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In quantum private query (QPQ), a client obtains values corresponding to his or her query only, and nothing
else from the server, and the server does not get any information about the queries. V. Giovannetti et al. [Phys.
Rev. Lett. 100, 230502 (2008)] gave the first QPQ protocol and since then quite a few variants and extensions
have been proposed. However, none of the existing protocols are device independent; i.e., all of them assume
implicitly that the entangled states supplied to the client and the server are of a certain form. In this work, we
exploit the idea of a local CHSH game and connect it with the scheme of Y. G. Yang et al. [Quantum Info.
Process. 13, 805 (2014)] to present the concept of a device-independent QPQ protocol.
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I. INTRODUCTION

During the last two decades, the quantum key distribution
(QKD) has remained the main theme of quantum cryptography.
In recent times, however, several other quantum cryptographic
primitives are being explored and quantum private query
(QPQ) is one of them. In QPQ, a client issues queries to a
database and obtains the real values without knowing anything
else about the database, whereas the server should not gain
any information about the queries. Here, we assume that Bob
is the database holder or server and Alice is the client. The first
protocol in this domain had been proposed by Giovannetti et al.
in [1], followed by [2] and [3]. However, this scheme is highly
theoretical and difficult to implement. For implementation
purposes, Jakobi et al. [4] came out with a QPQ protocol which
was based on the SARG04 QKD protocol [5]. In 2012, Gao
et al. [6] proposed a flexible generalization of [4]. Rao et al.
[7] suggested two more efficient modifications of classical
postprocessing in the protocol of Jakobi et al. In 2013, Zhang
et al. [8] proposed a QPQ protocol based on a counterfactual
QKD scheme [9]. In 2014, Yang et al. came out with a flexible
QPQ protocol [10] which was based on the B92 QKD scheme
[11]. This domain is gradually improving. This is evident
from the large number of published articles [12–15] in the last
2 years.

The security of all these protocols is defined on the basis of
the following facts:

(a) Bob knows the whole key which will be used for the
encryption of the database.

(b) Alice knows a fraction of bits of the key.
(c) Bob does not get any information about the position of

the bits which are known to Alice.
Thus, it is vary natural that in the QPQ protocol, there is

no need for an outsider adversary. Unlike the QKD, here, one
of the legitimate parties is playing the role of an adversary.
Alice tries to extract more information about the raw key bits,
whereas Bob tries to learn the position of the bits known to
Alice.
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We identify that the security of all the existing protocols
is based on the fact that Bob relies on his devices, i.e., the
source which supplies the qubits and the detectors which
measure the qubits. Thus, similarly to the QKD protocols, the
trustworthiness of the devices are implicit in the security proofs
of the protocols. In the current work, we try to understand
whether we can remove such trustworthiness in the devices as
in the device-independent QKD (DI-QKD) [16–20].

In the DI-QKD, a statistical test known as the Bell test [21]
or CHSH test [22] is performed to verify whether the shared
entangled states between the legitimate parties are maximally
entangled. If the states are maximally entangled, then the QKD
protocol provides unconditional security. However, the test has
to be performed nonlocally. In other words, two distant parties
(Alice and Bob) have to be involved in the CHSH test.

Very recently, Lim et al. [23] proposed a DI-QKD scheme
where they exploit the idea of the local CHSH test. In the local
CHSH test, the sender performs the CHSH test at his or her
end as a motivation towards certifying whether the states to be
used for the QKD are maximally entangled.

In the case of QPQ, we identify that if the states shared
between Bob and Alice are not in a certain form, then Alice can
always apply some strategies which help her to extract more
information about the raw key bits than what is suggested by
the protocol. Thus, it is necessary for Bob to certify whether
the states are in the desired form. Motivated by the idea of the
local CHSH test of Lim et al. [23], we, here, propose a protocol
which provides this certification. The value obtained from the
test will depend upon Alice’s predefined success probability
of learning about the raw key bits: in other words, how much
information about the key has to be allowed to Alice by the
protocol.

Here, we work on the QPQ protocol presented by
Yang et al. [10]. Note that this protocol [10] can be
performed by a certain kind of mixed state also [namely,
(|0,φ0〉〈0,φ0| + |1,φ1〉〈1,φ1|)/2]. Since we want to prove
device-independence security by exploiting the idea of the
local CHSH test, we work with the entanglement-based
version. Further, our suggested scheme for testing device
independence lies on top of the QPQ protocol, meaning that
Bob performs the local CHSH game before starting the QPQ
protocol presented in [10]. One can replace that QPQ part with
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any other entanglement-based QPQ protocol (which might not
be performed by any mixed state) and our scheme will work
there too.

The QPQ protocol can be viewed as a two-party (mis-
trustful) cryptography, i.e., two parties that want to perform
a certain task together without fully trusting each other. In
this regard, one may mention [24–28] that similar ideas have
been exploited to propose imperfect coin flipping and bit
commitment in the device-independent setting.

We first revisit the protocol of Yang et al. [10]. Next,
we show how Alice could choose a strategy to extract more
information about the raw key bits if the shared entanglement
between her and Bob is not in the desired form. We, then, come
out with the idea of a local CHSH-like test which is exploited
to certify whether the states are secure for the QPQ protocol.
All the lemmas and theorems used to prove the security of the
proposed protocol are given in the Appendix.

II. REVISITING THE PROTOCOL IN [10]

In this section we revisit the protocol for quantum private
query proposed in [10]. The protocol exploits the idea of the
B92 quantum key distribution scheme. There are two phases
in the protocol, namely, key generation and private query.
In the key generation phase, Bob and Alice share entangled
states of the form 1√

2
(|0〉B |φ0〉A + |1〉B |φ1〉A), where |φ0〉A =

cos ( θ
2 )|0〉 + sin ( θ

2 )|1〉 and |φ1〉A = cos ( θ
2 )|0〉 − sin ( θ

2 )|1〉.
Here, subscript B stands for Bob and subscript A stands
for Alice. θ may vary from 0 to π

2 . After receiving the
qubits from Bob, Alice announces the position of the qubits
that have ultimately reached her end. Bob discards the lost
photons. After postselection, Bob measures his qubits in
the {|0〉B,|1〉B} basis, whereas Alice measures her qubits
either in the {|φ0〉A,|φ⊥

0 〉
A
} basis or in the {|φ1〉A,|φ⊥

1 〉
A
}

basis randomly. If Alice’s measurement result gives |φ⊥
0 〉, she

concludes that the raw key bit at Bob’s end must be 1. If it
is |φ⊥

1 〉, the raw key bit must be 0. Bob and Alice execute
classical postprocessing so that Alice’s information on the key
reduces to one bit or more. Bob knows the whole key, whereas
Alice generally knows several bits of the key.

In the private query phase, if Alice knows the j th bit of
key K and wants to know the ith element of the database, she
declares the integer s = j − i. Bob shifts K by s and hence
gets a new key, say K0. Bob encrypts his database by this new
key K0 with a one-time pad and sends the encrypted database
to Alice. Alice decrypts the value with her j th key bit and gets
the required element of the database.

The security of the protocol comes from the fact that Alice
knows the final key partially. Thus, even if she gets access to
the whole encrypted database, she cannot obtain the complete
information about the database. Now, we calculate the success
probability of Alice’s guessing a bit in the raw key.

As Bob measures his qubits only in the {|0〉B,|1〉B} basis,
he will get either |0〉 with probability 1

2 or |1〉 with probability
1
2 . When Bob gets |0〉, Alice should get |φ0〉. If she chooses the
{|φ0〉A,|φ⊥

0 〉
A
} basis, she will get |φ0〉 with probability 1 and

never get |φ⊥
0 〉. However, if she chooses the {|φ1〉A,|φ⊥

1 〉
A
}

basis, she will get either |φ1〉 with probability cos2 θ or

|φ⊥
1 〉 with probability sin2 θ . We formalize all the conditional

probabilities in the following table.

Alice’s conditional probability

A = |φ0〉 A = |φ⊥
0 〉 A = |φ1〉 A = |φ⊥

1 〉
B = 0 1

2 · 1 1
2 · 0 1

2 · cos2 θ 1
2 · sin2 θ

B = 1 1
2 · cos2 θ 1

2 · sin2 θ 1
2 · 1 1

2 · 0

According to the protocol, when Alice gets |φ⊥
0 〉, she

outputs 1. And when she gets |φ⊥
1 〉, she outputs 0. Thus, the

success probability of Alice’s guessing a bit in the raw key can
be written as

Pr(A = B) = Pr(A = 0,B = 0) + Pr(A = 1,B = 1)

= Pr(B = 0) · Pr(A = 0|B = 0)

+ Pr(B = 1) · Pr(A = 1|B = 1)

= 1
2 · Pr(A = φ⊥

1 |B = 0)

+ 1
2 · Pr(A = φ⊥

0 |B = 1). (1)

From the above table, we can see that Alice’s success
probability becomes sin2 θ

2 .

III. BIASED CHOICE OF ALICE’S BASIS

Suppose Bob trusts the source, i.e., he believes that the
states shared between Alice and him are of a certain form
[10]. Let the source supply some arbitrary entangled states
(α|0〉B |φ0〉A + β|1〉B |φ1〉A), where |α|2 = ( 1

2 + ε) and |β|2 =
( 1

2 − ε) to Bob. Suppose Alice has this information and also
the information on the values of α and β. In this case, she
chooses the basis as follows:

(a) {|φ0〉A,|φ⊥
0 〉

A
} with probability 1

2 − ε;
(b) {|φ1〉A,|φ⊥

1 〉
A
} with probability 1

2 + ε.
Her success probability can be calculated from the follow-

ing table.

Alice’s conditional probability

A = |φ0〉 A = |φ⊥
0 〉 A = |φ1〉 A = |φ⊥

1 〉

B = 0 1 · ( 1
2 − ε) 0 (cos2 θ) · ( 1

2 + ε) (sin2 θ) · ( 1
2 + ε)

B = 1 (cos2 θ) · ( 1
2 − ε) (sin2 θ) · ( 1

2 − ε) 1 · ( 1
2 + ε) 0

Following Eq. (1), it becomes ( 1
2 + 2ε2) sin2 θ .

Thus, if Alice and Bob do not share the entangled states
of the certain kind, then Alice can always extract more
information about the raw key bit following the suggested
strategy. The bias in the bases of Alice depends on the values of
α and β. For example, if α = 1

2 − ε and β = 1
2 + ε, then Alice

chooses {|φ0〉A,|φ⊥
0 〉

A
} with probability 1

2 + ε and chooses
{|φ1〉A,|φ⊥

1 〉
A
} with probability 1

2 − ε.
To mitigate this problem, Bob has to remove his trust in

the devices and has to perform some local test at his end to
become sure that the states shared between them are of the
specific form [10]. As we consider the entanglement version
of the QPQ protocol, we suggest a local statistical test which
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is actually the CHSH test performed locally. The difference is
that, for this test, we do not require the perfect CHSH value.
The value depends on the value of θ .

However, when the states are of the form given in [10],
then the above strategy does not help Alice to extract more
information about the raw key bit. Let Bob and Alice share
the entangled states of the specific form and Alice choose
her measurement bases {|φ0〉A,|φ⊥

0 〉
A
} and {|φ1〉A,|φ⊥

1 〉
A
}

with probability 1
2 − ε and 1

2 + ε, respectively. In this case,

following Eq. (1), the success probability becomes sin2 θ
2 .

Thus, it will be necessary for Bob to certify that these shared
states are of the certain form. In the following section we
propose a protocol which certifies this. Thus, Bob is no longer
required to put trust in the source as well as the detectors. By
performing a test which is almost like the CHSH test at his end,
he first checks whether the states follow the desired property.
Conditional on the success of the test, Bob proceeds to QPQ.
Here, we consider detectors with unit efficiency. However, for
practical implementation of the suggested protocol, one has to
consider detectors with nonunit efficiency.

One may wonder why we have not chosen quantum-state
tomography to check whether the states are of the certain
form. The reason is that tomography would require an infinite
number of states to achieve perfect accuracy. On the other
hand, choosing a different avenue of the local CHSH game,
we are able to analyze the security of our protocol for a finite
number of states.

IV. OUR PROTOCOL AND THE LOCAL CHSH GAME

Before describing the proposed protocol, we first enumerate
the assumptions required for the security of the protocol. These
are summarized as follows:

(1) Devices are causally independent; i.e., each use of the
device is independent of the previous use. This assumption
implies that the devices are memoryless.

(2) Alice and Bob’s laboratories are perfectly secured; i.e.,
no information is leaked from their laboratories.

(3) All the detectors at Bob’s end have unit efficiency; i.e.,
he always gets conclusive outcomes.

Our protocol is described in Algorithm 1. For brevity,
we write γ n and (1 − γ )n instead of �γ n� and �(1 − γ )n	,
respectively.

Algorithm 1: Our proposed protocol, 	.

1. Bob starts with n entangled states.
2. Bob divides the given entangled pairs into two sets. One

is 
CHSH and the other is 
QPQ. The set 
CHSH contains
γ n entangled states, whereas 
QPQ contains (1 − γ )n
entangled states for 0 < γ < 1.

3. For rounds i ∈ {1, . . . ,γ n}
(a) Bob chooses xi ∈ {0,1} and yi ∈ {0,1} uniformly

at random.
(b) If xi = 0, he measures the first particle of the

entangled state in the {|0〉,|1〉} basis, and if xi = 1, he
measures it in the {|+〉,|−〉} basis.

(c) Similarly, if yi = 0, Bob measures the second
particle of the entangled state in the {|ψ1〉,|ψ⊥

1 〉} basis,
and if yi = 1, he measures it in the {|ψ2〉,|ψ⊥

2 〉} basis.

(d) The output is recorded as ai ∈ {0,1} (bi ∈ {0,1})
for the first (second) particle. The encoding for ai(bi) is
as follows.

(i) For the first particle in each pair, ai = 0 if the
measurement result is |0〉 or |+〉, and ai = 1 if
the result is |1〉 or |−〉.

(ii) For the second particle in each pair, bi = 0
if the measurement result is |ψ1〉 or |ψ2〉, and
bi = 1 if the measurement result is |ψ⊥

1 〉
or |ψ⊥

2 〉.
(e) Testing: For the test round i ∈ 
CHSH, define

Yi =
{

1 if ai ⊕ bi = xi ∧ yi,

0 if otherwise.

4. If 1
γ n

∑
i Yi < 1

8 (sin θ (sin ψ1 + sin ψ2) + cos ψ1−
cos ψ2) + 1

2 , Bob aborts the protocol.
5. Conditional on the event that the local CHSH test at

Bob’s end has been successful, Bob proceeds to the
subset 
QPQ and sends one half of the remaining (1 − γ )n
entangled pairs to Alice.

6. Alice performs the private query phase as in [10].

Note that we are dealing with several bases, namely,
{φ0,φ

⊥
0 }, {φ1,φ

⊥
1 }, {ψ1,ψ

⊥
1 }, and {ψ2,ψ

⊥
2 }. It should be

clarified that where the {φ0,φ
⊥
0 } and {φ1,φ

⊥
1 } bases are chosen

by Alice for the QPQ protocol, and the {ψ1,ψ
⊥
1 } and {ψ2,ψ

⊥
2 }

bases are chosen by Bob to perform the local CHSH test.
Here, we consider |ψ1〉 = cos ψ1

2 |0〉 + sin ψ1

2 |1〉 and |ψ2〉 =
cos ψ2

2 |0〉 + sin ψ2

2 |1〉.
In the QPQ protocol in [10], Bob measures his particles in

the {|0〉,|1〉} basis only. Hence, the protocol can be performed
by the mixed states also. One may think that for the local CHSH
game here, it is sufficient to measure Bob’s first particle in the
{|0〉,|1〉} basis only as Bob does not need to test the coherence
(purity) of the states. However, note that our proposal for the
local CHSH game lies on top of the QPQ protocol [10]. In
other words, Bob performs the local CHSH test followed by
the QPQ protocol presented in [10]. One can replace the QPQ
part with any other entanglement-based QPQ protocol which
might not be performed by mixed states. Hence, it is necessary
to use the {|+〉,|−〉} basis in the proposed CHSH test.

Next, we analyze case by case situation for the proposed
CHSH-like test. Let Bob obtained the entangled states of the
form 1√

2
(|0〉B |φ0〉A + |1〉B |φ1〉A). We calculate the conditional

probabilities for each case and list them in Table I.
Since Pr(xi,yi) = 1

4 for all xi and yi , multiplying each
individual probability in Table I by 1

4 gives the corresponding
joint probabilities. We have

Pr(ai ⊕ bi = xi ∧ yi)

= Pr((xi,yi) = (0,0) and ((ai,bi) = (0,0) or (1,1)))

+ Pr((xi,yi) = (0,1) and ((ai,bi) = (0,0) or (1,1)))

+ Pr((xi,yi) = (1,0) and ((ai,bi) = (0,0) or (1,1)))

+ Pr((xi,yi) = (1,1) and ((ai,bi) = (0,1) or (1,0))).
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TABLE I. Conditional probability of (ai,bi) given (xi,yi).

(xi,yi) (ai,bi) Pr ((ai,bi)|(xi,yi))

(0, 0) (0, 0) 1
2 cos2( θ−ψ1

2 )

(0, 1) 1
2 sin2( θ−ψ1

2 )

(1, 0) 1
2 cos2( θ+ψ1

2 )

(1, 1) 1
2 sin2( θ+ψ1

2 )

(0, 1) (0, 0) 1
2 cos2( θ−ψ2

2 )

(0, 1) 1
2 sin2( θ−ψ2

2 )

(1, 0) 1
2 cos2( θ+ψ2

2 )

(1, 1) 1
2 sin2( θ+ψ2

2 )

(1, 0) (0, 0) cos2( θ

2 ) cos2 ψ1
2

(0, 1) cos2( θ

2 ) sin2 ψ1
2

(1, 0) sin2( θ

2 ) sin2 ψ1
2

(1, 1) sin2( θ

2 ) cos2 ψ1
2

(1, 1) (0, 0) cos2( θ

2 ) cos2 ψ2
2

(0, 1) cos2( θ

2 ) sin2 ψ2
2

(1, 0) sin2( θ

2 ) sin2 ψ2
2

(1, 1) sin2( θ

2 ) cos2 ψ2
2

Adding the joint probabilities for the corresponding rows,
we find that the above quantity is equal to 1

8 [sin θ (sin ψ1 +
sin ψ2) + (cos ψ1 − cos ψ2)] + 1

2 .
In Fig. 1, we plot the joint probability as a function of θ , for

the angles (ψ1,ψ2) = {(π
4 ,3π

4 ), (3 π
16 ,13 π

16 ), and (9 π
32 ,23 π

32 )}.
A magnified view of the plot for the region from θ = π

4 to
θ = π

2 appears on the right. In the plot it is shown that when
θ = π

2 , the joint probability reaches a value equal to cos2 π
8 .

V. SECURITY ANALYSIS

In this section, we prove the security of the proposed
protocol. In an earlier section, we showed that if the shared
entangled states are not in a certain form, then Alice may
extract more information than what is suggested by the
protocol. So, at the beginning of the protocol either Bob has to
trust devices blindly (device-dependent assumption on which
the security of the existing protocols depends) or he needs to
test some statistical property by measuring the given entangled
states (device-independent assumption). The security of the
proposed protocol comes from the following result.

Theorem 1. If for a random subset 
CHSH ⊂ {1, . . . ,n} of
size γ n, where γ > 0, the fraction of the inputs (xi , yi),
i ∈ 
CHSH, which satisfies the CHSH condition, i.e., (ai ⊕
bi = xi ∧ yi) is equal to 1

8 (sin θ (sin ψ1 + sin ψ2) + cos ψ1 −
cos ψ2) + 1

2 − δ, then for the remaining subset 
QPQ ⊂
{1, . . . ,n} of size (1 − γ )n, a fraction of inputs (xi,yi),
i ∈ 
QPQ, which satisfies the CHSH condition, is also equal
to 1

8 (sin θ (sin ψ1 + sin ψ2) + cos ψ1 − cos ψ2) + 1
2 − δ, with

a negligible statistical deviation ν.

Here, δ =
√

1
2γ n

ln 1
εCHSH

, ν =
√

(γ n+1)
2γ 2(1−γ )n2 ln 1

εQPQ
, and

εCHSH and εQPQ are negligibly small values.
In the second result, we show that when n is sufficiently

large, then conditional on the success of the above local CHSH
test, one may proceed to the QPQ protocol proposed by Yang
et al. [10] for the remaining subset 
QPQ.

Theorem 2. Conditional on the event that the local CHSH
test has been successful for the subset 
CHSH, Bob can proceed
to the QPQ protocol for the remaining subset 
QPQ securely
when n → ∞.

In [10], the authors consider the security issues for two
cases: (a) dishonest Alice and honest Bob and (b) honest Alice
and dishonest Bob. As the second phase of our protocol is
the same as the QPQ protocol proposed by Yang et al. [10],
the security issues for the second part of the current protocol
remain the same.

FIG. 1. The value of Pr(ai ⊕ bi = xi ∧ yi) with respect to θ .
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VI. DISCUSSION AND CONCLUSION

In this paper, we propose a device-independent scenario in
quantum private query. Exploiting the idea of a local CHSH
test we show how Bob can remove his trust in devices. The
proposed protocol is divided into two distinct parts. In the
first part, Bob performs the local CHSH test at his end.
Conditional on the event that the local CHSH test has been
successful, Bob proceeds to the QPQ protocol. We worked here
on the QPQ protocol proposed by Yang et al. [10]. However,
one can exploit any entanglement-based QPQ protocol for the
second phase of our proposed scheme. Here, we assume that
the detectors have unit efficiency. However, it remains open
what would happen if the detectors were imperfect, i.e., had
nonunit efficiency.

APPENDIX: LEMMAS AND PROOFS

Lemma 1 (Chernoff-Hoeffding [29]). Let X = 1
n

∑
i Xi be

the average of n independent random variables X1,X2, . . . ,Xn

with values [0,1], and let E[X] = 1
n

∑
i E[Xi] be the

expectation value of X; then for any δ > 0, we have
Pr [|X − E[X]| � δ] � exp(−2δ2n).

Lemma 2 (Serfling [30]). Let {x1,x2, . . . ,xn} be a list
of values in [a,b] (not necessarily distinct). Let x =
1
n

∑
i xi be the average of these random variables. Let k

be the number of random variables X1,X2, . . . ,Xk chosen
from the list without replacement. Then for any value of
δ > 0, we have Pr [|X − x| � δ] � exp ( −2δ2kn

(n−k+1)(b−a) ), where

X = 1
k

∑
i Xi .

Lemma 3 (corollary to Serfling lemma [23]). Let X =
{x1,x2...xn} be a list of (not necessarily distinct) values in [0,1]

with the average μX = 1
n

∑
i=1 xi . Let T be a subset of X of

size t with average μT = 1
t

∑
i∈T xi . Let K be the remaining

subset of X of size k (i.e., t + k = n). If the average of the
subset K is μK = 1

n−t

∑
i∈K xi , then for any value of ε > 0,

we have Pr (|μK − μT| �
√

n(t+1)
2t2(n−t) ln 1

ε
) � ε.

Proof of Theorem 1. We define a random variable Yi as
follows: Yi = 1 if ai ⊕ bi = xi ∧ yi ; Yi = 0 otherwise. Now
we choose a random subset 
CHSH ⊂ {1, . . . ,n} of size γ n

for any γ > 0 and define Y = 1
γ n

∑
i∈
CHSH

Yi . Here, Y is
called the observed average value. Let the expected value of Y

for that subset beE(Y ) = 1
8 (sin θ (sin ψ1 + sin ψ2) + cos ψ1 −

cos ψ2) + 1
2 . Then applying the Chernoff bound (Lemma 1) we

get Pr [|Y − E(Y )| � δ] � exp(−2δ2γ n).
Let εCHSH be a negligibly small value. Equating

exp(−2δ2γ n) with εCHSH we can find the value of δ =√
1

2γ n
ln 1

εCHSH
.

Again, we consider the remaining subset 
QPQ ⊂ {1, . . . ,n}
of size (1 − γ )n and define Y ′ = 1

(1−γ )n

∑
i∈
QPQ

Yi . Now,
from Lemma 3, it can be shown that Pr(|Y − Y ′| � ν) �
exp (−2γ 2ν2(n−γ n)n3

(γ n+1)n2 ).
Let εQPQ be a negligibly small value. Then, equating the

right-hand side with εQPQ, we get ν. �
Proof of Theorem 2. In the asymptotic limit, i.e., when

n → ∞, the expressions for δ and ν tend to 0. This implies that
in the asymptotic case, Y = Y ′ = E(Y). Thus by calculating
the value of Y for the subset 
CHSH, Bob can certify that
entangled states for the subset 
QPQ are of the desired type
and hence can be exploited securely for the QPQ protocol.
Alice cannot extract more information about the raw key bits
than suggested by the protocol. �
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