomes longer
than the wavelength h̄c/|Em,A| (where |Em,A| is the transition
energy between the reference state and a lower-energy level
accessible through a dipole transition), the pole contribution
becomes larger than the Wick-rotated contribution (the latter
corresponding to the usual Casimir-Polder 1/R7 asymptotics),
with the rule of thumb that

P
WmA

∼ α5

(
R

a0

)5

(76)

in the Casimir-Polder range. Let us conclude with a few
remarks on the interaction of a metastable 2S state in hydrogen
with a ground-state atom [23–25]. The 2P1/2 states are ener-
getically lower than the reference 2S state but displaced only
by the Lamb shift L. Their contribution is suppressed, even in
the oscillatory terms, due to the E4

m,A = L4 prefactor. In the
Lamb shift range R ∼ h̄c/L (when R becomes commensurate
with the Lamb shift wavelength), the static polarizability
of the 2S state has the Lamb shift in the denominator, so
that the 1/R7-Wick-rotated term of the interaction energy
shift is of the order 1/(h̄c/L)7 (L/h̄c)−1 = [L/(h̄c)]6. For
R ∼ h̄c/L, it competes with the oscillatory term which is of
the same order of magnitude, namely, [L/(h̄c)]4/[R/(h̄c)]2 =
[L/(h̄c)]4/[L/(h̄c)]2 = [L/(h̄c)]6. In the given distance range,
the interaction energy is of order α24mec

2, where me is the
electron mass, and thus is negligible. The oscillatory term
exists for the 2S-1S interaction, but it dominates only for
distances so long that no drastic surprises can be expected
for frequency shifts due to long-range interactions, within
high-precision spectroscopy [26]. The suppression mainly is
due to the smallness of the Lamb shift; analogous observations
have recently been made in Ref. [6], where the 2P admixtures
to a reference 2S state in hydrogen have been calculated
for atom-wall interactions: A parametrically interesting long-
range tail has been identified, but it was found to be suppressed
due to the smallness of the Lamb shift.

The situation is different for highly excited states, where
the energy shift naturally splits into a pole term, a width term,
and a Wick-rotated term. This is applicable both to the “direct”
and to the “mixing” term [see Eqs. (41) and (55)]. Our general
results, (29), (43b), (43d), and (53), are applicable to the direct
term. The corresponding results, for the mixing term which is
relevant for van der Waals interactions among identical atoms,
can be found in Eqs. (31), (58b), (58c), and (63).
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APPENDIX: SIGNIFICANCE OF NONRESONANT STATES

We should clarify the relation of our work to other recent
studies [1,3] which are based on a restricted subset of atomic
states, for the two atoms participating in the interaction, and
the reference work [8] which uses time-ordered perturbation
theory. Let us start with the latter endeavor. The Feynman
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propagators [see Eq. (22)], which are used in our derivation,
capture different time orderings of the electron-photon inter-
actions in one full sweep. As the propagator captures different
time orderings of electron-photon interactions in one single
expression, it was possible in the early days of QED [27] to
carry out the so-called virtual loop integrals of the vacuum
polarization and self-energy [28,29]. Using the Feynman
formalism, the 12 time-ordered diagrams for the van der Waals
interaction (given in a number of places in the literature,
including Fig. 1 of Ref. [8]) can be replaced by just two
diagrams, given in Fig. 1, which involve Feynman propagators.
The latter approach also eliminates any guesswork on where
to place the infinitesimal imaginary parts in the denominators
which determine the location of the poles.

Our result interpolates between the close-range nonretarded
van der Waals regime and the long-range tails. When one adds
the pole term and the Wick-rotated term, in our approach, then
one gets the van der Waals result back, in the close-range limit
[see Eq. (51)]. In order for this to happen, one has to include the
nonresonant virtual states in the formalism right from the start.

In the long range, the pole term dominates [see Eq. (52)]. In
the van der Waals limit, on the other hand, all the nonresonant,
virtual states of the atom become relevant.

The alternative approach, as outlined in Refs. [1,3], restricts
the discussion to a few “active” states, namely, to the ground
state and a single excited state, for each of the atoms. Based on
this approximation, the quantum dynamics can be formulated
within the few-state approximation (for an outline of the
formalism used, see also Ref. [30]). The validity of this
treatment is restricted to nonidentical atoms with two close
resonances.

Our approach is much more general. It would be quite
difficult, if not impossible, to generalize the treatment outlined
in Refs. [1,3] to an infinite number of virtual states. This
endeavor would inevitably result in an infinite number of
coupled differential equations. Our general formulas, on one
hand, capture the tensor structure of the pole terms due to
energetically lower virtual states (the 1/R2 long-range tail)
and, on the other hand, yield the correct van der Waals
close-range result (proportional to 1/R6).
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