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Entanglement criteria for an n-partite quantum system with continuous variables are formulated in terms of
Rényi entropies. Rényi entropies are widely used as a good information measure due to many nice properties.
Derived entanglement criteria are based on several mathematical results such as the Hausdorff-Young inequality,
Young’s inequality for convolution and its converse. From the historical viewpoint, the formulations of these
results with sharp constants were obtained comparatively recently. Using the position and momentum observables
of subsystems, one can build two total-system measurements with the following property. For product states,
the final density in each global measurement appears as a convolution of n local densities. Hence, restrictions
in terms of two Rényi entropies with constrained entropic indices are formulated for n-separable states of an
n-partite quantum system with continuous variables. Experimental results are typically sampled into bins between
prescribed discrete points. For these aims, we give appropriate reformulations of the derived entanglement criteria.
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I. INTRODUCTION

Quantum entanglement is one of the fundamental properties
of Nature at the microscopic level. This quantum-mechanical
feature was concerned by founders in the Schrödinger “cat
paradox” paper [1] and in the Einstein-Podolsky-Rosen paper
[2]. In view of the role of entanglement in quantum theory,
related questions deserve to be studied in detail (see, e.g.,
the review [3] and references therein). Due to progress
in quantum information processing, both the detection and
quantification of entanglement are very important. In the
case of discrete variables, the positive partial transpose (PPT)
criterion [4] and the reduction criterion [5] are very powerful.
On the other hand, no universal criteria are known even
for discrete variables. Say, the PPT criterion is necessary
and sufficient for 2 × 2 and 2 × 3 systems, but ceases to
be so in higher dimensions [6]. Separability conditions can
be derived from various uncertainty relations [7–13]. These
studies concerned finite-dimensional quantum systems. For
systems with continuous variables, detection of entanglement
is a more challenging task. Reasons for studying quantum
information with continuous variables are originated in the fact
that many quantum protocols can be efficiently implemented
within current technologies of quantum optics [14,15].

Due to a practical importance, Gaussian states were well
studied from the viewpoint of entanglement detection [16,17].
Properties of Gaussian entanglement with respect to infor-
mation processing were discussed in [18–21]. Entanglement
criteria of the second-order type deal with variations of
certain observables. For systems with continuous variables,
such criteria were proposed in [16,22–25]. The authors
of [26] formulated an infinite hierarchy of conditions for
positive partial transpose involving higher-order moments. The
conditions of [26] were later amended in [27]. Such conditions
provide a very powerful criterion, which is rather hard for
implementation in experimental practice. The authors of
[28,29] have formulated biseparability conditions in terms of
differential entropies related to measurement statistics. This
method differs from some previous studies, in which entropies
of density operators were considered [30–33]. In particular,
inequalities with Rényi entropies of density matrices can be
treated as a condition for local realism [31]. The authors of [33]

studied the relation between entanglement properties and
conditional Rényi and Tsallis entropies for bipartite quantum
systems in finite dimensions. Many covariance-matrix-based
criteria and Shannon-entropy criteria can be unified within a
general formalism proposed in [34].

When more than two parties are involved, the structure
of entanglement is much richer in comparison with the
bipartite case [35,36]. The authors of [36] developed a
general framework for constructing multipartite entanglement
tests. Separability eigenvalue equations of [36] allow one to
witness partial and full entanglement in multipartite composed
systems. This basic technique has been applied to examine
multipartite entanglement of frequency-comb Gaussian states
[37,38]. It was shown in [38] that there are two separable states
which include all other forms of higher-order entanglement.
This example illustrates significance of studying different
categories of multipartite entanglement. In practice, we would
often like to detect the entanglement of states that are partially
or completely unknown. In this case, desired entanglement
criteria should immediately be related to results of some
measurements specially built for such purposes. Another
approach is to construct the density operator via quantum
tomography, but quantum tomography usually requires consid-
erable effort. The separability problem with partial information
was addressed in [34,39]. The formalism of [34] allows one
to extend biseparability conditions to multimode case in both
discrete- and continuous-variable systems.

The aim of this work is to formulate n-separability condi-
tions for an n-partite system with continuous variables in terms
of generalized entropies. We also study derived entanglement
criteria from the viewpoint of sampling density functions into
bins. The paper is organized as follows. In Sec. II, the required
material is presented. Entropic functionals of the Rényi type
are briefly discussed. Further, we recall Young’s inequality
and its converse, both formulations with sharp constants. In
Sec. III, we formulate Rényi-entropy entanglement criteria
for a multipartite quantum system with continuous variables.
The global observables are constructed within a commonly
accepted approach to deriving separability conditions for such
systems. In Sec. IV, we examine the presented separability
conditions from the viewpoint of their use in practice of
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quantum information processing. Appropriate reformulations
are given for sampling measurement statistics into prescribed
bins. In this case, separability conditions in terms of Tsallis
entropies are also given. A utility of the derived criteria is
illustrated with examples in Sec. V. It is shown that separability
conditions in terms of generalized entropies sometimes lead
to more robust detection of entanglement.

II. PRELIMINARIES

In this section, we recall the required material and describe
the notation. Let x ∈ R, and let v(x) be probability density
function of some continuous variable. Then, the differential
Shannon entropy is defined as [40]

H1(v) := −
∫
R

v(x) ln v(x) dx. (1)

There are several fruitful generalizations of the standard Shan-
non entropy. For 0 < α �= 1, the differential Rényi entropy is
written as

Hα(v) := 1

1 − α
ln

[ ∫
R

v(x)α dx

]
. (2)

This entropy is a continuous analog of the α entropy introduced
by Rényi in [41]. Entropies of discrete random variable will be
used, when continuous variable is sampled into chosen bins.
Let such bins be specified by the set of marks {ξi}. Hence,
we have the intervals �ξi = ξi+1 − ξi with the maximum
�ξ = max �ξi . We then introduce probabilities

qi :=
∫ ξi+1

ξi

v(x) dx. (3)

To get a good exposition, the size of bins should be sufficiently
small in comparison with a scale of considerable changes of
v(x). For the discrete distribution with probabilities (3), its
Rényi α entropy is defined as [41]

Hα(q) := 1

1 − α
ln

(∑
i

qα
i

)
, (4)

where 0 < α �= 1. In the limit α → 1, we obtain the usual
Shannon entropy

H1(q) := −
∑

i

qi ln qi, (5)

where − 0 ln 0 ≡ 0 by definition. Many interesting properties
of Rényi entropies with applications are discussed in [42].

To pose required mathematics formally, we introduce
convenient normlike functionals. For arbitrary α > 0, one
defines

‖f ‖α :=
[ ∫

R
|f (x)|α dx

]1/α

. (6)

Of course, we will further assume that such integrals exist.
The right-hand side of (6) gives a legitimate norm only for
α � 1. The case α = ∞ is allowed and leads to the essential
supremum [43]. For the given discrete distribution and α > 0,
we also define

‖q‖α :=
(∑

i

qα
i

)1/α

, (7)

including ‖q‖∞ = max qi . The α entropy (2) can be rewritten
as

Hα(v) = α

1 − α
ln ‖v‖α. (8)

In a similar manner, we express (4) in terms of (7). Due to
qi � 1, for α > 1 > β we clearly have

‖q‖α � 1 � ‖q‖β. (9)

Hence, Rényi entropies of discrete probability distributions are
always positive including zero for deterministic distributions.
This is not the case for differential entropies of the form (2).
Despite of the normalization ‖v‖1 = 1, we cannot generally
write a continuous counterpart of (9). The quantity (2) is not of
definite sign and becomes negative for density functions with
sufficiently large variations. Nevertheless, relations with such
entropies may express nontrivial conditions. For instance, the
differential Shannon entropy of phase with negative values was
considered in [44]. Differential entropies are also an interme-
diate point in obtaining conditions for entropies with binning.

We will also use several mathematical results for functions
of one scalar variable. First, we recall the Hausdorff-Young
inequality with sharp constants. The question concerns rela-
tions between norms of a function and its Fourier transform.
The sharp Hausdorff-Young inequality was found by Beckner
[45] with using the previous result of Babenko [46]. We
recall this result in a reformulation convenient for our aims. It
deals with probability density functions and leads to entropic
uncertainty relations for the position and momentum [47]. So,
the Hausdorff-Young inequality with sharp constants leads
to an improvement of the first entropic uncertainty relation of
Hirschman [48]. Let two functions ψ(x) and ϕ(k) be connected
by the Fourier transform, namely,

ψ(x) = 1√
2π

∫
R

exp(+ikx) ϕ(k) dk, (10)

ϕ(k) = 1√
2π

∫
R

exp(−ikx) ψ(x) dx. (11)

They are treated as wave functions in the position and
momentum spaces, respectively. Here, we accepted units in
which h̄ = 1. The probability density functions are written as

v(x) = |ψ(x)|2, ṽ(k) = |ϕ(k)|2. (12)

Introducing the Fourier transform by means of (11) is phys-
ically motivated. At the same time, the formula (11) slightly
differs from the definition commonly used in the mathematical
literature. So, we wrote the corresponding inequality of Beck-
ner [45] in terms of the above wave functions and converted
it into relations between density functions. We refrain from
presenting the details here since this point has been addressed,
e.g., in the works [49–51]. The result is posed as follows.
Let positive indices α and β obey 1/α + 1/β = 2, and let
α > 1 > β. For any quantum state, normlike functionals of
the position and momentum densities then obey

‖v‖α �
(

1

	π

)(1−β)/β

‖ṽ‖β, (13)

‖ṽ‖α �
(

1

	π

)(1−β)/β

‖v‖β. (14)
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Here, the positive parameter 	 is given by the formula

	2 = α1/(α−1)β1/(β−1). (15)

It will be convenient to parametrize the indices α and β as
1/α = 1 − τ and 1/β = 1 + τ with τ ∈ [0; 1]. By
calculations, we then get

2 ln 	(τ ) = 1 + τ

τ
ln(1 + τ ) − 1 − τ

τ
ln(1 − τ ). (16)

The relations (13) and (14) hold, when wave functions are
related via the Fourier transform with infinite limits. The
corresponding observables obey the position-momentum
commutation relation and have eigenvalues covering the real
axis. Note that the sharp Hausdorff-Young inequality per se
implies (13) and (14) only for pure states. However, they can
immediately be extended to mixed states. The “twin” relations
(13) and (14) lead to uncertainty relations in terms of Rényi’s
entropies as described in [49,51].

Dealing with convolutions, we should recall Young’s in-
equality with sharp constants. It was found by Beckner [45] and
by Brascamp and Lieb [52] with the use of different methods.
We will closely follow the formulation of Brascamp and Lieb
since they also gave the converse of Young’s inequality with
sharp constants. To each real index a � 1, we assign the
conjugate index a′ such that

1

a
+ 1

a′ = 1. (17)

The Young inequality involves factors of the form C(a) defined
by

C(a)2 = a1/a (a′)−1/a′
. (18)

By f ∗ g, we will mean the convolution of two functions of
one scalar variable. Let the indices be such that a�,a � 1 and
their conjugate ones obey

n∑
�=1

1

a′
�

= 1

a′ . (19)

For the convolution of n functions, one has

C(a) ‖f1 ∗ · · · ∗ fn‖a �
n∏

�=1

C(a�) ‖f�‖a�
. (20)

More results about the Young inequality as well as the
Hausdorff-Young inequality can be found, e.g., in chapters
4 and 5 of the book by Lieb and Loss [43].

Inequalities converse to (20) generally involve indices,
some of which are negative. Here, the definition should be
reformulated. If indices b and b′ are conjugate in the sense of
(17), then [52]

C(b)2 = |b|1/b |b′|−1/b′
. (21)

When 0 < b < 1, the conjugate index b′ is strictly negative.
To emphasize this distinction, we prefer to mention (18) and
(21) independently. Let the indices be such that 0 < b�,b � 1
and

n∑
�=1

1

b′
�

= 1

b′ . (22)

For the convolution of n one-dimensional functions, we
have [52]

n∏
�=1

C(b�) ‖f�‖b�
� C(b) ‖f1 ∗ · · · ∗ fn‖b. (23)

This issue is connected with some previous results of Leindner
and Prékopa (see, e.g., references in [52]). Calculating with
factors of the form (18) and (21), we will often use the
expression

2 ln C(b) = 1

b′ ln
1

|b′| − 1

b
ln

1

|b| . (24)

In the following, both the inequalities (20) and (23) will be
used in deriving separability conditions. One form of the
Minkowski inequality will also be recalled when appropriate.
Concerning this inequality, see corresponding sections of the
book by Hardy et al. [53].

III. ENTANGLEMENT CRITERIA FOR A MULTIPARTITE
QUANTUM SYSTEM

In this section, we obtain n-separability conditions for
an n-partite quantum system with continuous variables. Let
subsystems of an n-partite system be labeled by � = 1, . . . ,n.
The product H1:n = H1 ⊗ · · · ⊗ Hn is the total Hilbert space.
Any quantum state of the total system is given by a density
matrix ρ1:n on H1:n. Density matrices are assumed to be
normalized. We note that n-fold product states of the form
ρ1 ⊗ · · · ⊗ ρn have no correlations between subsystems.
Recall that a bipartite mixed state ρ1:2 is called separable,
when its density matrix can be written as a convex combination
of product states [54,55]. For an n-partite system, we call
ρ1:n to be n separable, when it can be represented as a convex
combination of product states of the form ρ1 ⊗ · · · ⊗ ρn.
Such states are often called fully separable [35]. Without loss
of generality, each separable state will be treated as a convex
combination of only pure product states.

To formulate entanglement criteria, appropriate global
observables will be built from local ones [16,24,25]. We first
recall the formulation for a bipartite system. To each subsystem
� = 1,2, one assigns the position and momentum variables x�

and p� so that [x�,p�] = i1�, where 1� is the identity on H�.
Using real θ�, we define the operators

r� := cos θ� x� + sin θ� p�, (25)

s� := − sin θ� x� + cos θ� p�, (26)

which also obey [r�,s�] = i1�. It is a linear canonical
transformation in phase space, corresponding to a unitary
transformation of the Hilbert space [56].

With the signs ε = ±1 and ε̄ = ∓1, we further write

Rε := r1 ⊗ 12 + ε 11 ⊗ r2, (27)

Sε̄ := s1 ⊗ 12 + ε̄ 11 ⊗ s2. (28)

The observables Rε and Sε̄ are commuting and jointly measur-
able. Let |r�〉’s be eigenkets of r� normalized through Dirac’s
delta function. The observable (27) satisfies Rε |r1,r2〉 = (r1 +
ε r2)|r1,r2〉, where |r1,r2〉 = |r1〉 ⊗ |r2〉. Let ρ1:2 be the state
to be tested. For the observable (27), we get the probability
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density function after one integration of 〈r1,r2|ρ1:2|r1,r2〉. For
any product state ρ1 ⊗ ρ2, we write w�(r�) = 〈r�|ρ�|r�〉 so that
this integrand reads as w1(r1) w2(r2). The probability density
function of r = r1 + ε r2 then becomes w1 ∗ wε2, where
wε2(r ′) = w2(εr ′). Using this fact, the authors of [28] applied
the entropy power inequality for the Shannon entropy. For the
Rényi α entropy, a version of entropy power inequalities was
given in [57] but only for α � 1. The problem of extending the
entropy power inequality to orders 0 < α < 1 remains open.
To derive biseparability conditions in terms of generalized
entropies, the authors of [29] used Young’s inequality and its
converse with sharp constants. Entropy power inequalities of
the Rényi type with improved coefficients depend on number
and dimensionality of involved random vectors [58]. As the
dimensionality is explicitly used, such inequalities are relevant
only for finite-dimensional variables.

Global observables for an n-partite system with continuous
variables can be built in a similar way. To �th subsystem, we
assign the operators r̃� and s̃�, acting as r� and s� in H� and as
the identity in other subspaces. More precisely, we write

r̃� = 11 ⊗ · · · ⊗ 1�−1 ⊗ r� ⊗ 1�+1 ⊗ · · · ⊗ 1n, (29)

and similarly for s̃�. Taking ε�,ε� ∈ {+1, − 1}, the two
observables of interest are then defined as

Rε:ε := ε1̃r1 + · · · + εñrn, (30)

Sε:ε := ε1̃s1 + · · · + εñsn. (31)

The operators r̃� and s̃�′ commute for � �= �′, hence,

[Rε:ε,Sε:ε] = i11:n

n∑
�=1

ε� ε�, (32)

where 11:n is the identity on H1:n. For even n, we can make
(30) and (31) to be commuting. Say, we set up ε� = ε� for odd
� and ε� = − ε� for even �.

The product state |r1, . . . ,rn〉 is an eigenstate of (30),
corresponding to the eigenvalue r = ε1r1 + · · · + εnrn. Like
the case n = 2, we define

V (r1, . . . ,rn) = 〈r1, . . . ,rn|ρ1:n|r1, . . . ,rn〉. (33)

For brevity, we suppose ε� = +1 for all � = 1, . . . ,n. To the
observable (30), one assigns the probability density function

W (r) =
∫

· · ·
∫

r1+···+rn=r

V (r1, . . . ,rn) dr1 · · · drn−1. (34)

For an n-fold product state ρ1 ⊗ · · · ⊗ ρn, the expression (34)
results in the convolution of n local densities,

W = w1 ∗ · · · ∗ wn. (35)

For other choices of the signs ε�, we replace each w� with
wε�, where wε�(r ′) = w�(ε�r

′). The same claims hold for
probability density functions assigned to (31).

The above findings allow us to derive n-separability
conditions in terms of Rényi entropies. We will follow the
strategy already justified in the previous papers [50,51,59].
Here, the basic idea is to deal with inequalities between
normlike functionals of the form (6). Desired relations in
terms of suitable entropies are extracted only at the final step.

It is important that our approach can naturally be combined
with Young’s inequality per se. It is therefore more direct
than appealing to entropy power inequalities. Indeed, the
entropy power inequality proved in [57] are mainly based
on Young’s inequality with sharp constants. The method of
[57] was inspired by the earlier Lieb’s proof of the entropy
power inequality for the Shannon entropy [60]. The following
statement takes place.

Proposition 1. Let positive indices a and b be defined by
the formulas

1

a
= 1 − t,

1

b
= 1 + t, (36)

where t ∈ [0; 1], and let

lnK(t) = 1

2

[
1 + t

t
ln(1 + t) − 1 − t

t
ln(1 − t)

]
. (37)

Let W and U be density functions obtained, respectively, for
the observables (30) and (31) with n � 2. If n-partite state
ρ1:n is n separable, then we have the inequality

Ha(W |ρ1:n) + Hb(U |ρ1:n) � ln(nKπ ), (38)

and its “twin” with swapped W and U .
Proof. To simplify the notation, we will take ε� = ε� = +1

for all � = 1, . . . ,n. For other choices of the signs in (30) and
(31), the desired results follow due to

‖wε�‖α = ‖w�‖α, ‖uε�‖β = ‖u�‖β. (39)

First, we will prove inequalities for arbitrary product state.
Writing τ = t/n ∈ [0; 1/n], we further use the parameters α

and β such that

1

α
= 1 − τ,

1

α′ = τ,
1

β
= 1 + τ,

1

β ′ = − τ. (40)

In Young’s inequality (20), we set a� = α � 1 for all
� = 1, . . . ,n, hence, the index restriction (19) gives

1

a′ = n

α′ = nτ,
1

a
= 1 − nτ, (41)

consistently with (36) due to t = nτ . Combining (20) with
(35) then gives

‖W‖a � C(α)n C(a)−1
n∏

�=1

‖w�‖α. (42)

With each of the quantities ‖w�‖α , we use local uncertainty
relations of the form (13). This step results in

‖W‖a � C(α)n

C(a)

(
1

	π

)n(1−β)/β n∏
�=1

‖u�‖β, (43)

where 	(τ ) is defined by (16). To the convolution U = u1 ∗
· · · ∗ un, we apply (23) with setting 0 < b� = β � 1 for all
� = 1, . . . ,n. Consistently with (36), the index restriction (22)
implies

1

b′ = n

β ′ = − nτ,
1

b
= 1 + nτ, (44)

and the converse of Young’s inequality reads as
n∏

�=1

‖u�‖β � C(β)−n C(b) ‖U‖b. (45)

042334-4



RÉNYI FORMULATION OF ENTANGLEMENT CRITERIA . . . PHYSICAL REVIEW A 95, 042334 (2017)

Combining (43) with (45) immediately gives

‖W‖a � C(α)n C(b)

C(a) C(β)n

(
1

	π

)t

‖U‖b. (46)

It will be convenient to simplify factors that appeared in the
right-hand side of (46).

Using expressions of the form (24), we further obtain

1

t
ln

C(β)n

C(α)n
= 1

2τ
[−2τ ln τ − (1 + τ ) ln(1 + τ )

+ (1 − τ ) ln(1 − τ )]

= − ln τ − ln 	, (47)

where ln 	 is written from (16). The expression for
ln[C(b)/C(a)] is obtained from ln[C(β)/C(α)] by replacing τ

with t , hence,

1

t
ln

C(a)

C(b)
= ln t + lnK. (48)

Combining (47) and (48) with (37) finally gives

1

t
ln

C(a) C(β)n

C(α)n C(b)
+ ln 	π = ln(nKπ ). (49)

Thus, we can finally rewrite (46) in the form

‖W‖a �
(

1

nKπ

)t

‖U‖b. (50)

By a parallel argument, we can obtain the “twin” of (50) with
swapped W and U . The latter holds for each product state.
Before completing the proof, we should extend our findings to
separable states.

Each separable state can be represented as a convex
combination of product states. Hence, we obtain

W (r) =
∑

λ

λ W (λ)(r), (51)

and a similar expression for U . Of course, the weights are
normalized here as

∑
λ λ = 1. Following [49,61], at this step

we use the Minkowski inequality [53]. This inequality results
in

‖W‖a =
∥∥∥∥∥∑

λ

λ W (λ)

∥∥∥∥∥
a

�
∑

λ

λ ‖W (λ)‖a, (52)

∑
λ

λ‖U (λ)‖b �
∥∥∥∥∥∑

λ

λ U (λ)

∥∥∥∥∥
b

= ‖U‖b, (53)

where we recall a > 1 > b > 0. For each λ, the quantities
‖W (λ)‖a and ‖U (λ)‖b satisfy (50). The latter remains therefore
valid for the quantities ‖W‖a and ‖U‖b calculated in any
separable state.

The final step is to convert (50) into entropic inequalities.
We will first obtain entropic relations for t > 0. The Shannon
case a = b = 1 is reached by taking the corresponding limit.
The Rényi entropies are expressed via normlike functionals

according to (8), hence,

Ha(W |ρ1:n) = −1

t
ln ‖W‖a, (54)

Hb(U |ρ1:n) = 1

t
ln ‖U‖b. (55)

To reach (38), we take the logarithm of both the sides of (50)
and use (54) and (55). The inequality with swapped W and U

is obtained by a very parallel argument. �
We obtained n-separability conditions as a strictly positive

lower bound on the sum of two Rényi entropies. With growth of
n, the lower bound in the right-hand side of (38) increases as a
logarithm. For n = 2, our result is similar to the biseparability
conditions derived in [29]. The latter generalizes the conditions
in terms of differential Shannon entropies proved in [28].
Going from product states to separable ones, the authors of
[28] used concavity of the Shannon entropy. In general, a
reference to concavity is not relevant for Rényi entropies. It is
for this reason that the Minkowski inequality was applied. In
a similar manner, the Minkowski inequality was already used
in deriving entropic uncertainty relations in [49,61]. Here, we
again see a convenience of dealing with relations between
normlike functionals.

With growth of t ∈ [0; 1], the parameter (37) decreases from
K(0) = e up to K(1) = 2. In terms of differential Shannon
entropies, we therefore have

H1(W |ρ1:n) + H1(U |ρ1:n) � ln(neπ ). (56)

For n = 2, this inequality reduces to the main result of [28].
Thus, we have obtained an n-partite extension of Shannon-
entropy entanglement criteria for continuous variables. Of
course, concrete experimental setup is prescribed by the choice
of the angles θ� in (25) and (26). For the input state of a n-partite
system, we then measure commuting observables (30) and
(31). Evaluating the densities W and U , we can check the
condition (38) and its “twin” for various t . Their violation for
any value of t will imply that the input is not n separable.

Using the entropy power inequality, the authors of [28] gave
a combined inequality, which involves two global and four
local densities. Such relations merely reflect the fact that the
given density function is the convolution of two local densities.
To use them in entanglement detection, we must a priori be
sure that the input state is pure. This case will be exemplified
in Sec. V. In general, however, the consideration of only pure
states is too idealized.

IV. CRITERIA IN TERMS
OF DISCRETIZED DISTRIBUTIONS

Previously, we have derived n-separability conditions for
continuous variables in terms of Rényi entropies. Such
relations are not applicable immediately in analysis of
experimental data. Continuous-variable probability density
functions are typically replaced with experimentally resolvable
discrete probability distributions. In the following, we aim
to reformulate our separability conditions due to the above
reasons. In more detail, the problem of entanglement detection
under coarse-grained measurements was examined in [62].

042334-5



ALEXEY E. RASTEGIN PHYSICAL REVIEW A 95, 042334 (2017)

Entropic functions of the form (2) may generally take
negative values. On the other hand, experiments typically result
in discrete probability distributions obtained by sampling
density functions of continuous variables. So, the density
functions W and U will be used with a discretization into
some bins. Let W be sampled with respect to the set of
prescribed marks {ζj }. Correspondingly, one puts the intervals
�ζj = ζj+1 − ζj and �ζ = max �ζj . The discrete distribu-
tion p�ζ is formed by the probabilities

pj :=
∫ ζj+1

ζj

W (r) dr =
∫
R

d
(ζ )
j (r) W (r) dr. (57)

Here, d
(ζ )
j (r) is a boxcar function equal to 1 for r between

ζj and ζj+1. The probabilities (57) represent chances for
the corresponding detection positions [62]. The quantity �ζ

characterizes the width of detectors in r space. Similarly, the
distribution q�ξ is gained by sampling U with respect to bins
between marks ξi so that �ξi = ξi+1 − ξi and �ξ = max �ξi .

There are two ways to express results of measurements of
the discussed type [62]. First, we can deal immediately with the
discrete distributions p�ζ and q�ξ . Second, we can construct
approximations to the original probability distributions W (r)
and U (s), namely,

W�ζ (r) :=
+∞∑

j=−∞
�ζ−1

j pj d
(ζ )
j (r), (58)

U�ξ (s) :=
+∞∑

i=−∞
�ξ−1

i qi d
(ξ )
i (s). (59)

The original probability densities are replaced with approxi-
mate continuous distribution in the histogram form. When the
bins all tend to zero, these histograms reproduce the original
distributions.

Assuming a > 1 > b > 0, we can prove the inequalities
[51,59]

�ζ 1−a
j pa

j �
∫ ζj+1

ζj

W (r)a dr, (60)

∫ ξi+1

ξi

U (s)b ds � �ξ 1−b
i qb

i . (61)

These formulas are based on theorem 192 of [53]. Another
way refers to an integral analog of Jensen’s inequality with
weight functions of the form d

(ζ )
j (r)/�ζj [63]. It follows from

(58) and (59) that

‖W�ζ ‖a
a =

+∞∑
j=−∞

�ζ 1−a
j pa

j , (62)

‖U�ξ‖b
b =

+∞∑
i=−∞

�ξ 1−b
i qb

i . (63)

For a > 1 > b, we therefore obtain

�ζ 1−a ‖p�ζ ‖a
a � ‖W�ζ‖a

a � ‖W‖a
a, (64)

‖U‖b
b � ‖U�ξ‖b

b � �ξ 1−b ‖q�ξ‖b
b. (65)

These inequalities follow from combining (60) with (62) and
(61) with (63). Note also that Rényi’s entropies of discrete
distributions become unbounded, when the size of bins tends
to zero. It can be observed from (64) and (65). In this limit, we
will use entropic separability conditions of the form (38).

Combining (50) with (64) and (65), the following conclu-
sions take place. For n-separable states of an n-partite system,
the result (50) and its “twin” remain valid for the histogram
functions (58) and (59). Further, we get the inequality

‖p�ζ ‖a �
(

�ζ�ξ

nKπ

)t

‖q�ξ‖b, (66)

and its “twin” with swapped p�ζ and q�ξ . Here, the indices
a and b are again defined by (36). Entropic separability
conditions with binning are derived from (66) similarly to
the way by which the result (38) follows from (50).

Proposition 2. Let positive indices a and b be defined for
t ∈ [0; 1] by (36), and let K(t) be defined by (37). Let p�ζ and
q�ξ be distributions obtained, respectively, by sampling the
density functions in measurements of (30) and (31) with n � 2.
Let W�ζ and U�ξ be the corresponding histogram functions. If
n-partite state ρ1:n is n separable, then we have the inequalities

Ha(W�ζ |ρ1:n) + Hb(U�ξ |ρ1:n) � ln(nKπ ), (67)

Ha(p�ζ |ρ1:n) + Hb(q�ξ |ρ1:n) � ln

(
nKπ

�ζ�ξ

)
, (68)

and their “twins” with swapped histogram functions and
probability distributions.

The above entropic n-separability conditions are formu-
lated using distributions with discretization. The condition (68)
extends Rényi-entropy biseparability conditions derived in
[29]. As experimentally resolvable distributions are typically
discrete, relations with such distributions are more appropriate
in practice. In the case t = 0, the formula (67) reads as

H1(W�ζ |ρ1:n) + H1(U�ξ |ρ1:n) � ln(neπ ). (69)

We derived a one-parameter family of n-separability condi-
tions for an n-partite continuous-variable system. A utility of
entropic expressions with freely variable parameters was noted
in [64] with respect to uncertainty relations. A family of rela-
tions is more informative in the sense that it generally provides
stronger restrictions on involved probabilities. In entanglement
detection, a dependence on entropic parameter can be used in
slightly another manner. Varying the control parameter t , we
try to observe the violation of separability conditions. When
the violation has happened, we do detect entanglement of
the state to be tested. Of course, the violation of separability
conditions is sufficient but not necessary. There exist entangled
states that will escape the entanglement detection by particular
criteria. Nevertheless, a range of detectability will generally
increase with adding more separability conditions.

Note that the inequality (66) also leads to separability
conditions in terms of Tsallis entropies. Such conditions can
be obtained due to the minimization task of [65]. We present
only the final result since the derivation per se was in detail
considered in [51,59]. For 0 < α �= 1, the Tsallis α entropy of
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distribution {qi} is defined as [66]

Tα(q) := 1

1 − α

(∑
i

qα
i − 1

)
= −

∑
i

qα
i lnα(qi). (70)

For brevity, we use here the α logarithm lnα(x) = (x1−α −
1)/(1 − α). Let positive indices a and b be defined for t ∈ [0; 1]
by (36), and let K(t) be defined by (37). If n-partite state ρ1:n
is n separable, then we have the inequality

Ta(p�ζ |ρ1:n) + Tb(q�ξ |ρ1:n) � lna

(
nKπ

�ζ�ξ

)
, (71)

and its “twin” with swapped p�ζ and q�ξ . Tsallis entropies
of continuously changed variables were also considered in the
literature. However, the minimization problem of [65] is not
applicable for differential entropies.

Using entropies of discrete probability distributions, we can
take into account possible inefficiencies of the detectors used.
In practice, measurement devices inevitably suffer from losses.
Hence, some discussion of cases with nonzero probability of
the no-click event is of interest. The following simple model
will be considered. Let the parameter η ∈ [0; 1] characterize
a detector efficiency. To the given value η and probability
distribution {qi}, we assign a “distorted” distribution such that

q
(η)
i = ηqi , q

(η)
∅

= 1 − η . (72)

Here, the probability q
(η)
∅

corresponds to the no-click event. We
further assume that in both the measurements the inefficiency-
free distributions are altered according to (72). So, an ef-
ficiency of detection is taken to be equal for all bins. The
above formulation is inspired by the first model of detection
inefficiencies used by the authors of [67] in the context of cycle
scenarios of the Bell type. Since the separability conditions
(68) and (71) involve different entropic parameters, we restrict
a consideration to the Shannon entropies. It is easy to check
that

H1(q(η)) = ηH1(q) + h1(η), (73)

where h1(η) = − η ln η − (1 − η) ln(1 − η) is the binary
Shannon entropy. If n-partite state ρ1:n is n separable, then

H1
(
p

(η)
�ζ

∣∣ρ1:n

) + H1
(
q

(η)
�ξ

∣∣ρ1:n

)
� η ln

(
neπ

�ζ�ξ

)
+ 2h1(η).

(74)

Thus, detector inefficiencies will produce additional uncer-
tainties in the entropies of actually measured data. With
decreasing η > 1

2 , the first term in the right-hand side of (74)
reduces, whereas the second term increases. When η does
not approach 1 sufficiently closely, this feature will prevent a
robust detection of entanglement.

V. EXAMPLES OF APPLICATION
OF THE DERIVED CRITERIA

Finally, we shall illustrate a relevance of the presented
entanglement criteria with entropic parameters. The aim is
not a study of numerous types of continuous-variable states
in full detail. We rather wish to exemplify principal features

of the new n-separability conditions. Nevertheless, considered
states may be of interest in practice.

Our first example concerns n-partite states that are similar
to dephased cat states. By |z〉, we mean the coherent state
corresponding to complex number z. For 0 � c � 1, we define

�1:n(z) = N (z)
{|z⊗n〉〈z⊗n| + |(−z)⊗n〉〈(−z)⊗n|

− (1 − c)[|z⊗n〉〈(−z)⊗n| + |(−z)⊗n〉〈z⊗n|]}, (75)

where |z⊗n〉 denotes the n-fold product state and N (z) is
the normalization factor. For n = 2, the formula (75) gives
a bipartite dephased cat state. Such states were used in order
to test entanglement criteria in terms of Shannon entropies [28]
and Rényi entropies [29]. Applications of cat states in quantum
information processing with continuous variables are reviewed
in [68].

To relate with the results of [28,29], we substitute θ� =0
in (25) and (26). As was already mentioned, for even n

the observables (30) and (31) can be made commuting. For
n = 2m � 2, we take the observables

Rε:ε =
n∑

�=1

(−1)�−1 r̃�, (76)

Sε:ε =
n∑

�=1

s̃�. (77)

When n = 2, the formulas (76) and (77), respectively,
lead to (27) and (28) with ε = −1 and ε̄ = +1. Namely,
these commuting observables were used in [28,29]. Further,
the family of states (75) will be considered for even n and
positive real z. To study the violation of separability conditions,
we introduce the characteristic quantity

Qa(z) := ln(nKπ ) − Ha(U |�1:n) − Hb(W |�1:n). (78)

Here, the indices a and b are linked by (36) and K(t) is defined
by (37). Strictly positive values of Qa(z) will show that the
tested state is entangled.

The characteristic quantity Qa(z) is drawn in Fig. 1 for
n = 4, c = 1

2 , and five values of a. Only positive values
are shown here. We also restrict a consideration to values
z ∈ [0; 4] since an asymptotic behavior already appears on
the right sides of curves. For a very large range of z, the
separability conditions in terms of Rényi entropies allow to
detect entanglement. We also see that the undetectable region
is almost the same for all curves. Although the border of
detectable values becomes leftmost for the standard case
a = 1, this difference is quite small and hardly significant
in practice. Indeed, all real devices are inevitably exposed to
noise. In opposite, the size of violation essentially depends on
entropic indices. With growth of a, the size of violation for
sufficiently large z is increased more than three times. Thus,
separability conditions in terms of generalized entropies lead
to more robust detection of entanglement.

The obtained entanglement criteria have also been tested for
even n > 4. A behavior of the curves is very similar to what
we saw in Fig. 1. With growing a in the range considered, the
size of violation for sufficiently large z is increased. Also, the
curves drawn for different a have almost the same undetectable
region. So, we again see a significance of entanglement criteria
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FIG. 1. Qa(z) as a function of positive real z for n = 4, c = 1
2 ,

and a = 1,2,3,4,5.

in terms of Rényi entropies. On the other hand, the border of
detectable values goes to the left with growth of n. Increasing
n, the undetectable region of entanglement criteria becomes
more and more narrow. For example, we present Qa(z) in
Fig. 2 for n = 10, c = 1

2 , and five values of a. Comparing
Figs. 1 and 2, one sees that the curves with growth of n try to
approach a form like Heaviside’s step function.

The curves were presented for c = 1
2 , but for other values

c �= 1 we have seen a similar picture. Using generalized
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FIG. 2. Qa(z) as a function of positive real z for n = 10, c = 1
2 ,

and a = 1,2,3,4,5.

entropies generally increases the size of violation. On the
other hand, growing c implies a decrease of the factor 1 − c.
Here, the curves reveal the following tendencies. When other
parameters are fixed, positive values of Qa(z) are visibly
reduced in size. Furthermore, the undetectable region on
the z axis is widened due to increasing c. The character of
dependence on c allows one to explain some natural relation
between detectability of entanglement for different values of
n. Taking the partial trace, we will obtain states of the same
type (75) but with lesser n. When other parameters are fixed,
the size of violation increases and the undetectable region
narrows with growth of n. Another point is that the term 1 − c

will be decreased due to tracing out some particles. Chances
to detect entanglement of states of the considered type cannot
be improved by applying the above entropic criteria to partial
traces.

The size of violation of separability conditions is significant
due to the following reasons. In practice, the original density
functions U and W can additionally be masked in experiments
due to a finiteness of resolution and external noise. These
features can only increase the amount of uncertainty. Instead of
the theoretical violation (78), measurements result in another
quantity Q̃a(z) such that Q̃a(z) � Qa(z). Since actually
observed violation is reduced, our possibilities to detect
entanglement essentially depend on the size of violation of
separability conditions. To reach robust detection of entan-
glement, one will try to maximize the characteristic quantity
with respect to entropic indices. So, the presented separability
conditions are of interest in practice of quantum information
processing. In this regard, the new criteria provided an exten-
sion of basic results of [29] to the case of multipartite systems.

Let us consider briefly applications of the derived entropic
criteria to pure states. In this case, we can use the inequalities
(42) and (45) separately. Separable pure states are written in
the form

|Φ1:n〉 =
n⊗

�=1

|φ�〉. (79)

For such states, the condition (42) can be reformulated as

Ha(W | Φ1:n) � 1

t
ln

C(a)

C(α)n
+ 1

n

n∑
�=1

Hα(u�|φ�), (80)

where the indices a � 1 and α � 1 are such that their conjugate
ones obey (41). Assuming n = 2m � 2, we shall test the
criterion (80) with states of the form

|Ψ1:n(z)〉 =
√

Ω(z){|z⊗m〉 ⊗ |(−z)⊗m〉 − |(−z)⊗m〉 ⊗ |z⊗m〉},
(81)

where z �= 0 and Ω(z) is the normalization factor. We also
rewrite the sum (76) with the same sign for all summands.
Numerical calculations showed that we cannot reach a valuable
increase of violation of (80) by varying entropic parameters.
This situation is opposite to the curves drawn in Figs. 1
and 2. When the separability condition (80) is applied to
states of the form (81), a picture somehow depends on the
number of subsystems. Due to these reasons, we further take
t = τ = 0 and a = α = 1. On the other hand, curves for
different values of n will be compared. Similarly to (78), we
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FIG. 3. A(z) as a function of positive real z for n = 2,4,6,8.

put the characteristic quantity

A(z) := ln n

2
+ 1

n

n∑
�=1

Hα(w�|ρ�) − H1(W |Ψ1:n), (82)

where ρ� is the corresponding partial trace. In Fig. 3, we
present positive values of A(z) for n = 2,4,6,8 and positive
real z. For sufficiently large z, all the curves approach the
limiting value ln 2 ≈ 0.693. So, we restrict a consideration to
values z ∈ [0; 1.6]. Like the above examples, the border of
detectable values goes to the left with growth of n. At the
same time, a distinction between the curves is not so essential
as in Figs. 1 and 2. Except for a small region, we have seen
a violation of the n-separability condition (80) up to arbitrary
positive z.

Finally, we shall discuss possible applications of the pre-
sented n-separability conditions in multipartite entanglement
detection. Our entanglement criteria are expressed in terms of
experimentally measured quantities with the use of sufficiently
simple and universal setup. In principle, states of an n-partite
system may be n′ separable with 1<n′�n. The equality n′ = n

implies that the given state is fully separable. Our separability
conditions allow one to test full separability immediately.
Their violation is sufficient for the conclusion that the tested
state is not fully separable. They may also be used in a more
complicated manner, when corresponding partial traces of the
input ρ1:n will be tested with respect to full separability. This
complexity is natural since the separability problem increases
substantially in the context of multipartite systems [35–38].
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