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We study the dependence of the fidelity of the surface code in the presence of a single finite-temperature
massless bosonic environment after a quantum error correction cycle. The three standard types of environment
are considered: super-Ohmic, Ohmic, and sub-Ohmic. Our results show that, for regimes relevant to current
experiments, quantum error correction works well even in the presence of environment-induced, long-range
interqubit interactions. A threshold always exists at finite temperatures, although its temperature dependence is
very sensitive to the type of environment. For the super-Ohmic case, the critical coupling constant separating high
from low fidelity decreases with increasing temperature. For both Ohmic and super-Ohmic cases, the dependence
of the critical coupling on temperature is weak. In all cases, the critical coupling is determined by microscopic
parameters of the environment. For the sub-Ohmic case, it also depends strongly on the duration of the QEC cycle.
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I. INTRODUCTION

A fundamental challenge to quantum information process-
ing is protection against detrimental effects of the environ-
ment [1]. A milestone in addressing this problem was the de-
velopment of quantum error correction (QEC) [2,3]. In fact, it
is believed that any practical quantum information processing
device will unavoidably contain some sort of QEC [4].

The main idea behind active QEC is to encode the
information in a region of the system’s Hilbert space known as
the logical subspace. This region is chosen to be less vulnerable
to the action of the environment. However, during quantum
evolution information can leak out of this subspace. This
leakage can be diagnosed by measuring some observables in a
process known as syndrome extraction. If an error is detected
by the syndromes, then a recovery operation is performed.
This sequence of actions, extracting the syndrome and a
recovery operation, can be called active QEC. It is clear that the
QEC protocol demands additional physical and computational
resources; thus there is a cost-benefit analysis that must be
done. It is believed that there is a particular noise strength
below which the benefits of QEC overcome its cost [5].

Although a large body of work has been devoted to
including realistic noise models in the analysis of the QEC
efficacy [6–13], there is little discussion on the interplay
between the environmental temperature and the dynamics of
the system affecting the value of threshold for active QEC.
An important exception to this is given by Brell and co-
workers [14] in the context of topological quantum memories
that are constantly monitored. In contrast, for passive QEC
it is well understood that a finite environmental temperature
radically affects the threshold [15–19]. In this paper, we
contribute to this theme by considering an environment whose
temperature changes due to the interaction with qubits when
active QEC is employed. We choose to evaluate the surface
code performance against the well-known pure dephasing
model when a single logical qubit is in an idle state against
super-Ohmic and Ohmic bosonic baths. In order to isolate the
effects of finite temperature, we consider a perfect syndrome
extraction in a nonerror syndrome evolution and assume all

quantum gates and state preparations as flawless. Hence our
thresholds should be regarded as an upper bound to the
real QEC threshold. Both analytical results and numerical
calculations are presented and we focus on temperatures and
time scales relevant to current experimental setups.

Our main result is that, in experimentally relevant regimes,
an error threshold always exists, but its dependence on tem-
perature is not universal. While for super-Ohmic environments
the critical coupling constant separating high-fidelity and
low-fidelity behavior decreases with increasing temperature,
for Ohmic and sub-Ohmic environments the dependence on
temperature is weak. For the Ohmic cases, the critical coupling
depends primarily on microscopic parameters related to the
environment. For the sub-Ohmic case, it depends in addition
on the duration of the QEC cycle.

The paper is organized as follows. In Sec. II we provide a
brief description of the effect of quantum error correction in
the fidelity of a logical qubit coupled to an environment and
the evolution is not restricted to uncorrelated errors only. To
account for correlations, we consider environments composed
of free boson. In Sec. III we develop a finite-temperature
formulation for the fidelity of the surface code in the presence
of a bosonic environment. The calculation of the fidelity
after one QEC cycle is mapped onto the calculation of
certain expectation values of a statistical spin model. The
analysis that follows in Sec. IV is restricted to a realistic
regime where time correlations (namely, thus developed inside
the bosonic light cone) predominate. Three significant cases
are studied, namely, super-Ohmic, Ohmic, and sub-Ohmic
environments. Both analytical and numerical results are
presented. Concluding remarks and a summary are presented
in Sec. V. Appendixes with detailed results of calculations and
a description of methods employed are provided.

II. QUANTUM ERROR CORRECTION IN THE PRESENCE
OF CORRELATED ERRORS

In order to focus on the effects of correlated errors and
the ability of QEC to tame the environmental degrees of

2469-9926/2017/95(4)/042339(14) 042339-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.95.042339


E. NOVAIS, A. J. STANFORTH, AND EDUARDO R. MUCCIOLO PHYSICAL REVIEW A 95, 042339 (2017)

freedom, we make two simplifying assumptions. First, we
assume that a quantum state can be perfectly prepared. Hence
we consider that the environment and the quantum system
are disentangled at the beginning of the evolution. While this
assumption could in principle be relaxed, it would result in a
much more cumbersome calculation that would obscure the
main effects that we want to discuss. Second, we assume
that the environment itself can be initially set to its lowest
possible energy state. This choice can easily be relaxed, but
would lead to lower threshold values. Even though we allow
for the initial state of the environment to be its ground state,
we do not assume that it is returned to the ground state at the
end of the QEC cycle. Physically, we are considering that the
preparation of the initial state and the environment could take
a very long time (and we choose the best possible preparation).
When the system starts to evolve, the QEC dynamics introduce
a finite time scale that limits one’s ability to refrigerate the
environment.

In order to clarify the notation and provide a self-contained
discussion, we start by giving a brief description of QEC.
Following the standard formulation of QEC, see Ref. [20],
the unitary evolution of a qubit and its environment in the
interaction picture can be described as

Û |ψ〉|e0〉 = Î |ψ〉|eI 〉 + X̂|ψ〉|eX〉 + Ŷ |ψ〉|eY 〉 + Ẑ|ψ〉|eZ〉,
(1)

where |eσ 〉 are environment states (in general nonorthogonal
and non-normalized) and Î , X̂, Ŷ , and Ẑ are Pauli operators
acting on the qubit. For a system comprised of n qubits, we
can straightforwardly define an expansion similar to Eq. (1),
namely,

Û |ψ〉|e0〉 =
∑

a

Êa|ψ〉|ea〉, (2)

where Êa ∈ {Î ,X̂,Ŷ ,Ẑ}⊗n
.

At the core of any QEC code is the choice of a particular
subset E ⊆ {Êa}, known as the error set, which the code can
correct. The complementary set Ē are the uncorrectable errors.
It is therefore natural to write the quantum evolution as

Û |ψ〉|e0〉 =
∑
a∈E

Êa|ψ〉|ea〉 +
∑
b/∈E

Êb|ψ〉|eb〉. (3)

The next step in a QEC protocol is the syndrome extraction,
where a set of observables corresponding to the projector P̂α

are measured in order to diagnose the errors and then an
appropriate recovery operation R̂α is chosen:

R̂αP̂αÛ |ψ〉|e0〉 = |ψ〉|eα〉 +
∑
b/∈E

R̂αP̂αÊb|ψ〉|eb〉. (4)

QEC is in essence a method to steer the quantum evolution
of a qubit system through a series of syndrome extractions.
Even though QEC in itself is not a perturbative method
or description, its cost-benefit analysis is usually done by
performing a perturbative expansion in the coupling between
the environment and the system. To understand this point, let
us consider the fidelity of an initial state after a single QEC
step is performed and a syndrome α is detected. The fidelity

of the logical state in this case is given by

Fα = 1 −
∥∥ ∑

b/∈E R̂αP̂αÊb|ψ〉|eb〉
∥∥

‖R̂αP̂αÛ |ψ〉|e0〉‖
, (5)

where, for simplicity, we assumed that the environment states
are orthogonal to each other. After the syndrome is extracted
only a subset of terms in the Dyson series of the operator Û

is kept. This expansion in the coupling with the environment
is used in many calculations of QEC. For instance, in the
surface code it is an essential ingredient in the understanding
of minimal-weight matching decodings. Hence, if∥∥∥∥∥

∑
b/∈E

R̂αP̂αÊb|ψ〉|eb〉
∥∥∥∥∥ � ||R̂αP̂αÛ |ψ〉|e0〉||, (6)

a high fidelity can be achieved. Thus the choice of E and its
complement is a choice of the perturbative expansion imposed
by the error syndrome P̂α extracted for a particular evolution.
Clearly, the fidelity can differ from unity due to uncorrectable
errors.

Choosing a recovery operation can be difficult in the surface
code [21]. There are strategies for choosing the most likely R̂α

for a certain syndrome. However, there is no guarantee that the
correct one is chosen. Hence the nonerror syndrome turns out
to be of special interest,

F0 = 1 −
∥∥∑

b/∈E P̂0Êb|ψ〉|eb〉
∥∥

‖P̂0Û |ψ〉|e0〉‖
. (7)

It requires no recovery operation; thus F0 corresponds to an
intrinsic property of the error model. In this sense, it is expected
to provide an upper bound to the fidelity after a QEC cycle
with an arbitrary syndrome [21]. We restrict our analysis to
the nonerror syndrome case hereafter.

A. Correlated and uncorrelated errors

To discuss the concept of a threshold, we need to define a
measure of the noise strength. One way to do that is through
the fidelity of a single physical qubit,

Fsingle qubit = 〈e0|〈ψ |Û †|ψ〉〈ψ |Û |ψ〉|e0〉
= 〈eI |eI 〉
= 1 − p, (8)

where p is named the single qubit error probability. Thus we
can rewrite Eq. (8) as

p = 1 − Fsingle qubit. (9)

With this quantity, it is possible to define the concept of
uncorrelated errors. For instance, for a two-qubit system, the
evolution with a nonerror syndrome is said to be uncorrelated
if it is possible to write the fidelity resulting from the QEC
cycle as

Ftwo qubits = 〈e0|〈ψ |Û †|ψ〉〈ψ |Û |ψ〉,|e0〉
= (1 − p)2. (10)

Conversely, when such decomposition of the noise evolution is
not possible, the problem is said to contain correlated errors.
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Most quantum error threshold discussions in the literature
rely on the existence of a single qubit error probability, p,
and, explicitly or implicitly, rely on uncorrelated error models.
Furthermore, we note that the decompositions of Eqs. (1)
and (2) are, in general, only valid for a single QEC step. The
iteration of the process to the next QEC step demands that the
environment and the qubits be again disentangled. Thus any
memory effects between QEC steps are formally excluded in
many discussions of the error threshold.

B. Microscopic model for correlated errors

A paradigm model in the study of decoherence is the spin-
boson model for pure dephasing [22,23]. The model consists
of free bosons coupled linearly to qubits and whose total Ĥ =
Ĥ0 + Ĥint contains the free-boson term

Ĥ0 =
∑

k

ωk â
†
kâk (11)

and the qubit-boson interaction [23, Chap. 4]

Ĥint = λ
∑

r

f̂ (r)σ̂ x
r , (12)

where σ̂ x
r is an x spin operator for the qubit located at site r,

with [âk,â
†
q] = δk,q, ωk defines the dispersion relation, and

f̂ (r) = (v/ω0)D/2+s

LD/2

∑
k 	=0

gk (eik·r â
†
k + H.c.). (13)

Here, D is the number of spatial dimensions of the bath, L is its
linear dimension, ω0 is a characteristic microscopic frequency
scale (h̄ = 1), and v is the bosonic velocity. In Eq. (12), λ is
the qubit-bath coupling constant, which we separate from the
form factor gk. For convenience, the exponent s is chosen such
that f̂ is dimensionless and λ has units of energy or frequency.

It is straightforward to write the resulting evolution operator
in the interaction picture and in normal order,

Û (t) =
∏
k 	=0

e−Ĝ(t ;k) e−iα̂ (t ;k) â
†
k e−iα̂∗ (t ;k) âk , (14)

where

α̂(t ; k) = λ(v/ω0)D/2+s

LD/2

∑
r

gk

ωk
sin(ωkt/2)σ̂ x

r,n eik·r+iωkt/2

(15)

and

Ĝ(t ; k) = λ2

4LD
(v/ω0)D+2s

∫ t

0
dt1

∫ t

0
dt2

×
∑
r,s

|gk|2e−ik·(r−s)−iωk(t1−t2) σ̂ x
r σ̂ x

s θ (t1 − t2).

(16)

Even though this model does not contain a full set of errors, it
is amenable to an exact and explicitly analytical description.
Hence it is well suited for exploring the effects of correlations,
as well as nonperturbative effects in QEC [9].

There are several possible regimes of correlations that can
be discussed using this model [24]. They can be classified

according to the asymptotic behavior found after tracing out
the environment as follows.

(1) Super-Ohmic: when some correlation functions of the
system have an ultraviolet divergence in the cutoff frequency
of the environment. Of course, there are no real divergences
on a physical system, with the ultraviolet divergence just
signaling that a more accurate description of the small-scale
local physics of the qubit is missing from the model.

(2) Ohmic: there are log divergences in the ultraviolet and
in the infrared correlation functions. This is a more universal
behavior, since results depend only on the logarithmic of the
ultraviolet and infrared scales of the system.

(3) Sub-Ohmic: all correlation functions of the system have
a well-defined ultraviolet behavior, but some have infrared
divergences.

Both infrared and ultraviolet divergences can be trouble-
some to QEC, but are amenable by suitable engineering of
physical qubits. An ultraviolet divergence signals that the qubit
is strongly coupled to the environment at high frequencies.
This divergence is controlled by form factors in the qubit
design and therefore can be dealt with by appropriate qubit
engineering. Conversely, infrared divergences are connected
to long-distance correlations. This problem can be addressed
by better encoding designs. If we demand only local operations
and local communications between physical qubits, an infrared
divergence sets a limit on the number of qubits that one can
have on the same physical setup.

III. QEC WITH A BATH AT FINITE TEMPERATURE

We assume that the qubits can be prepared in the logical
state |ψ〉. In order to simplify the calculation and in accordance
with Eq. (1), we consider the initial state of the bosonic
environment to be the vacuum, |e0〉 = |0〉. A mixed initial state
for the environment could also be considered, but would make
the notation and the calculation more complex, obscuring the
analysis. Thus the qubits and the environment are initially in
the product state |ψ,0〉. In Appendix A we discuss a possible
initialization prescription.

After evolving for a time 	, the density matrix of the
combined system becomes

ρ̂(	) = Û (	) |ψ,0〉〈ψ,0| Û †(	). (17)

The next step is the syndrome extraction. We assume that the
result of this extraction is a nonerror. The occurrence of other
types of syndromes would introduce another layer of choices
on the decoding procedure, and therefore would potentially
further reduce the threshold (see discussion in Ref. [21]).
Hence we postselect the result of the syndrome in order to
write the quantum operation [23]

�0(ρ̂s) =
∑
m

P̂0 ρ̂s P̂†
0, (18)

where ρ̂s is a density matrix in the Hilbert space of the qubits
and the Kraus operator is the projector

P̂0 = |↑̄〉〈↑̄| + |↓̄〉〈↓̄|. (19)

A measurement can be understood as the selection of a
pointer basis due to the interaction of the measuring apparatus
with another, fast acting, environment [23]. Hence, during
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the time that the syndrome is extracted, it is unphysical to
regard the total system (bosonic environment and the qubits)
as isolated. The extraction of the syndrome bound us to also
discuss how the environment would behave during this part of
the evolution.

We cannot control the bosonic environment degrees of
freedom, but it is possible to place it into contact with an
even larger reservoir. This interaction can lead to a dissipative
dynamics for the environment that can help in reducing
correlations and memory effects. The qubits dynamics cannot
affect the environment in any substantial form during the
interaction time. Hence the quantum operation that describes
this evolution is

�β(ρ̂e) =
∑

n

K̂n ρ̂e K̂†
n, (20)

where ρ̂e is a reduced density matrix in the environment Hilbert
space, the Kraus operators are

K̂n = e−βEn/2

√
Z(β)

|n〉〈n|, (21)

En and |n〉 are the eigenvalues and eigenvectors of Ĥ0,
and, finally, the partition function Z(β) = ∑

n e−βEn . Since∑
n K̂

†
n K̂n � I , the result of the quantum operation has to be

normalized and the density matrix after the operation is given
by

ρ̃e(β) = �β(ρ̂e)

tre[�β(ρ̂e)]
. (22)

Although it is tempting to associate β with the inverse
temperature of the larger reservoir, it is straightforward to see
that this is an incorrect interpretation. To fully understand the
physics of K̂n, let us consider a few examples. The first case is
the action of �β on the “infinity temperature” density matrix,
ρ̂e(∞) ≡ ∑

n |n〉〈n|,

ρ̃e(β) = �β(ρ̂e(∞))
tre[�β(ρ̂e(∞))]

=
∑

n

e−βEn

Z(β)
|n〉〈n|. (23)

The bosonic environment is brought from an “infinity” to a
1/β temperature. Now, if we apply �β to Eq. (23), we obtain

�β(ρ̂e(β))
tre[�β(ρ̂e(β))]

=
∑

n

e−2βEn

Z(2β)
|n〉〈n|, (24)

thus corresponding now to an ensemble characterized by a
even smaller temperature, 1/(2β). In general, the operation �e

enhances the probabilities of low-energy states in a statistical
ensemble instead of equilibrating it at a certain temperature.
Therefore, it is possible to call it a refrigeration or cooling
mechanism. In Appendix B we discuss a microscopic model
that implements this quantum operation.

Combining both quantum operations, � = �β ⊗ �0, pro-
duces an action on the Hilbert space of the qubits and the
environment. This quantum operation is not normalized, since
it is not trace preserving. Thus the correct quantum evolution

is given by

ρ̃(	) = �(ρ̂(	)) (25)

=
∑

n P̂0 K̂n ρ̂(	) K̂
†
n P̂0

tr
[ ∑

n P̂0 K̂n ρ̂(	) K̂
†
n P̂0

] (26)

and the reduced density matrix of the qubits is equal to

ρ̃s(	) = tre[ρ̃(	)]. (27)

For the qubits, the fidelity between the reduced density
matrix at the end of the QEC cycle and the initial density
matrix is given by the expression

F = trs[ρ̃s(	)ρ̃s(0)], (28)

which can be rewritten as

F = 〈0,↑̄|Û †(	)P̂0|↑̄〉〈↑̄|e−βĤ0 P̂0 Û (	)|0,↑̄〉
〈0,↑̄|Û †(	)P̂0 e−βĤ0 Û (	)|0,↑̄〉 , (29)

where we used the relation
∑

n K̂
†
n K̂n = ∑

n
e−βEn

Z(β) |n〉〈n| =
e−βĤ0/Z(β).

The best possible scenario for QEC is when, at the end of
the cycle, the environment remains at zero temperature. This
situation was considered in Refs. [21,24,25]. It corresponds to
forcefully setting the environment back to its ground state,
hence suppressing some correlations and memory effects.
Even in this extreme optimistic case, strong correlations among
the qubits can still persist, leading to a nontrivial threshold.

We can further simplify Eq. (29) by considering that

tr[|ψ〉〈ψ | ρ̂(	)] = e−βE0

Z(β)
〈ψ,0| Û †(	; 0) P̂0 |ψ〉

× 〈ψ | P̂0 Û (	; β) |ψ,0〉 (30)

and

tr[ρ̂(	)] = e−βE0

Z(β)
〈ψ,0|Û †(	; 0) P̂0 Û (	; β) |ψ,0〉, (31)

where Û (	; β) = e−βĤ0 Û (	) eβĤ0 and we used P̂2
0 = P̂0.

The end result is that the fidelity can be rewritten as

F0 = 〈ψ,0| Û †(	; 0) P̂0 |ψ〉〈ψ | P̂0 Û (	; β) |ψ,0〉
〈ψ,0|Û †(	; 0) P̂0 Û (	; β) |ψ,0〉 . (32)

When we specialize to the pure dephasing bosonic model,
Eq. (12), we obtain a compact expression for the evolution
operator,

Û (	; β) =
∏
k 	=0

e−Ĝ(	;k) e−iα̂(	;k;β) â
†
k e−iα̂∗(	;k;β) âk , (33)

where

α̂(	; k; β) = λ

LD/2

(
v

ω0

)D/2+s ∑
r

gk

ωk
sin

(
ωk	

2

)

× σ̂ x
r,n eik·r+iωk( 	

2 +iβ) (34)

and

α̂∗(	; k; β) = λ

LD/2

(
v

ω0

)D/2+s ∑
r

g∗
k

ωk
sin

(
ωk	

2

)

× σ̂ x
r,n e−ik·r−iωk( 	

2 +iβ). (35)
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FIG. 1. Surface code lattice and operators. Physical qubits are
located at the edges (black circles). Some star Â and plaquette B̂

operators are indicated, as well as some realizations of the logical
operators ˆ̄X and ˆ̄Z.

Surface code and the pure dephasing model

The surface code [26] is regarded as a benchmark among
the QEC protocols [27,28]. It is implemented on a two-
dimensional array of qubits, greatly simplifying the design
of control and measurement circuits [29]. In addition, all the
required interactions between the qubits are spatially local.
Finally, it has been estimated that it has a large noise threshold
in the absence of correlated errors [30].

The surface code has the qubits located on the links of
a two-dimensional square lattice, as shown in Fig. 1. The
quantum code is defined by two sets of operators. The first
set corresponds to local operators that define the syndromes
that have to be extracted at each QEC step. These are four-body
observables,

Â♦ =
∏
r∈♦

σ̂ x
r (36)

and

B̂� =
∏
r∈�

σ̂ z
r , (37)

where ♦ is a label for the positions of four qubits linked to
a vertex of the lattice (“star”) and � labels the positions of
four qubits in a plaquette. To diagnose the evolution of a
single logical qubit, all plaquette and star operators have to
be measured in order for the syndrome to be extracted.

The second set corresponds to two extended operators that
act on the logical Hilbert space,

ˆ̄X =
∏
r∈

σ̂ x
r (38)

and

ˆ̄Z =
∏
r∈′

σ̂ z
r , (39)

where  is any path running from top to bottom of the lattice
(dual path) and ′ is any path running from left to right of
the lattice (primal path); see Fig. 1. Hence the logical Hilbert
space is defined by the basis vectors

|↑̄〉 = 1√
N♦

Ĝ|Fz〉 (40)

and

|↓̄〉 = ˆ̄X|↑̄〉, (41)

where Ĝ = ∏
♦ (1 + Â♦), N♦ = 2n is a normalization con-

stant, n is the number of stars, and σ̂ z
r |Fz〉 = |Fz〉 for a qubit

locate at position r. The nonerror syndrome projector in the
logical Hilbert space can then be written as

P̂0 = |↑̄〉〈↑̄| + ˆ̄X|↑̄〉〈↑̄| ˆ̄X. (42)

In order to investigate the error threshold for a pure
dephasing model, it is sufficient to consider that the system
is initially prepared in the logical state |↑̄〉. Then, the fidelity
for a nonerror evolution can be expressed as

F0 = A
A + B , (43)

where we introduced the amplitudes

A = 〈0|〈↑̄|Û †(	,0)|↑̄〉〈↑̄|Û (	; β)|↑̄〉|0〉 (44)

and

B = 〈0|〈↑̄|Û †(	,0) ˆ̄X|↑̄〉〈↑̄| ˆ̄X Û (	; β)|↑̄〉|0〉. (45)

The evolution operators, the star operators, and the logical
operators in Eqs. (44) and (45) are diagonal in the x basis of
the qubits. Thus it is natural to rewrite the ferromagnetic state
as

|Fz〉 = 1

2N/2

∑
σ

|σ 〉, (46)

where σ labels the 2N eigenstates of the operator
∏

r σ̂ x
r ,

namely,
∏

r σ̂ x
r |σ 〉 = ±|σ 〉. Using Eq. (46) and assuming ωk

is isotropic in k [31], we can write the amplitudes as

A =
∑
σ,τ

e−λ2H(	;β)〈τ |Ĝ|τ 〉〈σ |Ĝ|σ 〉 (47)

and

B =
∑
σ,τ

e−λ2H	;β)〈τ | ˆ̄XĜ|τ 〉〈σ | ˆ̄XĜ|σ 〉, (48)

where

H(	; β) = N

2
F (	; 0; 0) − 1

2
F (	; 0; β)

∑
r

σrτr

+ 1

4

∑
r	=s

[F (	; r − s; 0)(τrτs + σrσs)

−F (	; r − s; β)(σrτs + τrσs)

+ i�(	; r − s)(τs − σs)(τr + σr)], (49)

F (	; r; β) = (v/ω0)D+2s

LD

∑
k 	=0

|gk|2e−βωk

[
1 − cos(ωk	)

ω2
k

]

× cos(k · r), (50)

and

�(	; r) = (v/ω0)D+2s

LD

∑
k 	=0

|gk|2
[
ωk	 − sin(k	)

ω2
k

]

× cos(k · r). (51)
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Notice that both functions F and � contain a dependence
on interqubit distance, but only the former depends on the
environment temperature.

Equations (47) to (51) are quite general. They represent
the mapping of the evaluation of the fidelity onto the
computation of expectation values of a classical spin system
comprising two coupled square-lattice layers and a complex
Hamiltonian H, with λ2 playing the role of an effective
inverse temperature. Notice that the presence of the operator
Ĝ in the matrix elements entering in the expressions for
A and B, Eqs. (47) and (48), constrains the sums over the
variables σ and τ to configurations with positive plaquettes,
namely, to configurations with Â�|σ 〉 = |σ 〉 and Â�|τ 〉 = |τ 〉.
For configurations containing negative plaquettes, the matrix
elements are identically zero.

At this point, in order to carry out a calculation of the
fidelity, it is necessary to consider a concrete example. We
choose to discuss the well-known pure dephasing decoherence
model of Refs. [1,23]. Thus we specialize our analysis to
situations comprising the following conditions: (1) a two-
dimensional (D = 2) environment; (2) a linear dispersion
relation, ωk = v|k|; (3) a coupling between the qubits and the
environmental modes with a power-law behavior, gk = |k|s ;
(4) a bosonic ultraviolet cutoff � for the qubit form factor gk
smaller than the environment’s natural cutoff.

With these conditions fulfilled and taking the infinite-
volume limit, we can rewrite the auxiliary functions in
Eqs. (50) and (51) as

F (	; r; β) = 1

π

1

ω2
0 (ω0	)2s

∫ ∞

0
dx x2s−1 J0

( |r|x
v	

)

× (1 − cos x) e−(β+ 1
v�

)x/	 (52)

and

�(	; r) = 1

π

1

ω2
0(ω0	)2s

∫ ∞

0
dx x2s−1 J0

( |r|x
v	

)

× (x − sin x) e−x/(v	�), (53)

where J0(z) is the zeroth-order Bessel function. The parameter
s defines the correlation regime of the model: s > 0 corre-
sponds to a super-Ohmic, s = 0 to an Ohmic, and s < 0 to a
sub-Ohmic environment.

Following the well-known phenomenology of the single-
qubit case, β defines the thermal correlation time [23].
Whenever 	 � β, the system is in the vacuum regime and
systematic corrections can be evaluated in powers of 	/β.
The opposite case is the thermal regime, β < 	, which has
not been previously studied in the context of the surface code.
It is important to note that finite temperature means simply that
even though the environment is prepared at zero temperature,
the external cooling mechanism cannot suppress the bosonic
excitations during the evolution of the system. The functions
F (	; r; β) and �(	; r) in different regimes are presented in
Appendix C.

Finally, in order to numerically evaluate the threshold
we need to make some additional choices. Guided by the
most recent experimental developments of superconducting
qubits [32], which are good candidates for implementing the

surface code, we assume a certain range of values for the
model’s microscopic parameters.

(5) It is reasonable to assume that in a running QEC protocol
the environmental temperature for superconducting qubits is of
the order of a few millikelvin. Hence we set β = h̄

kBT
≈ 10−9 s.

(6) It is also reasonable to consider that the QEC period
	 is of the order of 100 ns. Therefore, we only consider the
thermal regime β � 	.

(7) Furthermore, the distance between nearest-neighbors
qubits, a, in a superconducting qubit array is likely to be of
the order of 10−5 m.

All the above choices are very reasonable. We note that
the thermal regime is likely to be applicable to physical
implementations other than the superconducting qubits as well.

The only parameter that is difficult to estimate is the velocity
of the bosonic environment. Its value can vary by several
orders of magnitude depending on the dominant physical
environment. For instance, a typical phonon velocity in solid-
state substrates is v = 103 m/s; however, electromagnetic
fluctuations propagate with v = 108 m/s. Roughly, for every
power on 10 in the bosonic velocity, the number of qubits
in the timelike cone increases by 10. Hence all qubits in an
experimental setup would be timelike correlated for the latter
case since v	 � |r|. This is likely less so for the phononic
environment, but timelike correlations should predominate.
Thus, in the following, we assume v	 > |r|.

IV. QEC THRESHOLD FOR THE PURE
DEPHASING MODEL

A. Super-Ohmic environment with s = 1/2

The s = 1/2 environment can describe an acoustic phonon
bath or an electromagnetic environment [33]. Using the
expressions for the coupling functions defined in Eqs. (50)
and (51) presented in Table I of Appendix C, we clearly
see that for a super-Ohmic bath F (	; 0; 0) diverges with the
ultraviolet cutoff and F (	; 0; β) diverges with the inverse of
the temperature in the thermal regime. Moreover, the ratio of
any other coupling function present in Eq. (49) by one these
two diverging couplings tends to zero. Hence, since F (	,r,0)
and F (	,r,β) can be made of the same order in the thermal
regime, we can simplify the statistical model and keep only
the leading interaction, namely,

Hsuper(	; β) = −1

2
F (	; 0; β)

∑
r

σr τr, (54)

in order to describe the effect of a super-Ohmic environment
on the fidelity. The purely local (yet constrained) spin model
defined by the effective two-body interaction of Eq. (54) can be
solved exactly by introducing an auxiliary plaquette variable

μr−δ μr+δ = σr τr, (55)

with r ± δ labeling the plaquettes that share the link where the
qubit r is located. The statistical sum over the μ variables in
Eqs. (47) and (48) is unconstrained [21]. Thus the introduction
of plaquette spin variables maps the problem onto a standard
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FIG. 2. Fidelity in the presence of a super-Ohmic environment
(s = 1/2) in the thermal regime for several system sizes. Data
obtained by averaging over 109 Monte Carlo steps. Here, γ =
λ2F (	; 0; β). The dashed line marks the phase-transition point of
an Ising model on a square lattice with nearest-neighbor interactions.

two-dimensional Ising model with boundary fields. In the
thermodynamic limit, N → ∞, there is a well-known critical
coupling [34]

λc =
[

ln(1 + √
2)

F (	; 0; β)

]1/2

, (56)

separating a region where the fidelity is equal to 1 (λ < λc)
from a region where the fidelity goes to 1/2(λ > λc). We
confirm this analytical result performing a standard Monte
Carlo simulation, as shown in Fig. 2. The random walk is
performed in the mass field variables, while the energy updates
are computed using the original spin variables. The numerical
simulation clearly indicates the QEC threshold predicted by
Eq. (56). We stress that this result is fundamentally different
from previous results by the authors [21,24,25], where the
limit β → ∞ was taken and therefore the nearest-neighbor
coupling in the statistical spin model was the dominant
term.

A remarkable feature of Eq. (56) is that the critical coupling
for the threshold in a super-Ohmic environment has a square
root dependence with the inverse of the temperature but is
independent of the QEC time 	,

λc ∝ ω0

√
ω0 β. (57)

Therefore, for any value of the microscopic coupling with
the environment, there will always be a sufficiently low
temperature for which the fidelity of the qubit will be 1.

The introduction of the nearest-neighbor coupling to Hsuper

with the real coupling function F , as prescribed by Eq. (49),
does not dramatically change these results. However, the
addition of the term with the imaginary part � could,
in principle, introduce enough oscillations to remove the
threshold. Thus we explore numerically the stability of the
threshold against the introduction of an imaginary part between
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 = 0.88137 (2D Ising)
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FIG. 3. Fidelity of the surface code in the presence of a super-
Ohmic environment (s = 1/2) for several system sizes when a small
imaginary nearest-neighbor interaction is present; see Eq. (58). Data
points obtained using Binder’s method. Here, γ = λ2F (	; 0; β) and
η = �(	; d)/F (	; 0; β). The dashed line marks the phase-transition
point of an Ising model in a square lattice with nearest-neighbor
interactions. The circle marks the threshold position.

nearest neighbors by studying the modified Hamiltonian

Hsuper(	; β) = −1

2
F (	; 0; β)

∑
r

σr τr

+ i

4
�(	; d)

∑
〈r,s〉

(τs − σs)(τr + σr), (58)

where d = a/
√

2. For timelike correlations and in the thermal
regime we expect η ≡ �(	; d)/F (	; 0; β) ∼ β/	 � 1.

The complex interaction in Eq. (58) prevents the use
of the Monte Carlo method. We employ instead Binder’s
recursive method to compute the amplitudes A and B [35,36],
as explained in Appendix E. The results for the fidelity
are presented in Fig. 3 and show that a shift toward lower
thresholds occurs. Hence we conclude that the QEC threshold
for the super-Ohmic environment, with s = 1/2, is mildly
robust against small deviations from the asymptotic model
defined by Eq. (54). A threshold continues to exists, but it
is lowered due to the coherence oscillations caused by the
imaginary effective interaction term in the statistical model.

B. Ohmic environment

The Ohmic environment corresponds to s = 0. Long-range
correlations are ubiquitous to this environment; hence it cannot
be discussed in the same manner as the super-Ohmic case (see
Appendix C).

Some analytical development can be made if we consider
the limit where all qubits interact with each other with the
same strength (thus taking the logarithmic interaction as a
constant): F (	,r,β) = F̄ and �(	,r) = �̄, with F̄ ≈ �̄ ∼
1/ω2

0. Physically, this corresponds to the distance between the
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qubits being smaller than the thermal coherence length. In such
a simplified model, the Hamiltonian can be rewritten as

H(	,β) = − 1

2
	F

∑
r

σrτr + F̄

4

[∑
r

(σr − τr)

]2

+ i
�̄

4

[∑
r

(σr − τr)

][∑
r

(σr + τr)

]
(59)

= − 1

2
	F

∑
r

σrτr + F̄

4
(mσ − mτ )2

+ i
�̄

4
(mσ − mτ )(mσ + mτ ), (60)

where 	F ≡F (	; 0; β) −F̄ , mσ ≡∑
r σr, and mτ ≡∑

r τr.
It is straightforward to show that, in the absence of QEC,
this model causes a reduction of the fidelity proportional to
the square of the number of qubits [1,23]. The use of QEC
changes this scenario quite dramatically. The logical states
of the surface code have a finite probability amplitude in
most total magnetization sectors (mσ ,mτ ). Hence, for nearly
every qubit configuration without a logical error one can find
another configuration with a logical error and with the same
value for the difference mσ − mτ . As a consequence, although
the effective Hamiltonian in Eq. (60) contains long-range
interactions, they do not distinguish between configurations
with and without logical errors and the threshold is controlled
by the local term proportional to 	F .

We evaluate numerically the fidelity for the statistical model
of Eq. (60) using the Monte Carlo method but disregarding
the imaginary part of the interaction. (Unfortunately Binder’s
method is no longer practical when interactions go beyond
nearest neighbors.) We take F̄ = 0.72	F . The results are
presented in Fig. 4 and indicate the existence of a threshold
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F
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FIG. 4. Fidelity of the surface code in the presence of an Ohmic
bath, as given by the statistical model of Eq. (60), for different lattice
sizes. Here, γ = λ2	F, �̄ = 0, and F̄ = 0.72	F . Data obtained by
averaging over 109 Monte Carlo steps. The location of the transition
point, indicated by the crossing point surrounded by a circle, is marked
by the dashed line.

for

λc ≈
[

0.475

	F (	; 0; β)

] 1
2

, (61)

thus corresponding to a reduction of about 1/4 of the super-
Ohmic value in Eq. (56).

The most important difference to the super-Ohmic case is
not the numerical value in the coupling constant, but rather the
insensitivity to changes in temperature: the threshold depends
on temperature only through a logarithm,

λc ∝ ω0

∣∣∣∣ln
(

	

β

)∣∣∣∣
− 1

2

. (62)

As a result, in practice, only the microscopic frequency scale
ω0 determines whether a particular realization of the surface
code is above or below the threshold for a given QEC time 	.

C. Sub-Ohmic environment with s = −1/2

A sub-Ohmic environment introduces correlations among
very distant qubits. In particular, for the case of s = −1/2,
as presented in Appendix C, we find that correlations are
weakly dependent on qubit-qubit distances and environment
temperature. Hence we can revive the analytical discussion
used for the Ohmic environment. Considering again the
thermal regime and the numerical estimates discussed in
Sec. IV B, namely, β � 	 and vβ � |r| < v	, we find that
	F ≈ 	/ω0 and temperature independent up to subleading
logarithmic corrections. Thus the critical coupling is controlled
by the microscopic characteristic frequency scale ω0 and the
QEC time, namely,

λc ∝
√

ω0

	
. (63)

V. DISCUSSION AND SUMMARY

It is unavoidable that during its quantum evolution a system
will get entangled with its environment. This entanglement can
be understood as an effective temperature that characterizes the
system’s reduced density matrix. To make this point clear, let us
consider the simple example of a single qubit interacting with
a bosonic environment through the pure bit-flip model [23]. If
the combined system plus environment starts in the pure state
|↑〉z ⊗ |0〉, and we use as the effective Hamiltonian only the
site-diagonal term in Eq. (49), the fidelity of this single qubit
can be written as

F(	,β) = 1

1 + M̄x

, (64)

where M̄x = tanh [λ2 F (	;0;β)
2 ]. The fidelity of this qubit is a

smooth function of λ, going continuously from 1 to 1/2.
The M̄x function can be understood as the mean magneti-

zation of a fictitious statistical mechanics problem of a qubit in
the presence of a magnetic field, h = F (	;0;β)

2 , at a temperature
1/λ2. Notice that the actual degrees of freedom of the statistical
mechanics problem are not the original qubit variables σ and
τ , but instead the square of their difference, namely,

μ = 1 − 1
2 (σ − τ )2. (65)
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In the spin-boson model literature [37], time intervals where
σ = τ are called “sojourns,” while for σ = −τ they are called
“blips.” Transitions between sojourns and blips correspond to
flips of the spin variable μ.

This simple picture is precisely what we generalize in this
paper. We consider the fidelity of a single logical qubit coupled
to a bosonic environment through a pure bit-flip interaction.
After tracing the environment the dynamical problem can once
again be mapped onto an effective thermodynamics problem.
The remarkable feature of QEC is to transform a crossover
into a true phase transition in the limit of a logical qubit
with an infinite number of physical qubits. The microscopic
parameters that define the transition point yield the intrinsic
noise threshold value for the code (which is independent of
decoding errors; see discussion in Ref. [21]). Ideally it would
be preferable to have simultaneously bit flips and phase flips
in an error model; however, this is not fundamental to deduce
the existence or not of a threshold.

There are many regimes to consider, but it is very likely
that physical realizations of a quantum memory will be in
the thermal, β � 	, and time-correlated, |r| < v	, regimes.
For this range of parameters, our main conclusion is that
the surface code in a super-Ohmic environment always has a
noise threshold and the critical value of the qubit-environment
coupling constant goes as λc ∝ ω0

√
ω0β, where β is the

inverse temperature of the environment at the end of the
QEC cycle. Therefore, for the super-Ohmic case, it is always
possible to place the system below the noise threshold by
reducing the environmental temperature. In contrast, for
Ohmic environments, λc is a weak function of temperature
and only microscopic parameters play a relevant role in
determining whether QEC protects or not the logical qubit
state. For sub-Ohmic environments, λc is also approximately
temperature independent, but in addition to depending on
microscopic scales, it is inversely proportional to the QEC
cycle duration.

These results are overall reassuring and indicate that there is
no fundamental limitation to the existence of a noise threshold
for the surface code in the presence of bosonic environments
after a single QEC cycle. We are currently investigating the
effects on the fidelity of errors correlated over multiple cycles.
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APPENDIX A: INITIALIZING THE STATE

Suppose that the environment is controlled by the Hamilto-
nian Ĥ0. The Hamiltonian of the combined qubit-environment
system is

Ĥ = Ĥ0 +
∑

r

[
f̂ (r)σ̂ z

r − h σ̂ z
r

]
, (A1)

where f̂ (r) represents the interaction between the qubit at
position r and the environment and h is an external field. The

density matrix of the system at thermal equilibrium reads

ρ̂(β,h) = e−βĤ

Z
, (A2)

where Z is the partition function, Z = tr[e−βĤ ].
The Hamiltonian in Eq. (A1) is diagonal in the qubit space.

Assume that h is large and the qubits are frozen in the +z

direction. Then,

ρ̂(β,h → ∞) = e
−β

[∑
k ωk â

†
k âk+λ

∑
n f̂ (n)

]
Z

⊗ |F 〉〈F |, (A3)

where |F 〉 is the ferromagnetic z state of the qubits. Using
Eq. (11), it is natural to define b̂k = âk + αk/ωk in order to
rewrite the bosonic Hamiltonian as

ωk b̂
†
k b̂k = ωk â

†
k âk + αk â

†
k + α∗

k âk + |αk|2
ωk

(A4)

and the density matrix as

ρ̂(β,h → ∞) = e
−β

[∑
k ωk b̂

†
k b̂k

]
Z̄

⊗ (|F 〉〈F |), (A5)

where Z̄ is the partition function for the new b̂k bosons. Raking
the temperature to zero (β → ∞), we arrive at

ρ̂(β → ∞,h → ∞) = ∣∣0̄〉〈0̄∣∣ ⊗ |F 〉〈F |, (A6)

where |0̄〉 is the ground state of the b̂k bosons. This ground
state is a coherent state of the original âk bosons,

âk|0̄〉 = −λ|k|s−1

∑
n e−ik·rn

vLD/2
|0̄〉. (A7)

However, if the qubits do not form a dense set with respect to
the bosonic environment, then, in the limit L → ∞,

|0̄〉 = |0〉, (A8)

and we obtain the state

ρ̂(β → ∞,h → ∞) = |0〉〈0| ⊗ |F 〉〈F |. (A9)

Finally, assuming the ability of instantaneous (faster than the
environment inverse cutoff) and flawless gates, the initial state
can be prepared as

ρ̂0 = |0〉〈0| ⊗ G |F 〉〈F |G (A10)

= |0〉〈0| ⊗ |↑̄〉〈↑̄|. (A11)

APPENDIX B: MICROSCOPIC COOLING MECHANISM

A microscopic description of the cooling process of the
free bosonic environment coupled to the qubits proceeds as
follows. The relation of the bosonic environment and an
external reservoir can be described by the usual damped
harmonic-oscillator master equation [23]. For an illustrative
example of this microscopic description, consider qubits
inside an electromagnetic cavity. The modes inside the cavity
constitute the correlated environment. However, there are
electromagnetic modes outside the cavity as well. These
external modes can damp the modes inside the cavity.
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For a given bosonic mode, the master equation, after the
usual Born-Markov approximations, is given by

d

dt
ρ̂k = −iωk[â†

k âk,ρ̂k]

+ γk(Nk + 1)

(
âk ρ̂k â

†
k − 1

2
â
†
k âk ρ̂k − 1

2
ρ̂k â

†
k âk

)

+ γkNk

(
â
†
k ρ̂k âk − 1

2
âk â

†
k ρ̂k − 1

2
ρ̂k âk â

†
k

)
, (B1)

where Nk = [exp (β̃ωk) − 1]
−1

, γk is the damping rate, and
we defined the inverse temperature β̃ = 1/T̃ (kB = 1). In order
to maximize the cooling and be compatible with the initial state
chosen for the bosonic environment (see Appendix A), the
external reservoir should be at its lowest possible temperature,
T̃ = 0.

If we evoke the usual assumption that decoherence is much
faster than dissipation, we can focus on solving the master
equation for the populations, known as Pauli master equation.
For T̃ = 0 it is simply

d

dt
Pk(n,t) = γk[(n + 1)Pk(n + 1,t) − nPk(n,t)], (B2)

where Pk(n,t) = 〈k; n|ρ̂ωk (t)|k; n〉 and n denotes the number
of k modes [23].

These coupled differential equations are easily solvable if
we consider that the original populations are only sparsely
nonzero, i.e., if Pk(n,0) 	= 0, then Pk(n ± 1,0) = 0. Consid-
ering that syndrome extraction takes a time t = ε, the initial
population of mode k is reduced to

Pk(n,ε) = e−γk n ε Pk(n,0). (B3)

It is also reasonable to assume that the damping rate is a
function of the energy of the bosonic mode. A simple choice
is to make it a linear relation,

γk n ε = 〈n|β ωk â
†
k âk|n〉. (B4)

This corresponds physically to having higher frequencies
coupled more strongly to the external reservoir than lower
ones. Therefore, a given environmental mode with initial

density matrix

ρ̂k(0) =
∑
n,m

wn,m|k; n〉〈k; m| (B5)

evolves towards

ρ̂k(ε) =
∑

n

wn,n e−β ωk â
†
k âk |k; n〉〈k; n|. (B6)

These considerations hold for all environmental modes k.
Finally, if we assume that decoherence would quickly destroy
the coherences between different environmental modes, we
find that the initial density matrix of the environment,

ρ̂e(0) =
∑
i,j

wi,j |i〉〈j |, (B7)

evolves towards the density matrix

ρ̂e(ε) =
∑

i

wi,i e
−βĤ0 |i〉〈i|. (B8)

That corresponds to the quantum operation �β(ρ̂e(0)), where
β is defined as a function of the damping rates of the envi-
ronment, Eq. (B4). The particular case of β = 0 corresponds
to having no damping, hence describing a situation where
the environment has a unitary evolution during the syndrome
extraction.

APPENDIX C: COUPLING CONSTANTS
FOR SOME ENVIRONMENTS

The evaluation of Eqs. (50) and (51) is a straightforward but
long task. Closed forms can only be found for special values
of s. Here we present results for some representative cases
and for different environments. As discussed in the main text,
the inverse temperature β defines the thermal coherence time,
creating two limiting regimes. For the quantum vacuum regime
we can assume 	/β � 1 to evaluate the integrals. Conversely,
for the thermal regime we can assume that β/	 � 1. Finally,
during the evaluation of Eqs. (50) and (51) it is assumed that all
distances |r| are much larger than max{vβ,�−1}. The results
are presented in Table I.

TABLE I. Coupling constants for different noise regimes.

Superohmic (s = 1
2 ) Ohmic(s = 0) Subohmic(s = − 1

2 )

F (	; 0; 0) v�

πω3
0

1
π

1
ω2

0
ln(v�	) 	

2ω0

�(	; r 	= 0) v

πω3
0

θ(v	−|r|)√
v2	2−|r|2

1
πω2

0

[
π

2 θ (v	 − |r|) 	

πω0
ln

[√(
v	

r

)2 − 1 + v	

r

+ arcsin
(

v	

|r|
)
θ (|r| − v	)

] −
√

1 − (
r

v	

)2
]
θ (v	 − r)

Fthermal(	; 0; β) 1
πω3

0β

1
π

1
ω2

0
ln

(
	

β

)
	

πω0

(
π

2 + β

	
ln β

	

)
Fthermal(	; r 	= 0; β) v

πω3
0

[
1
|r| − θ(|r|−v	)√

|r|2−v2	2

]
1

πω2
0

[
arccosh

(
v	

|r|
)
θ (v	 − |r|) 	

πω0

{[(
π

2 − |r|
v	

) + β

	
arccosh

(
v	

|r|
)]

θ (v	 − |r|)

+ vβ√
|r|2−(v	)2

θ (|r| − v	) − vβ

|r|
] +

[
arcsin v	

|r| +
√( |r|

v	

)2 − 1 − |r|
v	

]
θ (|r| − v	)

}
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FIG. 5. Mass field variable composition.

APPENDIX D: MASS FIELD FORMULATION

One of the main difficulties in evaluating Eqs. (47) and (48)
numerically is to enforce the positive star constraints. An
efficient method to enforce the constraint is to introduce
auxiliary plaquette variables, the so-called mass fields [21],
for the bulk qubits in the surface code,

σr = μmμn (D1)

and

τr = νmνn, (D2)

where m and n denote the plaquettes that share the edge where
the spin site r is located (see Fig. 5). For qubits on the top and
bottom boundaries, we follow the discussion in Ref. [25] and
use instead

σr = μmαt (D3)

or

σr = μmαb (D4)

and

τr = νmβt (D5)

or

τr = νmβb, (D6)

with αt ,αb,βt ,βb = ±1.

The introduction of mass fields automatically enforces
positive stars: 〈μ|Ĝ|μ〉 = 〈ν|Ĝ|ν〉 = 1 for all μ and ν. In
addition,

〈σ |X̂Ĝ|σ 〉 = αtαb (D7)

and

〈τ |X̂Ĝ|τ 〉 = βtβb. (D8)

In the mass-field variables it is evident that the effective
energy of the qubit configurations that contribute to the
amplitudes in Eqs. (47) and (48) obeys some symmetry
properties. For instance, time-reversal symmetry still holds,

E(μ,ν; α,β) = E(−μ, − ν; −α, − β), (D9)

as well as complex conjugation through the exchange of
mass-field and boundary-field variables,

E(μ,ν; α,β) = [E(ν,μ; β,α)]∗. (D10)

In addition to automatically enforcing the positive stars
constraint, the mass fields are also very useful to deal with on-
site and nearest-neighbor interactions in the original qubits. If
we restrict ourselves to this particular case of nearest neighbor,
and define

J = F (	,a,β) + i�(	,a)

F (	,0,β)
, (D11)

we find that the energy can be written as

E(μ,ν; α,β) = Ebulk(μ,ν) + Etop(μ,ν; αt ,βt )

+Ebottom(μ,ν; αb,βb),

where

Ebulk(μ,ν) = 1

2

⎡
⎣N −

∑
〈m,n〉

μmμnνmνn

⎤
⎦ + J ∗ ∑

〈〈m,n〉〉
μmμn + J

∑
〈〈m,n〉〉

νmνn − Re{J }
⎡
⎣ ∑

〈m,n,m′〉
μmμnνnνm′

⎤
⎦, (D12)

Etop(μ,ν; αt ,βt ) = −1

2

⎡
⎣αtβt

∑
m∈y=Ny

μmνm

⎤
⎦ + J ∗αt

⎡
⎣ ∑

m∈y=Ny,2�x�Nx−1

μm + 1

2

(
μ1,Ny

+ μNx,Ny

)⎤⎦

+ Jβt

⎡
⎣ ∑

m∈y=Ny,2�x�Nx−1

νm + 1

2

(
ν1,Ny

+ νNx,Ny

)⎤⎦

− Re{J }
⎡
⎣αt

∑
〈m,n〉∈y=Ny

νmνnμn + βt

∑
〈m,n〉∈y=Ny

μmμnνn

⎤
⎦, (D13)

and

Ebottom(μ,ν; αb,βb) = −1

2

⎡
⎣αbβb

∑
m∈y=1

μmνm

⎤
⎦ + J ∗αb

⎡
⎣ ∑

m∈y=1,2�x�Nx−1

μm + 1

2
(μ1,1 + μNx,1)

⎤
⎦

+ Jβb

⎡
⎣ ∑

m∈y=1,2�x�Nx−1

νm + 1

2
(ν1,1 + νNx,1)

⎤
⎦ − Re{J }

⎡
⎣αb

∑
〈m,n〉∈y=1

νmνnμn + βb

∑
〈m,n〉∈y=1

μmμnνn

⎤
⎦,

(D14)
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where Nx and Ny indicate the horizontal and vertical number
of plaquettes in the surface code lattice.

There are two features that complicate any numerical
calculation: the appearance of three-body interactions and the
next-to-nearest neighbor interactions. Both of these features
make any recursive computation very difficult and any Monte
Carlo simulation less efficient (if at all possible, due to the
presence of an imaginary coupling).

In terms of mass fields and boundary fields, the targets of
the calculation are the quantities

B = 1

Z

∑
αt ,αb=±1

∑
βt ,βb=±1

∑
{μ}

∑
{ν}

e−ξE(μ,ν;α,β)αtαbβtβb (D15)

and

Z =
∑

αt ,αb=±1

∑
βt ,βb=±1

∑
{μ}

∑
{ν}

e−ξE(μ,ν;α,β), (D16)

where ξ ≡ λ2F (	,0,β) is a fictitious temperature. It is
straightforward to prove that Z and B are real quantities.
Furthermore, from Z(γ ) we can compute the expectation value
of the effective energy and corresponding heat capacity,

E = −d ln Z

dξ
(D17)

and

C = −ξ 2 dE

dξ
. (D18)

Using the auxiliary function

c(α,β) ≡
∑
{μ}

∑
{ν}

e−ξE(μ,ν;α,β), (D19)

we can write

Z = 2[c(+, + , + ,+) + 2c(+, + , + ,−)

+ 2c(+, − , + ,+) + c(+, + , − ,−)

+ c(+, − , + ,−) + c(+, − , − ,+)] (D20)

and

B = 2

Z
[c(+, + , + ,+) − 2c(+, + , + ,−)

− 2c(+, − , + ,+) + c(+, + , − ,−)

+ c(+, − , + ,−) + c(+, − , − ,+)], (D21)

where we used the time-reversal symmetry of E(μ,ν; α,β) to
reduce the number of terms.

APPENDIX E: BINDER’S RECURSIVE METHOD FOR
THE SURFACE CODE WITH NEAREST-NEIGHBORS

INTERACTIONS

We can extend Binder’s recursive method [35,36] for
computing the partition function of the Ising model in a two-
dimensional square lattice with nearest-neighbor interactions
to the effective statistical model of Eq. (49). Two modifications
are necessary: (i) to consider two spins per site and (ii) to
introduce auxiliary variables in the recursive steps.

Suppose we start with a square lattice of dimensions Nx ×
Ny (Nx columns and Ny rows). To each lattice site on a row we

associate two binary numbers (sx,rx), with sx = 0,1, rx = 0,1,
and x = 1, . . . ,Nx . We can then index the state of the spins in
a lattice row by two integers (s,r), where

s = sN × 2N−1 + sN−1 × 2N−2 + · · · + s2 × 21 + s1 × 20

(E1)

and

r = rN × 2N−1 + rN−1 × 2N−2 + · · · + r2 × 21 + r1 × 20.

(E2)

The numbers s and r are related to the mass-field variables
μ and ν by

μx,y = 2sx − 1, (E3)

νx,y = 2rx − 1, (E4)

where x = 1, . . . ,N .

sN rN

s2 r2s’1 sN rNr’1

s1 r1

...

sN rN

s1 r1 s2

s’2 r’2r’1s’1

r2

...

... sN rN

s2s1 r1 s3

s’2 s’3

r2

r’2

r3

r’3

s
N N

r
1r1s s

N−1

s’ s’
N−1

s r

N−2 N−2
r’

r

r’
N−1

...
N−1 N−2 N−1

1r1s s
N N

r

s’
N N

r’

r

N−1

s
N−1 N−1

r’s’
N−1

...

0= Z  (s,r)
~

= Z  (s,r)2

= Z  (s,r)1

= Z  (s,r)3

= Z     (s,r)N−1

1r1s s
N N

rs
N−1

r
N−1

...
= Z   (s,r)

~
N

= Z   (s,r)N

...s

...

1 r1 s2 r2

FIG. 6. Thick horizontal lines represent two-body nearest-
neighbor horizontal interactions. Short thick double vertical lines
represent two-body nearest-neighbor vertical interactions. Diagonal
thin lines represent two-body next-to-nearest neighbor interactions.
L-shaped lines and squares represent three-body interactions.
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Let Z0(s,r) denote the partition function term containing
the first (bottom) row of the lattice when only nearest-neighbor
interactions within that row are taken into account. From
this partial partition function we can build the full partition
function of the entire lattice (see Fig. 6) with the following
recursive protocol.

(1) Find Z0(s,r) for the first (bottom) row.
(2) Incorporate boundary fields (the dependence on bound-

ary fields is left implicit hereafter):
Z̃0(s,r) = Z0(s,r)κ(αb,βb,s,r). (E5)

(3) Evaluate Z1(s,r; s ′
1,r

′
1) at the second row, first site:

Z1(s,r; s ′
1,r

′
1) = η(s1,r1; s2,r2,s

′
1,r

′
1)Z̃0(s′,r′), (E6)

where s′ = s + s ′
1 − s1 and r′ = r + r ′

1 − r1.
(4) Evaluate Z2(s,r; s ′

2,r
′
2) at the second row, second site:

Z2(s,r; s ′
2,r

′
2) = η(s2,r2; s3,r3,s

′
2,r

′
2)

×
∑
s ′

1,r
′
1

λ(s1,r1; s2,r2; s ′
1,r

′
1; s ′

2,r
′
2)

×Z1(s′,r′; s ′
1,r

′
1), (E7)

where s′ = s + 2(s ′
2 − s2) and r′ = r + 2(r ′

2 − r2). Update
Z1 = Z2.

(5) Evaluate Zk(s,r; s ′
k,rk; ) at the second row, kth site

(2 < k � Nx − 1):

Z2(s,r; s ′
k,r

′
k) = η(sk,rk; sk+1,rk+1,s

′
k,r

′
k)

×
∑

s ′
k−1,r

′
k−1

λ(sk−1,rk−1; sk,rk; s ′
k−1,r

′
k−1; s ′

k,r
′
k)

×Z1(s′,r′; s ′
k−1,r

′
k−1), (E8)

where s′ = s + 2k−1(s ′
k − sk) and r′ = r + 2k−1(r ′

k − rk).
Update Z1 = Z2.

(6) Evaluate ZNx
(s,r) at the second row, Nx th site:

Z2(s,r) =
∑

s ′
Nx

,r ′
Nx

γ (sNx
,rNx

; s ′
Nx

,r ′
Nx

)
∑

s ′
Nx−1

,r ′
Nx−1

× λ(sNx−1,rNx−1; sNx
,rNx

; s ′
Nx−1,r

′
Nx−1; s ′

Nx
,r ′

Nx
)

×Z1(s′,r′; s ′
Nx−1,r

′
Nx−1), (E9)

where s′ = s + 2Nx−1(s ′
Nx

− sNx
) and r′ = r + 2Nx−1

(r ′
Nx

− rNx
).

(7) Evaluate Z̃0(s,r) to incorporate horizontal interactions
in the second row:

Z̃0(s,r) = Z2(s,r)Z0(s,r). (E10)

(8) Rename Z̃0(s,r) as Z0(s,r) and do another iteration
(third row).

(9) Repeat until, at the end of the Ny − 1 iteration (Ny th
row),

c(αt ,αb,βt ,βb) =
∑
s,r

Z̃0(s,r)κ(αt ,βt ,s,r). (E11)

The algorithm is straightforward to implement numer-
ically once expressions for the coefficients κ(αb,βb,s,r),
η(sx,rx ; sx+1,rx+1; s ′

x,r
′
x), λ(sx−1,rx−1; sx,rx ; s ′

x−1,r
′
−1; s ′

x,r
′
x),

and γ (sNx
,rNx

; s ′
Nx

,r ′
Nx

) are provided. These coefficients in-
corporate boundary fields and vertical nearest-neighbor in-
teractions, as well as next-to-nearest-neighbor (diagonal)
interactions and three-site interactions.
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