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Quantifying coherence is a key task in both quantum-mechanical theory and practical applications. Here,
a reliable quantum coherence measure is presented by utilizing the quantum skew information of the state
of interest subject to a certain broken observable. This coherence measure is proven to fulfill all the criteria
(especially the strong monotonicity) recently introduced in the resource theories of quantum coherence. The
coherence measure has an analytic expression and an obvious operational meaning related to quantum metrology.
In terms of this coherence measure, the distribution of the quantum coherence, i.e., how the quantum coherence
is distributed among the multiple parties, is studied and a corresponding polygamy relation is proposed. As a
further application, it is found that the coherence measure forms the natural upper bounds for quantum correlations
prepared by incoherent operations. The experimental measurements of our coherence measure as well as the
relative-entropy coherence and lp-norm coherence are studied finally.
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I. INTRODUCTION

Quantum coherence stemmed from the state superposi-
tion principle is the most fundamental feature of quantum
mechanics that distinguishes the quantum from the classical
world. It is the root of all the other intriguing quantum
features such as entanglement [1], quantum correlation [2,3],
quantum nonlocality, and so on [4]. Coherence is also a vital
physical resource with various applications in biology [5–10],
thermodynamical systems [11–16], transport theory [17,18],
and nanoscale physics [19,20]. Since the seminal work [21]
defined the ingredients in the quantification of coherence such
as “incoherent states,” “incoherent operations,” and criteria
(null, monotonicity, and convexity) of a good coherence
measure for resource theory, quantum coherence has attracted
increasing interest in many aspects ranging from coherence
measures [21–24], different understandings of coherence
[25–29], and especially operational resource theory [30–33]
and so on (see [34–40] and references therein).

However, coherence research is still quite limited. Coher-
ence measure, first as a mathematical quantifier, has been only
well understood based on the relative entropy and l1 norm
especially considering the strong monotonicity and the closed
expression, while for experimental practice, only the relative-
entropy coherence can be, in principle, exactly measured
without the full quantum state tomography (QST) [41,42]
(shown in Appendix C), even though the measurable bounds
can be found for other coherence quantifiers such as the
measure based on the l1 norm (given in this paper) and the
robustness of coherence (ROC) [24]. In fact, different quan-
tifications of coherence can greatly enrich our understanding
of coherence. For example, the relative-entropy coherence can
be understood as the optimal rate for distilling a maximally
coherent state from given states [30]. ROC is shown to
quantify the advantage enabled by a quantum state in a phase
discrimination task [24]. But the attempt based on quantum
skew information (QSI) failed to quantify the coherence of a
general state [23] (shown in Appendix A, also found in [35]),
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even though the Wigner-Yanase skew information [43–45] and
the quantum Fisher information [46,47] are more accessible
measures of relevance for quantum metrology as mentioned
in [24]. So besides the expected operational meaning, how to
revive the skew information for coherence measure is also of
vital mathematical significance.

In addition, the relative-entropy coherence measure has
been shown to be closely related to the entanglement [27],
which has an important characteristic—the monogamy, that
is, the entanglement in a multipartite system cannot be freely
shared by several subsystems (see [48–50] and references
therein). The simplest example is that once three qubits are
maximally entangled, any two qubits among them cannot
own any entanglement, or equivalently, two maximally en-
tangled qubits are prohibited from entangling with the third
qubit. Similarly, is the coherence freely shared among the
multipartite system? Recently, the relative-entropy coherence
with free reference basis was studied for multipartite systems
in [36,40], in particular, [40] constructed the tradeoff relation
(monogamy or polygamy) not only depending on the state
but also accompanied by the basis-free coherence. How is
the coherence distributed in terms of a different measure,
especially completely by the basis-dependent measure (as the
original purpose of coherence measure)? It is of immense
importance to solve this question for understanding coherence
both as a quantum-mechanical feature and as a useful physical
resource.

In this paper, we employ quantum skew information to
construct a quantum coherence measure which is valid for
any quantum state. The most prominent advantage is that this
coherence measure satisfies the strong monotonicity. Another
advantage is that the coherence has an analytic (closed)
expression which is similar to the relative-entropy coherence
and l1-norm coherence, but different from the nonanalytic
ROC [24]. We employ this coherence measure to construct
a clear polygamy relation that dominates the coherence distri-
bution among multipartite systems. As a further application,
we consider the tradeoff relation between quantum coherence
and quantum discord and find the natural upper bounds
of quantum discord. Furthermore, our coherence measure
inherits the property of QSI, so a close relation with the
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quantum metrology is founded. Finally the measurement for
the experimental practice is considered for various coherence
measures.

II. COHERENCE VIA QSI

To begin with, we would like to first introduce the strict
definition of coherence [21]. Given a reference basis {|i〉}, a
state δ̂ is incoherent if δ̂ = ∑

i δi |i〉〈i|. The states with other
forms are coherent. The incoherent state set is denoted by
I. The incoherent operations are defined by the incoherent
completely positive and trace preserving mapping (ICPTP),
i.e., the Kraus operator

∑
n K

†
nKn = I, if KnσIK

†
n ∈ I for

∀σI ∈ I. Thus a good coherence measure C(ρ) of the state
ρ should (a) (null) be zero for incoherent states; (b1) (strong
monotonicity) not increase under selective ICPTP $I (ρ) =∑

n KnρK
†
n, i.e., C(ρ) �

∑
n pnC(ρn) with pn = TrKnρK

†
n

and ρn = KnρK
†
n/pn; (b2) (monotonicity) not increase under

ICPTP, i.e., C(ρ) � C[$I (ρ)]; and (c) (convexity) not increase
under classical mixing, i.e.,

∑
n qnC(�n) � C(�) with � =∑

n qn�n,
∑

n qn = 1, qn > 0.
It is obvious that in such a framework the definition of

coherence strongly depends on the basis. This can be easily
understood because the bases could not be arbitrarily changed
in some particular scenarios. For example, in an experiment
the standard control-NOT (CNOT) gate of two qubits takes the
right effect only within some fixed bases. Thus the CNOT gate
can transform the coherent joint state 1√

2
(|0〉 + |1〉)|0〉 to the

maximally entangled state 1√
2
(|00〉 + |11〉), but do nothing on

the incoherent joint state |0〉|0〉 [27]. This provides an explicit
meaning for the basis dependence of the coherence.

Since the states without off-diagonal entries in the basis
are incoherent, the usual and intuitive way to quantify the
coherence is to measure the distance between the given state
and its closest incoherent state according to different (pseudo-)
distance norms, as done in almost all the above-mentioned
coherence measures. In fact, whether the density matrix is
diagonal or not in a basis can be directly revealed by the
commutation relation between the density matrix of interest
and the given (nondegenerate) observable which equivalently
(unambiguously) determines a group of basis. In the following,
we establish our coherence measure just by quantifying to what
degree the density matrix does not commute with some given
(broken) observable.

Theorem 1. The quantum coherence of ρ in the computa-
tional basis {|k〉} can be quantified by

C(ρ) =
ND−1∑
k=0

I (ρ,|k〉〈k|), (1)

where I (ρ,|k〉〈k|) = − 1
2 Tr{[√ρ,|k〉〈k|]}2 represents the skew

information subject to the projector |k〉〈k| (ND − 1 is usually
omitted if no confusion occurs). C(ρ) is a strongly monotonic
coherence measure.

Before the proof of Theorem 1, we first introduce two very
useful lemmas.

Lemma 1. Define the function f (ρ,σ ) = Tr
√

ρ
√

σ for two
arbitrary density matrices ρ and σ , and the coherence C(ρ)

can be expressed as

C(ρ) = 1 −
∑

k

〈k|√ρ|k〉2 (2)

= 1 − [
max
δ̂∈I

f (ρ,δ̂)
]2

. (3)

In particular, δ̂ = δ̂o = ∑
k

〈k|√ρ|k〉2∑
k′ 〈k′|√ρ|k′〉2 |k〉〈k| is the optimal

incoherent state that achieves the maximal value.
Proof. At first, one can easily find that Eq. (2) is valid by

expanding I (ρ,|k〉〈k|) in Eq. (1). So the details are omitted
here.

Next, let us prove Eq. (3). Within the computational basis
{|k〉}, the incoherent state δ̂ can be explicitly written as

δ̂ =
ND−1∑
k=0

δ̂kk|k〉〈k|. (4)

Thus we have

f (ρ,δ̂) =
ND−1∑
k=0

〈k|√ρ|k〉
√

δ̂kk

= Q

ND−1∑
k=0

〈k|√ρ|k〉
Q

√
δ̂kk (5)

with Q =
√∑ND−1

k=0 〈k|√ρ|k〉2. According to the Cauchy-
Schwarz inequality, we have(

ND−1∑
k=0

〈k|√ρ|k〉
Q

√
δ̂kk

)2

�
(

ND−1∑
k=0

〈k|√ρ|k〉2

Q2

)(
ND−1∑
k=0

δ̂kk

)
= 1 (6)

with the inequality saturated for√
δ̂kk = 〈k|√ρ|k〉

Q
. (7)

Substituting Eq. (6) into Eq. (5), one will find

f (ρ,δ̂) � Q

or

[
max
δ̂∈I

f (ρ,δ̂)
]2 = Q2 =

ND−1∑
k=0

〈k|√ρ|k〉2. (8)

Comparing Eqs. (2) and (8), one can immediately find that
Eq. (3) is satisfied.

In addition, since Eq. (7) saturates Eq. (6), one can find
that the optimal incoherent state can be directly obtained by
substituting Eq. (7) into Eq. (4), which completes the proof. �

Lemma 2. Let $ = {Mn} denote any quantum channel given
in the Kraus representation with

∑
n=0 M

†
nMn = I; then, for

any two density matrices ρ and σ ,

f (ρ,σ ) �
∑

n

√
pnqnf (ρn,σn), (9)

with pn = TrMnρM
†
n, qn = TrMnσM

†
n, and ρn =

MnρM
†
n/pn,σn = MnσM

†
n/qn.
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Proof. At first, one can note that the function f (ρ,σ ) =
Tr

√
ρ
√

σ is closely related to the QSI and has many useful
properties [51].

(I) f (ρ ⊗ τ,σ ⊗ τ ) = Tr
√

ρ
√

σ = f (ρ,σ ) for any density
matrix τ .

(II) f (UρU †,UσU †) = f (ρ,σ ) for any unitary operation.
(III) (joint concavity) f (ρ,σ ) � f ($[ρ],$[σ ]) for any

quantum channel $.
With the above properties, we can begin our proof as

follows. Any quantum channel $ can always be implemented
by first utilizing a proper unitary evolution on the composite
system composed of the system of interest and an auxiliary
system and then performing a proper projective measurement
on the auxiliary system, i.e.,

MnρM†
n ⊗ |n〉a〈n| = ‖n〉a〈n‖U (ρ ⊗ |0〉a〈0|)U †‖n〉a〈n‖,

(10)
where ‖n〉a = I ⊗ |n〉a denotes the orthonormal basis in the
auxiliary space (labeled by a), and U is a unitary operation
on the composite system determined by $. Explicitly, we have
Mn = 〈n‖aU‖0〉a .

According to the properties I and II, we have

f (ρ,σ ) = f (U (ρ ⊗ τa)U †,U (σ ⊗ τa)U †). (11)

Let τa = |0〉a〈0| and $′ = {‖n〉a〈n‖}, then the property III and
Eq. (10) imply

f (ρ,σ ) � f ($′[U (ρ ⊗ τa)U †],$′[U (σ ⊗ τa)U †])

= f

(∑
n

MnρM†
n⊗|n〉a〈n|,

∑
n′

Mn′σM
†
n′⊗|n′〉a〈n′|

)

=
∑

n

f (MnρM†
n,MnσM†

n) =
∑

n

√
pnqnf (ρn,σn), (12)

with pn = TrMnρM
†
n, qn = TrMnσM

†
n, and ρn =

MnρM
†
n/pn,σn = MnσM

†
n/qn. Here we use the

orthonormalization of {|na〉} to derive Eq. (12) which
closes the proof. �

With Lemmas 1 and 2, now we can prove the theorem 1 as
follows.

Proof of Theorem 1. To prove Theorem 1, we need to show
the coherence measure C(ρ) satisfies all the required criteria
(a), (b1), (b2), and (c).

It is clear that quantum skew information I (ρ,A) has many
good properties such as vanishing iff [ρ,A] = 0, convexity
on the classical mixing of the states, and so on [43–45].
C(ρ) inherits all the properties, so C(ρ) = 0 is the sufficient
and necessary condition for incoherent states and C(ρ) is
convex under the mixing of states. That is, the criteria (a)
and (c) are automatically satisfied. In addition, one can note
that since the coherence measure is convex, the monotonicity
on selective ICPTP (strong monotonicity) will automatically
imply the monotonicity on ICPTP. So the remaining task
of the proof is to prove that C(ρ) satisfies (b1)—the strong
monotonicity.

To do so, let us consider a density matrix ρ with its
coherence C(ρ) defined by Eq. (3). Meanwhile, we let δ̂o

denote the optimal incoherent state achieving the maximal
value in Eq. (3). Define the incoherent selective quantum
operations $I given by the Kraus operators as Mn. Suppose

$I is performed on the state ρ, then the postmeasurement
ensemble can be given by {pn,ρn} with pn = TrMnρM

†
n and

ρn = MnρM
†
n/pn. Therefore, the average coherence can be

given by

∑
n

pnC(ρn) = 1 −
∑

n

pn

[
max
δ̂n∈I

f

(
MnρM

†
n

pn

,δ̂n

)]2

. (13)

Since the incoherent operation cannot prepare the coherence
from an incoherent state, for the optimal incoherent state

δ̂o, we have δ̂o
n = Mnδ̂

oM
†
n

qn
∈ I with qn = TrMnδ̂

oM
†
n for any

incoherent operation Mn. Thus for such a particular δ̂o
n, it is

natural that

f
(
ρn,δ̂

o
n

)
� max

δ̂n∈I
f (ρn,δ̂n). (14)

Thus Eq. (13) can be rewritten as∑
n

pnC(ρn) � 1 −
∑

n

pnf
2(ρn,δ̂

o
n

)
. (15)

For the probability distribution {qn}, the Cauchy-Schwarz
inequality implies

∑
n

pnf
2
(
ρn,δ̂

o
n

)
�

[∑
n

√
pnqnf (ρ,δ̂o)

]2

. (16)

Based on Eq. (9) given by Lemma 2, we have∑
n

pnC(ρn) � 1 − f 2(ρ,δ̂o) = C(ρ), (17)

which is the strong monotonicity. The convexity of C(ρ)
directly shows C(ρ) � C(

∑
n=1 pnρn) = C($I [ρ]), that is, the

monotonicity. �

III. CONNECTION WITH K COHERENCE FOR QUBITS

The K coherence of a density matrix ρ subject to a given
observable K is defined by [23]

CK (ρ) = − 1
2 Tr{[√ρ,K]}2. (18)

Needless to say, whether the K coherence is strongly mono-
tonic or not, it is obvious that CK (ρ) depends on both the eigen-
value and the eigenvectors (basis) of K . So once the observable
K has a degenerate subspace, the coherence of the state ρ in
the corresponding subspace will not be revealed. However, our
coherence measure C(ρ) depends on the broken instead of the
original observable, so it is independent of the eigenvalues
of the observable. In other words, it is not affected by the
degeneracy of the observable and so is unambiguously defined
for a certain basis. This is the obvious difference between the
K coherence and ours. However, next we will show that the
K coherence is only valid for the qubit system because it is
equivalent to our measure C(ρ) for qubits.

For a qubit state ρ and an observable K with the eigende-
composition K = ∑1

k=0 ak|k〉〈k| where ak is the eigenvalue
and {|k〉} denotes the set of eigenvectors, our coherence
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measure C(ρ) subject to the basis {|k〉} is given by

C(ρ) = −1

2

1∑
k=0

Tr{[√ρ,|k〉〈k|]}2 (19)

and the K coherence is given as the same form as Eq. (18).
Any two-dimensional observable can be decomposed as K =
1
2 TrK · I + K̃ with K̃ = λ(|0〉〈0| − |1〉〈1|) where |0〉 and |1〉,
respectively, denote the common eigenvectors of K and K̃ ,
λ represents the positive eigenvalue of K̃ , and a0/1 can be
rewritten by T rK

2 ± λ. Therefore, Eq. (18) can also be rewritten
based on K̃ as

CK (ρ) = −1

2
Tr

{
1

2
TrK[

√
ρ,I] + [

√
ρ,K̃]

}2

= −λ2

2
Tr{[√ρ,|0〉〈0| − |1〉〈1|]}2

= −λ2

2

(
1

2
Tr{[√ρ,I − 2|1〉〈1|]}2

+ 1

2
Tr{[√ρ,2|0〉〈0| − I]}2

)

= 2λ2C(ρ), (20)

which exhibits the equivalence between the two coherence
measures for qubit systems if neglecting a constant 2λ2. Thus
K coherence is valid for qubit systems (satisfying the strong
monotonicity), since our coherence measure C(ρ) is strongly
monotonic.

IV. CONNECTION WITH QUANTUM METROLOGY

In the following, we will demonstrate how our coherence
measure can be related to some quantum metrology scheme.
This also provides an operational meaning for our coherence
measure C(ρ).

The scheme is described as follows. Suppose we have an
n-dimensional state ρ and then let the state undergo a unitary
operation Uϕk

= e−iϕk |k〉〈k| which will endow an unknown
phase ϕk to the state ρ as ρk = Uϕk

ρU †
ϕk

. We aim to estimate
ϕk in ρk by N >> 1 runs of detection on ρk . The question is
what the measurement precision is.

In the above scheme, the measurement precision of ϕk is
characterized by the uncertainty of the estimated phase ϕest

k

defined by

δϕk =
〈(

ϕest
k∣∣∂ 〈ϕest

k

〉
/∂ϕk

∣∣ − ϕk

)2〉1/2

, (21)

which, for an unbiased estimator, is just the standard devia-
tion [52–54]. Based on the quantum parameter estimation [52–
54], δϕk is limited by the quantum Cramér-Rao bound as

(δϕk)2 � 1

NFQk

, (22)

where FQk = Tr{ρϕL2
ϕ} is the quantum Fisher information

with Lϕ being the symmetric logarithmic derivative defined
by 2∂ϕρϕ = Lϕρϕ + ρϕLϕ [52]. It was shown in [52–54]
that this bound can always be reached asymptotically by

maximum likelihood estimation and a projective measurement
in the eigenbasis of the “symmetric logarithmic derivative
operator.” Thus one can let (δϕo

k )2 denote the optimal variance
which achieves the Cramér-Rao bound, i.e., (δϕo

k )2 = 1
NFQk

.
Reference [55] showed that the Fisher information FQk is well
bounded by the skew information as

I (ρ,|k〉〈k|) � FQk

4
� 2I (ρ,|k〉〈k|), (23)

which directly leads to

4NI (ρ,|k〉〈k|) � 1(
δϕo

k

)2 � 8NI (ρ,|k〉〈k|). (24)

If we repeat this scheme N times, respectively, corresponding
to the different |k〉〈k|, we can sum Eq. (24) over k as

4NC(ρ) �
∑

k

1(
δϕo

k

)2 � 8NC(ρ), (25)

where we have used C(ρ) = ∑
k I (ρ,|k〉〈k|). If we define

1
(
o

ϕ )2 = ∑
k

1
(δϕo

k )2 , Eq. (25) can be rewritten as

1

8NC(ρ)
�

(

o

ϕ

)2 � 1

4NC(ρ)
, (26)

which shows that quantum coherence C(ρ) contributes to
the upper and lower bounds of the “average variance” (
o

ϕ)2

that characterizes the contributions of all the inverse optimal
variances of the estimated phases.

In fact, one can recognize that the practical variance
δϕk usually deviates from the optimal one δϕo

k because the
experimental measurement strategy cannot be as ideal as we
expect theoretically, so that δϕk � δϕo

k . Thus, one can replace
δϕo

k in Eqs. (24) and (25) by δϕk and obtain the other two
relations as

1

(δϕk)2 � 8NI (ρ,|k〉〈k|) (27)

and ∑
k

1

(δϕk)2 � 8NC(ρ). (28)

Equations (27) and (28) mean that no matter what kind of
measurement strategy is employed, with the fixed N the
measurement cannot be infinitely precise. The variance ϕk is
well restricted by the skew information I (ρ,|k〉〈k|) (of course
by the corresponding Fisher information), while the sum of
1
ϕ2

k

(or the corresponding 1
(
ϕ )2 ) is just constrained by our

coherence C(ρ).

V. DISTRIBUTION OF COHERENCE

In this section, we will consider how the coherence is
distributed among a multipartite system. This essentially
requires us to extend the coherence to the multipartite system
and establish the tradeoff relation between the coherence
among different subsystems and even the relation with other
quantum features. Such a question was considered by [40], but
the tradeoff relation as mentioned at the beginning includes
both the basis-free coherence measure and the basis-dependent

042337-4



QUANTUM COHERENCE VIA SKEW INFORMATION AND . . . PHYSICAL REVIEW A 95, 042337 (2017)

coherence measure; especially, this relation depends on the
state (monogamous for some states and polygamous for other
states). This indeed benefits our recognition of coherence, but
strictly speaking should be the property of the state instead
of the coherence. So how to establish a tradeoff relation
describing a certain property (monogamy or polygamy) with
the unified measure is very important no matter if it serves
as a physical feature or a physical resource. In order to keep
the consistent reference basis (similar to the monogamy of
entanglement via the same entanglement quantifier [48,49]),
we will restrict ourselves to the computational basis with which
our coherence can be directly used. Therefore, the polygamy
relation of bipartite pure states can be given as follows.

Theorem 2 . For a bipartite pure state |�〉AB , let ρA/B denote
the reduced density matrix for A or B, then

1 − C(|�〉AB) � [1 − C(ρA)][1 − C(ρB)], (29)

which is saturated by product states.
Proof. The pure state |�〉AB has the Schmidt decom-

position as |�〉AB = ∑
i λi |μi〉|νi〉 from which we can

rewrite |�〉AB = ∑
i λiUA ⊗ UB |μi〉|νi〉 with λi the Schmidt

coefficients, so the reduced density matrices can be, re-
spectively, given by ρA = ∑

i λ
2
i UA|μi〉〈μi |U †

A and ρB =∑
i λ

2
i UB |νi〉〈νi |U †

B . Thus one can always calculate the co-
herence for |�〉AB and its reduced matrices ρA and ρB (within
the basis |k〉 and |k′〉 instead of the Schmidt basis |μi〉 and |νi〉)
as

1 − C(|�〉AB) =
∑
kk′

∣∣∣∣∣
∑

i

λi〈k|UA|μi〉〈k′|UB |νi〉
∣∣∣∣∣
4

, (30)

1 − C(ρA) =
∑

k

[∑
i

λi |〈k|UA|μi〉|2
]2

, (31)

1 − C(ρB) =
∑
k′

[∑
i

λi |〈k′|UB |νi〉|2
]2

. (32)

From these three equations, we can find that, for each k and k′,(∑
i

λi |〈k|UA|μi〉|2
)

·
(∑

i

λi |〈k′|UB |νi〉|2
)

≥
(∑

i

λi |〈k|UA|μi〉| · |〈k′|UB |νi〉|
)2

�
∣∣∣∣∣
∑

i

λi〈k|UA|μi〉〈k′|UB |νi〉
∣∣∣∣∣
2

. (33)

Therefore, squaring both sides of Eq. (33) and summing over
k and k′, one will immediately arrive at Eq. (29). It is easy to
show that the product states saturate the inequality. �

From Theorem 2, it can be found that the coherence of
a subsystem is not limited by the coherence of the composite
system. A trivial case is that the incoherent composite quantum
state means no coherence in its subsystems. However, the
composite quantum state with the relatively large coherence
does not restrict the coherence of the subsystems (which
is different from the monogamy of entanglement). That is,
the subsystems could also have relatively large coherence.

A typical example is the maximally coherent state, e.g.,
|�〉AB = 1

3

∑2
i,j=0 |ij 〉. One can find that C(|�〉AB) = 8

9 but

C(ρA) = C(ρB) = 2
3 , which is the maximal coherence in

three-dimensional space corresponding to the reduced states
ρA = ρB = 1

3

∑2
i,j=0 |i〉〈j |. This example also implies that the

subsystem with relatively large coherence does not restrict its
ability to interact with another system and form a composite
system with large coherence. These are the manifestations
of the so-called polygamy. Theorem 2 can also be extended
to mixed states and multipartite states as the following two
corollaries.

Corollary 1. For bipartite mixed states ρAB with their
reduced density matrices ρA/B , the coherences satisfy

[1 − C(ρA)][1 − C(ρB)] �
∑
kk′

〈kk′|ρAB |kk′〉2 (34)

= Trρ2
AB − C2(ρAB) � λmin[1 − C(ρAB)] (35)

with |kk′〉 being the fixed computational basis, λmin denoting
the minimal nonzero eigenvalue of ρAB , and Clk (ρ) denoting
the lk-norm coherence. In addition, one can also have

[1 − C(ρA)]

[
r −

r∑
i=1

C(ρBi)

]
≥ 1 − C(ρAB), (36)

[
r −

r∑
i=1

C(ρAi)

]
[1 − C(ρB)] ≥ 1 − C(ρAB), (37)

which can also lead to a symmetric form as

[1 − C(ρA)][1 − C(ρB)] � 1

cs

[1 − C(ρAB)]2 (38)

with cs = [r − ∑
i C(ρAi)][r − ∑

i C(ρBi)] where r is the
rank of ρAB and ρAi , and ρBi denote the reduced density
matrices of the ith eigenstate of ρAB .

Corollary 2. For an N -partite quantum state ρAB···N , define
the index set S = {A,B,C, · · · ,N} corresponding to all the
N subsystems. Let α represent a subset of S, i.e., α ⊂ S, and
let ρα denote the reduced density matrix by tracing over all
subsystems corresponding to ᾱ, the complementary set of S.
Thus for ∀αi ⊂ S such that αi ∩ αj = δijαi and

∑
i=1 αi = S,

the coherences satisfy

∏
i

[1 − C(ραi
)] � λM [1 − C(ρAB···N )], (39)

∏
i

[1 − C(ραi
)]ni � 1

csT

[1 − C(ρAB···N )]2, (40)

where ni as well as λM and csT can be determined from
Corollary 1 based on the concrete bipartite grouping of ρAB···N.

The proofs of both Corollaries 1 and 2 are given in
Appendix B, which also demonstrates how to determine ni ,
λM , and csT . One can note that Eq. (35) can be understood
as the general polygamy relation for both mixed and pure
states since λmin = 1 for the pure state. In addition, no matter
what λM,csT ,λmin, and cs are, they can always be some finite
values. Therefore, similar to Theorem 2, polygamy is also
clearly demonstrated by mixed states and multipartite states.
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VI. BOUNDS ON QUANTUM DISCORD

Resource theory provides a platform to understand one
quantum feature via another quantum feature. Quantum
coherence can be understood by quantum discord [26]. That
is, the coherence assisted by an incoherent auxiliary state can
be converted by incoherent operations to the same amount
of quantum discord. As an application of our coherence
measure, here we revisit this question and find some similar
bounds. As we know, quantum discord of a bipartite quantum
state is initially defined by the discrepancy between quantum
versions of two classically equivalent expressions for mutual
information [2,3]. Even though the latter various measures of
quantum discord have been presented [56], quantum discord
with both good computability and good properties (e.g.,
contractivity) should count on local quantum uncertainty
(LQU) based on quantum skew information [57]. We would
like to emphasize that LQU was developed with the broken
observable in [58]. In the following, we will restrict the
quantum discord to the one given in [58].

The quantum discord in [58] is defined for a bipartite state
ρAB as

D(ρAB) = min
{|k〉A}

C{|k〉A}(ρAB), (41)

where

C{|k〉A}(ρAB) = −1

2

∑
k

Tr[
√

ρAB,|k〉A〈k| ⊗ IB]2 (42)

and {|k〉A} denotes the fixed basis. We can understand
C{|k〉A}(ρAB) as the coherence of the A subspace and thus
D(ρAB) can be naturally considered as the minimal coherence
of A subspace. Since I (ρAB,K ⊗ IB) � I (ρA,K), one can
immediately obtain

C{|k〉A}(ρAB) � D(ρAB) � C{|k̃〉A}(ρA) (43)

with {|k̃〉A} denoting the optimal basis to achieve the quantum
discord. This relation implies the quantum discord is upper
bounded by its subspace coherence and lower bounded by
the coherence of the subsystem subject to the optimal basis.
To reveal all the quantum discords, the symmetric quantum
discord can be similarly defined as

DS(ρAB) = min
{|k〉}{|k′〉}

C{|kk′〉}(ρAB) (44)

with

C{|kk′〉}(ρAB) = −1

2

∑
kk′

Tr[
√

ρAB,|k〉A〈k| ⊗ |k′〉B〈k′|]2. (45)

Analogously, C{|kk′〉}(ρAB) is exactly the coherence of ρAB

within the basis {|k〉|k′〉} and quantum discord DS(ρAB) is just

the minimal coherence. With these concepts in mind, we can
give the important results in the following rigorous way.

Theorem 3. Suppose an incoherent operation $I that is
performed on a bipartite product state σA ⊗ σB is a bipartite
product state. The quantum discord of the postoperation state
is bounded as

DS($I [σA ⊗ σB]) � 1 − [1 − C(σA)][1 − C(σB)]. (46)

In particular, the upper bound is attained by $I =
{UI = ∑

ij |i,i ⊕ j 〉〈i,j |} and σB/A = |k〉〈k|.
Proof. From Eq. (44), one can find that the discord is gotten

by the minimization among all the potential basis, so it is
natural that

DS($I [σA ⊗ σB]) � C($I [σA ⊗ σB]). (47)

Based on the monotonicity of the coherence, one will imme-
diately arrive at

C($I [σA ⊗ σB]) � C(σA ⊗ σB)

= 1 − [1 − C(σA)][1 − C(σB)], (48)

which shows Eq. (46) is valid.
Next, we will show the upper bound is attainable as

mentioned in the theorem. Let σB = |k̃〉〈k̃|, so the initial
state can be written as ρ0 = ρA ⊗ |k̃〉〈k̃|. Suppose we employ
the incoherence operation $I = {UI = ∑

ij |i,i ⊕ j 〉〈i,j |}. So

the state after the operation is written by ρf = UIρ0U
†
I .

Considering the eigendecomposition of ρA = ∑
i λi |ψi〉A〈ψi |

with the eigenstate |ψi〉 = ∑
j ai

j |j 〉 expanded by the basis
{|j 〉}, we can rewrite ρf as

ρf =
∑

i

λiUI |ψi〉A|k̃〉B〈ψi |A〈k̃|BU
†
I

=
∑

i

λi

⎛
⎝∑

j

ai
j |jj ⊕ k̃〉

⎞
⎠
⎛
⎝∑

j

〈jj ⊕ k̃|ai∗
j

⎞
⎠. (49)

Based on our definition of quantum coherence, we can easily
obtain the quantum coherence of ρA within the basis {|j 〉} as

C(ρA) = 1 −
∑

j

(∑
i

√
λi |〈j |ψi〉|2

)2

= 1 −
∑

j

(∑
i

√
λi

∣∣ai
j

∣∣2)2

. (50)

According to the definition of quantum correlation DS(·), one
can find that

1 − DS(ρf ) = max
{|kk′〉}

∑
kk′

⎡
⎣∑

i

√
λi

⎛
⎝∑

j

ai
j 〈kk′|jj ⊕ k̃〉

⎞
⎠
⎛
⎝∑

j

〈jj ⊕ k̃|kk′〉ai∗
j

⎞
⎠
⎤
⎦

2

= max
{|kk′〉}

∑
kk′

(∑
i

√
λi〈kk′|Pk̃�i ⊗ 1|�〉〈�|Pk̃�

∗
i ⊗ 1|kk′〉

)2
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= max
U,V

∑
j

(∑
i

√
λi |〈j |U †Pk̃�iPk̃V

∗|j 〉|2
)2

= max
U,V

∑
j

⎛
⎝∑

i

√
λi

∣∣∣∣∣
∑

k

[U †]jka
i
k[V ∗]kj

∣∣∣∣∣
2
⎞
⎠

2

. (51)

Here we first use the fact that
∑

j ai
j |jj ⊕ k̃〉 =

(Pk̃�i ⊗ I)|�〉, where |�〉 = ∑
j |jj 〉, �i = diag(a0,a1, · · · ),

and Pk̃ = ∑
j |k̃ ⊕ j 〉〈j |. In addition, we also convert the

optimization on the basis {|kk′〉} to the unitary transformations
by |k〉 = U |j 〉 and |k′〉 = V |j 〉. In the last line of Eq. (51),
we omit Pk̃ because we force Pk̃ to be absorbed by the
optimized unitary transformations U and V . By utilizing the
Cauchy-Schwarz inequality to Eq. (51), one will find

DS(ρf ) ≥ 1 − max
U

∑
j

(∑
i

√
λi

∑
k

|[U †]jk|2
∣∣ai

k

∣∣2)2

≥ 1 − max
U

∑
jk

|[U †]jk|2
(∑

i

√
λi

∣∣ai
k

∣∣2)2

(52)

= 1 −
∑

j

(∑
i

√
λi

∣∣ai
j

∣∣2)2

, (53)

where inequality (52) comes from the convexity and the
extreme value is achieved when we select the optimal basis
{|kk′〉} = {|jj 〉}. Comparing Eqs. (53) and (50), one can find

DS(ρf ) ≥ C(ρA). (54)

However, based on Eq. (46), we have DS(ρf ) � C(ρA) for
σB = |k̃〉〈k̃| and UI . This means in this case DS(ρf ) = C(ρA),
which completes the proof. �

In fact, if both σA and σB are coherent, one can find
that the upper bound could not be attained generally for
the fixed dimension of the state space. For example, σA =
σB = 1

2 (|0〉 + |1〉)(〈0| + 〈1|), a simple algebra can show
C(σA ⊗ σB) = 3

4 , but the maximal quantum discord in this
fixed space is DS($I [σA ⊗ σB]) = 1

2 where $I = [I2 ⊕ iσy],
and I2 and σy are, respectively, the two-dimensional identity
matrix and Pauli matrix. However, if the state space is not
fixed, the upper bound is obviously attainable, because one
can always expand the state space as σA/B ⊕ 0 as required,
which, in some cases, is equivalent to attaching an auxiliary
system as σA ⊗ σB ⊗ |0〉C〈0|. In this sense, it is apparent that
the coherence of σA ⊗ σB can be completely converted to
the quantum discord between AB and C. One can perform a
(incoherent) swapping operation on A and C and finally obtain
the equal amount of quantum discord between A and BC (BC

can be replaced by B with the equally expanded space). Finally
we would like to emphasize that the similar Eq. (48) is also
satisfied for multipartite states.

VII. DIRECTLY MEASURABLE COHERENCE

In this section, we will discuss the measurement of coher-
ence in practical experiments. Like entanglement measure, the
coherence measure per se is not an observable. In order to
avoid so much cost (mainly in a high-dimensional system) for
QST, the schemes for the direct measurement of entanglement
and quantum discord have been presented in recent years
by the simultaneous copies of the state [59–63] or by an
auxiliary system [64], which provides a valuable reference
for the coherence measure. For example, the relative-entropy
coherence for an ND -dimensional state ρ is given explicitly
by

Cr (ρ) =
∑

i

λi log2 λi −
∑

k

ρkk log2 ρkk (55)

with λi’s denoting the eigenvalues of ρ and ρkk = 〈k|ρ|k〉
being the diagonal entries subject to the basis {|k〉}. Since λi’s
can be measured by the standard overlap measurement [64,65]
and ρkk can be measured by the given projectors P̂k = |k〉〈k|,
Cr (ρ) is experimentally measurable. The cost is 2(ND − 1)
measurements assisted by at most ND copies of the state.
The detailed measurement scheme is described for clarity in
Appendix C.

In fact, the measurable evaluation of coherence (instead
of the exact value as given above for the relative-entropy
coherence) with less cost is also quite practical. We find that
our C(ρ) can also be effectively evaluated by the measurable
upper and lower bounds. Based on the inequality I (A,ρ) ≥
− 1

4 Tr{[ρ,A]2} for any observable A and a density matrix
ρ [23], we have

C(ρ) =
∑

k

I (|k〉〈k|,ρ)

≥ 1

2

(
Trρ2 −

∑
k

〈k|ρ|k〉2

)
= 1

2
Cl2 (ρ) (56)

with {|k〉} defining the basis. Here

Cl2 (ρ) = ‖ρ − δI‖2 =
∑
i �=j

|ρij |2

= Trρ2 −
∑

k

〈k|ρ|k〉2 =
∑

k

{
λ2

k − 〈k|ρ|k〉2
}
, (57)

where ‖ · ‖2 denotes the l2 norm of a matrix, δI = ∑
k ρkk|k〉〈k|

is the closest incoherent state, and λk’s are the eigenvalues of
ρ. In addition, one can also find that 〈k|√ρ|k〉 � 〈k|ρ|k〉 is
satisfied for any |k〉. Thus one can have

C(ρ) = 1 −
∑

k

〈k|√ρ|k〉2 � 1 −
∑

k

〈k|ρ|k〉2. (58)
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Combining Eqs. (56) and (58), one will immediately obtain
our second result:

1
2Cl2 (ρ) � C(ρ) � 1 − Trρ2 + Cl2 (ρ), (59)

which provides both the upper and the lower bounds. Even
though the coherence based on the l2 norm is not a good
measure, as one bound, it serves as a sufficient and necessary
condition for the existence of quantum coherence. Since Cl2

is completely characterized by the eigenvalues λk and the
diagonal entries 〈k|ρ|k〉 as seen from Eq. (57), one can find that
both bounds are practically measurable similar to the above
measurement scheme for the relative-entropy coherence. The
cost is ND measurements plus two copies of the state ρ.

In fact, l1-norm coherence has also similar measurable
bounds. As we know, for the ND-dimensional density matrix
ρ, we have

Cl1 (ρ) =
∑
i �=j

|ρij | = 1

2

∑
i<j

|ρij |. (60)

Since |ρij | � 1, we have |ρij |2 � |ρij |, which leads to

Cl1 (ρ) � 1

2

∑
i<j

|ρij |2 = Cl2 (ρ). (61)

Furthermore, the inequality (
∑ND

k=1 ak)
2 � ND

∑ND

k=1 a2
k for

positive ak directly implies that

Cl1 (ρ) �
√

ND(ND − 1)Cl2 (ρ). (62)

Combining Eqs. (61) and (62) gives the bounds for Cl1 (ρ) as

Cl2 (ρ) � Cl1 (ρ) �
√

ND(ND − 1)Cl2 (ρ). (63)

Since Cl2 (ρ) is measurable, the above bounds are naturally
measurable. In addition, [24] also proposed a similar lower
bound through the ROC and the improved lower bound rather
than the exact coherence conditioned on the prior knowledge
of the state of interest.

VIII. DISCUSSION AND CONCLUSIONS

Before concluding, we would like to first emphasize that the
polygamy inequality shown in Theorem 2 has an elegant form
for bipartite pure states, but the relation with the same form
does not hold for a general bipartite mixed state of qubits,
even though Eq. (14) provides a general polygamy relation.
However, we would like to conjecture that it could hold for the
bipartite mixed states with the dimension N � 6. The details
can be seen from Appendix D.

In summary, we have presented a strongly monotonic
coherence measure in terms of quantum skew information
which characterizes the contribution of the commutation
between the broken observable (basis) and the density matrix
of interest. It is shown that the coherence measure has an
operational meaning based on the quantum metrology. We also
study the distribution of the coherence among a multipartite
system by providing the polygamy inequalities and find that the
coherence can serve as the natural upper bound on the quantum
discord. Finally, we find that our coherence measure as well as
the l1 norm can induce the experimentally measurable bounds

of coherence, but the relative-entropy coherence can be in
principle exactly measured in experiment.
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APPENDIX A: AN EXAMPLE FOR K COHERENCE
VIOLATING (STRONG) MONOTONICITY

Reference [23] defined the K coherence of a state subject
to the observable K by the quantum skew information instead
of the direct commutation. That is,

CK (ρ) = − 1
2 Tr[

√
ρ,K]2. (A1)

However, the quantification of coherence given in Eq. (1) not
only includes the contribution of the basis which the observable
defines but also includes the contribution of the eigenvalues of
the observable. In particular, once the observable is degenerate,
the observable will not extract all the coherence of the state,
even though it should be valid in its own right. Most important
is that such a definition only serves as a good coherence
measure in the qubit system, which will be shown in the
following section. One can easily find that in the general case,
this coherence measure satisfies neither criterion b1 nor b2 in
the main text. So it is not a good coherence measure in general
cases, which is also found in [35]. To see this, let us consider
the state

ρ =

⎛
⎜⎝

0.6309 0.0359 0.0858

0.0359 0.0441 0.1189

0.0858 0.1189 0.3250

⎞
⎟⎠ (A2)

which undergoes the incoherent quantum channel $I = {Mn}
with M1 = (

0 0.3 0
0 0 0.5

0.7 0 0
) and M2 = (

0 0 0.8660
0 0.9539 0

0.7141 0 0
)

and M
†
1M1 + M

†
2M2 = I3. One can obtain the state ρ1 =

M1ρM
†
1/p1 with the probability p1 = TrM1ρM

†
1 and the state

ρ2 = M2ρM
†
2/p2 with the probability p2 = TrM2ρM

†
2 . It is

easy to find that the average coherence C̄K = p1CK (ρ1) +
p2CK (ρ2) = 1.2928, and the coherence CK (ρ ′) of the final
state ρ ′ = p1ρ1 + p2ρ2 is given by CK (ρ ′) = 0.3350, while
the coherence of the initial state CK (ρ) = 0.2277 where

the reference observable K = (
1 0 0
0 7 0
0 0 5

). It is apparent that

criteria b1 and b2 are simultaneously violated.

APPENDIX B: PROOF OF THE POLYGAMY
OF OUR COHERENCE

1. Proof of Corollary 1

From the proof of Theorem 2, one can find that

〈k|√ρA|k〉〈k′|√ρB |k′〉 � 〈kk′|�〉AB〈�|kk′〉 (B1)
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holds for pure |�〉AB . Considering a mixed state with a poten-
tial decomposition ρAB = ∑

i pi |ψi〉AB〈ψi | and substituting
every |ψi〉AB into Eq. (B1), one will arrive at∑

i

pi〈k|√ρAi |k〉〈k′|√ρBi |k′〉 �
∑

i

pi〈kk′|ψi〉AB〈ψi |kk′〉.
(B2)

Squaring both sides of Eq. (B2) and summing over all the kk′,
we have

∑
kk′

[∑
i

pi〈k|√ρAi |k〉〈k′|√ρBi |k′〉
]2

≥
∑
kk′

[∑
i

pi〈kk′|ψi〉AB〈ψi |kk′〉
]2

(B3)

with ρAi/Bi being the reduced matrix of |ψi〉AB〈ψi | by tracing
over A or B. Based on the Cauchy-Schwarz inequality, we have∑

kk′

∑
i

pi〈k|√ρAi |k〉2
∑

i

pi〈k′|√ρBi |k′〉2

≥
∑
kk′

〈kk′|ρAB |kk′〉2. (B4)

Based on the joint concavity of the function f (A,B) =
T rX†AtXB1−t on both A and B (Lieb’s theorem) [66],
Eq. (B4) becomes∑

kk′
〈k|√ρA|k〉2〈k′|√ρB |k′〉2 ≥

∑
kk′

〈kk′|ρAB |kk′〉2 (B5)

with ρA/B denoting the reduced matrices of ρAB . So we have

[1 − C(ρA)][1 − C(ρB)]

�
∑
kk′

〈kk′|ρAB |kk′〉2 = Trρ2
AB − Cl2 (ρAB), (B6)

where Cl2 (ρAB) = Trρ2
AB − ∑

kk′ 〈kk′|ρAB |kk′〉2 is the coher-
ence measure based on the l2 norm. One can easily find that
Eq. (B6) will be reduced to Theorem 2 if ρAB is a pure
state. In addition, in order to use the coherence to describe∑

kk′ 〈kk′|ρAB |kk′〉2 or its lower bound, we now consider
the eigendecomposition of ρAB , i.e., ρAB = ∑

i λi |ψi〉AB〈ψi |.
Thus

∑
kk′ 〈kk′|ρAB |kk′〉2 can be rewritten as∑
kk′

〈kk′|ρAB |kk′〉2

=
∑
kk′

(∑
i

λi〈kk′|ψi〉AB〈ψi |kk′〉
)2

�
∑
kk′

(∑
i

√
λmin

√
λi〈kk′|ψi〉AB〈ψi |kk′〉

)2

= λmin[1 − C(ρAB)], (B7)

where λmin is the minimal nonzero eigenvalue of ρAB . This is
the first conclusion in Corollary 1. It can be seen that Eq. (B7)
will go back to Theorem 2 due to λmin = 1 for the pure ρAB .

Considering the eigendecomposition of ρAB =∑
i λi |ψi〉AB〈ψi |, one can obtain a series of equations

akin to Eq. (B1). Multiplying
√

λi on both sides of these

equations and then summing over all i, we will have∑
i

√
λi〈k|√ρAi |k〉〈k′|√ρBi |k′〉

≥
∑

i

√
λi〈kk′|ψi〉AB〈ψi |kk′〉. (B8)

Squaring both sides of Eq. (B8) and summing over all the kk′,
we arrive at (∑

i

√
λi〈k|√ρAi |k〉〈k′|√ρBi |k′〉

)2

≥
(∑

i

√
λi〈kk′|ψi〉AB〈ψi |kk′〉

)2

. (B9)

According to the Cauchy-Schwarz inequality, Eq. (B9) be-
comes∑

k

〈k|√ρA|k〉2
∑
k′i

〈k′|√ρBi |k′〉2 ≥
∑
kk′

〈kk′|√ρAB |kk′〉2

(B10)
and∑

ki

〈k|√ρAi |k〉2
∑
k′

〈k′|√ρB |k′〉2 ≥
∑
kk′

〈kk′|√ρAB |kk′〉2.

(B11)
A simple algebra can further show that Eq. (B10) leads to

[1 − C(ρA)]

[
r −

∑
i

C(ρBi)

]
≥ 1 − C(ρAB) (B12)

and Eq. (B11) leads to[
r −

∑
i

C(ρAi)

]
[1 − C(ρB)] ≥ 1 − C(ρAB). (B13)

Combining Eqs. (B12) and (B13), one will obtain a symmetric
form

[1 − C(ρA)][1 − C(ρB)] � 1

cs

[1 − C(ρAB)]2, (B14)

where r denotes the rank of ρAB and cs = [r −∑
i C(ρAi)][r − ∑

i C(ρBi)] with
∑

i C(ρAi/Bi) correspond-
ing to the sum of the subsystematic (A/B) coherence of all the
eigenstates. It is obvious that the inequality will be reduced to
the case of pure states for pure ρAB . The proof of Corollary 1
is finished.

2. Proof of Corollary 2

Corollary 2 is the result of the direct application of Corollary
1, so it is sufficient to consider an example to demonstrate how
to arrive at the expected inequalities and how to determine
the coefficient λM and csT . Without loss of generality, let us
consider a quadripartite quantum state ρABCD . At first, we
would like to consider ρABCD as a bipartite state as ρ(AB)(CD)

(or ρA(BCD) and so on). Based on Corollary 1, we have

[1 − C(ρAB)][1 − C(ρCD)] � λmin 1[1 − C(ρABCD)], (B15)

where ρAB and ρCD are the reduced density matrices of
ρ(AB)(CD) and λmin 1 is the minimal nonzero eigenvalue of
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ρ(AB)(CD). One can also find similar results for ρAB and ρCD ,
that is,

[1 − C(ρA)][1 − C(ρB)] � λmin 2[1 − C(ρAB)], (B16)

[1 − C(ρC)][1 − C(ρD)] � λmin 3[1 − C(ρCD)], (B17)

where λmin 2 and λmin 3 are the minimal nonzero eigenvalues
for ρAB and ρCD , respectively. Thus one can stop at Eq. (B15)
where λM = λmin 1. One can combine Eqs. (B15) and (B16)
and obtain

[1 − C(ρA)][1 − C(ρB)][1 − C(ρCD)]

� λmin 1λmin 2[1 − C(ρABCD)], (B18)

where λM = λmin 1λmin 2. A similar conclusion can be reached
if Eqs. (B15) and (B17) are combined. Of course, one can
combine all three equations, and finally get to∏

i=A,B,C,D

[1 − C(ρi)] � λM [1 − C(ρABCD)] (B19)

with λM = λmin 1λmin 2λmin 3. This demonstrates how to obtain
Eq. (24) in the main text.

Let us consider ρABCD again and first look at it as a bipartite
state, for example, ρA(BCD). Based on Corollary 1, we have

[1 − C(ρA)][1 − C(ρBCD)] � 1

cs1
[1 − C(ρABCD)]2, (B20)

where cs1 = [r1 − ∑r1
i=1 C(ρAi)][r1 − ∑r1

i=1 C(ρ(BCD)i] with
ρAi and ρ(BCD)i denoting the reduced density matrices of the ith
eigenstate of ρABCD and r1 being the rank of ρABCD . If one just
wants to consider such a bipartite grouping, Eq. (B20) is the
final description of polygamy with csT = cs1 and n1 = n2 = 1.

One can continue to consider ρBCD as a bipartite state ρ(BC)D

and continue to use Corollary 1. Then we will obtain

[1 − C(ρBC)][1 − C(ρD)] � 1

cs2
[1 − C(ρBCD)]2, (B21)

where cs2 = [r2 − ∑r2
i=1 C(ρ(BC)i)][r2 − ∑r2

i=1 C(ρDi)] with
ρ(BC)i and ρDi representing the reduced density matrices of
the ith eigenstate of ρBCD and r2 being the rank of ρBCD .
Substituting Eq. (B21) into Eq. (B20), one will arrive at

[1 − C(ρA)]
√

[1 − C(ρBC)][1 − C(ρD)]

� 1

cs1cs2
[1 − C(ρABCD)]2, (B22)

with csT = cs1cs2. Thus we can see that n1 = 1,n2 = n3 = 1
2 .

Of course, one can continue to divide ρBC and obtain another
inequality, which is omitted here.

APPENDIX C: THE MEASURABLE
RELATIVE-ENTROPY COHERENCE

Now we show that the relative-entropy coherence Cr (ρ)
can be directly measured in experiment.

Cr (ρ) can be written as

Cr (ρ) = S(ρ�) − S(ρ)

=
∑

j

λj log2 λj −
∑

k

ρkk log2 ρkk (C1)
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FIG. 1. All the density matrices ρAB are generated in (2 ⊗ 3)-
dimensional Hilbert space.

where ρ� denotes the state by deleting all off-diagonal entries
of ρ, the λj ’s represent the eigenvalues of ρ, and ρkk = 〈k|ρ|k〉
are the diagonal entries of ρ within the reference basis
{|k〉}. It is obvious that once the knowledge of λj and ρkk

is extracted from an experiment, C(ρ) is determined. This
can be accomplished by the generalized standard overlap
measurement [64,65] and simple projective measurements.
To do so, we can define the generalized swapping opera-
tor Vn for natural number n > 1 as Vn|ψ1,ψ2, · · · ,ψn〉 =
|ψn,ψ1,ψ2, · · · ,ψn−1〉. So a controlled Vn gate can be con-
structed as I2 ⊕ Vn with a qubit as the control qubit. It is
easy to find that Trρn = TrVnρ

⊗n. Now let us first prepare a
probing qubit |ϕ〉p = 1√

2
(|0〉 + |1〉) and n copies of measured

state ρ. Then let the n + 1 particles undergo the controlled
Vn gate. Finally, let us measure σx on the probing qubit
and obtain ±1 with the probability p±

n = 1±Trρn

2 . Thus based
on p+

n (or p−
n ) for n = 2,3, · · · ,ND , with Trρ = 1 all the

λj ’s can be unambiguously determined and so can
√

λj ’s. In
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FIG. 2. All the density matrices ρAB are generated in (3 ⊗ 3)-
dimensional Hilbert space.
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FIG. 3. All the density matrices ρAB are generated in (3 ⊗ 4)-
dimensional Hilbert space.

addition, 〈k|ρ|k〉 can be measured directly by the projective
measurement subject to the projectors P̂k = |k〉〈k|. Therefore,
C(ρ) is obtained. Compared with N2

D − 1 observables in QST,
the total cost is ND − 1 controlled Vn gates plus ND − 1
projective measurements assisted by at most ND copies of
the state.

APPENDIX D: THE CONJECTURE

The polygamy relation has an elegant form for
the bipartite pure state, but one can easily find that
such a relation does not hold for general mixed
states. This can be seen as follows. Let us con-
sider the qubit state ρAB = p|ψ1〉〈ψ1| + (1 − p)|ψ2〉〈ψ2|
with |ψ1〉 = [−0.5612, − 0.982,0.8119,0.1272]T , |ψ2〉 =
[0.8006,0.1842,0.5556,0.1283]T , 〈ψ1|ψ2〉 = 0, and p =
0.0443. A simple algebra can show that C(ρ1) = 0.2582,

The number of density matrices
0 2000 4000 6000 8000 10000

(1
-C

1
)(

1-
C

2
)-

(1
-C

12
)

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

FIG. 4. All the density matrices ρAB are generated in (4 ⊗ 4)-
dimensional Hilbert space.

C(ρ2) = 0.0909, and C(ρ) = 0.3242 with ρi=TrA/B |ψi〉〈ψi |.
Thus it is easy to check that [1 − C(ρ1)][1 − C(ρ2)] =
0.7418 × 0.9091 = 0.6744 < 0.6758 = 1 − C(ρ). However,
through our numerical test, we conjecture that the same form of
Theorem 2 for a (N � 6)-dimensional state could also be sat-
isfied. In Figs. 1–4, we numerically test the inequality in high-
dimensional systems, but we do not find the counterexample.
In the figures, we use C12 to denote the bipartite state C(ρAB)
and Ci to denote C(ρi) with ρi = TrA/BρAB representing the
corresponding reduced density matrices. All the tested density
matrices ρAB = (A∗A′+B∗B ′)

TrA∗A′+B∗B ′ with B = C + iD and A,C,D are
randomly generated by MATLAB R2014b. One can find that in
all the figures (1 − C1)(1 − C2) − (1 − C12) � 0. Comparing
the four figures, one can find that the minimal value of
(1 − C1)(1 − C2) − (1 − C12) in the figures is increased with
the increasing of the dimension of the state. In this sense, we
would like to conjecture that this relation should be satisfied
in (N � 6)-dimensional systems.
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