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We propose several concatenated quantum relay continuous-variable quantum key distribution schemes based
on the parametric amplifier (PA) and the beam splitter (BS). Instead of using only one BS in the traditional
relay scheme, the proposed schemes provide two operations that involve both PA and BS, activating the beam
splitting and recombining operations in turn. These schemes would benefit the system performance improvement
by providing signal amplification and establishing quantum correlations. We show that the different effects of
the relay schemes will cause different system performances because of the varied signal-to-noise ratio (SNR)
of output fields. The system’s secret key rate will be increased when equipping with the PA-BS relay scheme,
because the output fields of the PA are entangled with the correlated quantum noises while input fields of the BS
are superimposed, subsequently leading to the quantum noise reduction of the total output fields of relay station,
while the reversed BS-PA relay scheme has little advantage over the traditional counterpart that contains only
one BS in relay data postprocessing because it will not cause any SNR improvement. Moreover, the reinforced
PA-PA relay scheme results in a slight improvement due to the increased SNR. These quantum relay schemes
can be performed through the beam splitting, the recombining operations, and the relay data postprocessing, such
that it would be suitable for secret information exchange in complex networks with intermediate stations.
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I. INTRODUCTION

Quantum key distribution (QKD) techniques have a widely
practical application and are being investigated actively [1,2].
Many QKD studies are based on an assumption that de-
vices are perfect and cannot be eavesdropped by a third
untrusted party. However, it may be insufficient to ensure
its viability in a complex scenario, where two participants
are usually not connected by one direct link but by one or
more intermediate stations for relay communications. Some
implicit flaws may exist in imperfect devices, so that it
may provide alternative side channels being attacked by
powerful eavesdroppers [3,4]. To remove all existing and
yet-to-be-discovered detector side channels, an initial relay
scheme known as measurement-device-independent (MDI)
QKD was proposed [5,6]. It offers an immense security
advantage over standard security proofs and has the power
to double the secure distance while the third untrusted
participant is located in the middle [5]. Much progress has
been achieved in discrete-variable (DV) MDI-QKD [7–10]
and continuous-variable (CV) MDI-QKD [11,12]. In a CV
MDI-QKD protocol, the sender usually encodes information
in quadratures of an optical field using Gaussian modulation,
and the receiver decodes the secret information with homodyne
or heterodyne detectors. It has become an important research
topic since it has many practical advantages, especially for a
metropolitan QKD network [13].

The motivation for developing a CV MDI-QKD protocol
stems from its tempting promise of a high secret key rate.
However, the transmission distances of the CV MDI-QKD
protocol are short when compared with a DV counterpart [11].
The primal reason is that the raw keys distributed between legal
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participants are usually Gaussian random values, whereas the
relay data postprocessing is sophisticated. Several proposed
methods were developed to solve this problem, such as de-
ploying a noiseless linear amplifier (NLA) [14] and designing
a highly efficient reconciliation algorithm at a low signal-to-
noise ratio (SNR) [15]. It has been demonstrated that the secure
distance of CV-QKD can be increased when equipped with
the separate parametric amplifier (PA) in the channels [16].
However, such a scheme cannot be directly concatenated
and hence is unsuitable for secret information exchanging in
complex networks with intermediate stations [5]. In a quantum
relay configuration, both communication sides, Alice and Bob,
can transmit the random coherent states to a relay station
so that they can establish an exact secret relation [17,18]
where relay data postprocessing occurs with concatenated
relay schemes involving the beam splitting and recombining
operations. Even though the untrusted relay station may be
completely controlled by Eve and the links are subject to
optimal coherent attacks, Alice and Bob can still extract a
secret key after performing suitable reconciliation algorithms.

In this paper, we propose several concatenated quantum
relay CV-QKD schemes based on the PA and the beam splitter
(BS). These schemes would benefit the system performance
improvement by providing signal amplification and establish-
ing quantum correlations. Instead of using only one BS in
the traditional relay scheme, the proposed schemes provide
two operations that involve both PA and BS, activating the
beam splitting and recombining operations in turn. In principle,
the two operations can be rearranged in different orders. We
show that the different effects of the PA-BS relay CV-QKD
scheme and the reversed BS-PA relay CV-QKD scheme will
cause different system performances because of the varied
SNR of output fields. First, in the PA-BS relay scheme, the
improvement of the secret key rate comes from the increased
SNR of the output fields. This is because the quantum noise
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FIG. 1. Schematic diagram for the concatenated relay schemes in
CV-QKD: (a) the PA-BS relay scheme, (b) the reverse BS-PA relay
scheme, and (c) the reinforced PA-PA relay scheme.

of the output fields of the PA is entangled and the beam
recombination operation at the BS incurs the quantum noise
cancellation. However, in the reverse BS-PA relay scheme,
although the signal is amplified, the noise is simultaneously
amplified so that it will not cause any SNR improvement.
Moreover, we also studied the reinforced scheme, which we
called a PA-PA relay scheme. This scheme provides a slight
improvement because the yielded entanglement in the first
PA plays an important role in canceling the amplified noise,
whereas the amplification in the second PA results in signal
enhancement.

This paper is organized as follows. In Sec. II, we design
the PA-BS relay scheme in CV-QKD with security analysis. In
Sec. III, we show the PA concatenated relay schemes, including
the reverse BS-PA relay scheme and the reinforced PA-PA
relay scheme, discussing their performance in Sec. IV. Finally,
we conclude the paper in Sec. V.

II. THE RELAY SCHEMES IN CV-QKD

Motivated by characteristics of the MDI-based quantum
cryptograph with only one BS at the relay station [11], we
consider the concatenated relay schemes involving the BS and
PA operations in CV-QKD in which two participants, i.e., Alice
and Bob, are not linked by a direct link but both are connected
to an untrusted participant that establishes a secret relation in a
cooperative fashion. The relay schemes are depicted in Fig. 1,
where (a) is for the PA-BS relay scheme, (b) is for the reverse
BS-PA relay scheme, and (c) is for the reinforced PA-PA relay
scheme, respectively.

To create a secret relation on the target, Alice and Bob
prepare modes a and b in coherent states |α〉 and |β〉
whose amplitudes α = 1√

2
(xα + ipα) and β = 1√

2
(xβ + ipβ)

are respectively modulated by Gaussian distribution with zero
mean and variance ν in each quadrature. After that, modes a

and b are transmitted to a relay station, touching upon relay
communications.

A. Design of the PA-BS relay scheme

In the PA-BS relay scheme, as shown in Fig. 1(a), the
beam-splitting operation is a PA and the beam recombining
operation is a BS. The effect of the PA can be expressed by

â1 = Gâ + gb̂†, b̂1 = Gb̂ + gâ†, (1)

where G and g are positive and satisfy the constraint
G2 − g2 = 1. The intensities of output modes a1 and b1

are G2α2 + g2β2 + g2 and G2β2 + g2α2 + g2, respectively.
If the amplitude gain G is large enough, we have G ≈ g,
and hence the yielded intensities are almost equal to each
other. The yielded output fields â1 and b̂1 are well correlated
for the suitable G, causing the coherent states to recur.

A practical beam recombination operation comes into being
from a successive operation performed on b1 subject to a phase
shift θ , before we composite a1 and b1 using a modulated BS
with transmittance T . The effect of the BS is given by

â2 =
√

T â1 + eiθ
√

Rb̂1, b̂2 = eiθ
√

T b̂1 −
√

Râ1, (2)

where T + R = 1. Combining the relations in Eqs. (1) and (2),
we achieve the total input-output relations as follows:

â2 = G
√

T â + geiθ
√

Râ† + Geiθ
√

Rb̂ + g
√

T b̂†, (3)

b̂2 = Geiθ
√

T b̂ − g
√

Rb̂† − G
√

Râ + geiθ
√

T â†. (4)

At output fields â2 and b̂2, we have x̂τ2 = 1√
2
(τ̂ †

2 + τ̂2) and

p̂τ2 = i√
2
(τ̂ †

2 − τ̂2) τ̂2, ∀τ ∈ {a,b}, i.e.,

x̂a2 = G
√

T x̂a + g
√

Rx̂a(θ ) + g
√

T x̂b + G
√

Rx̂b(−θ ), (5)

x̂b2 = G
√

T x̂b(−θ ) − g
√

Rx̂b + g
√

T x̂a(θ ) − G
√

Rx̂a, (6)

p̂a2 = G
√

T p̂a − g
√

Rp̂a(θ ) − g
√

T p̂b + G
√

Rp̂b(−θ ),

(7)

p̂b2 = G
√

T p̂b(−θ ) + g
√

Rp̂b − g
√

T p̂a(θ ) − G
√

Rp̂a,

(8)

where x̂τ = 1√
2
(τ̂ † + τ̂ ), x̂τ (θ ) = 1√

2
(eiθ τ̂ † + e−iθ τ̂ ), p̂τ =

i√
2
(τ̂ † − τ̂ ), and p̂τ (θ ) = i√

2
(eiθ τ̂ † − e−iθ τ̂ ), respectively.

Without loss of generality, we consider quadrature momen-
tums x̂a2 and x̂b2 of a2 and b2 in relay data processing. Taking
θ = 0, we obtain the signal variables

xa2 = (G
√

T + g
√

R)xα + (g
√

T + G
√

R)xβ, (9)

xb2 = (G
√

T − g
√

R)xβ + (g
√

T − G
√

R)xα. (10)

Consequently, the noise of â2 and b̂2 can be derived as

〈
�2x̂a2

〉 = G2 + g2 + 4Gg
√

RT , (11)〈
�2x̂b2

〉 = G2 + g2 − 4Gg
√

RT . (12)

Because the noise of â2 is correlated with b̂2, we may subtract
the current from the homodyne measurement of b̂2 and obtain
output fields

x̂r = x̂a2 − λxx̂b2 , (13)

where λx is an electronic gain that brings about an optimal
noise reduction. The classical outcomes can be united in a
quadrature-momentum amplitude variable

xr = xa2 − λxxb2 , (14)
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and the noise can be described as

〈�2x̂r〉 = 〈(
�x̂a2 − λx�x̂b2

)2〉
. (15)

It is then straightforward to derive

〈�2x̂r〉opt = 〈
�2x̂a2

〉 − 〈
�2x̂b2

〉 = 8Gg
√

RT , (16)

with λx = 〈�x̂a2 · �x̂b2〉/〈�2x̂b2〉 (see Appendix A for the
derivation). For T = 1/2 corresponding to λx = 1, we obtain
〈�2x̂r〉opt � 4Gg. After that, we have a classical outcome in a
real variable xr given by

xr = xa2 − xb2 =
√

2(gxα + Gxβ). (17)

Similarly, we consider quadrature phases p̂a2 and p̂b2 of â2

and b̂2, resulting in another classical outcome,

pr = pa2 + pb2 =
√

2(Gpα − gpβ). (18)

Combining xr with pr , we obtain a complex variable γ

represented by

γ = 1√
2

(xr + ipr ). (19)

The outcome γ for G � g, which establishes an approximative
posterior correlation

γ � G(α + β∗) + δ, (20)

is then unveiled to Alice and Bob, where δ denotes the detection
noise. For the given parameter G, knowledge of δ enables
one participant to deduce the variable of another through data
postprocessing. For example, to restore Alice’s variable α, Bob
can calculate

α = γ /G − β∗ + δ/G. (21)

According to the above-derived relay data postprocess-
ing, the mutual information I (A : B|γ ) of Alice and Bob
conditional on γ is increased due to the beam-splitting and
recombining operations. Without knowledge of β (or α), Eve
cannot steal any information on α (or β) even if she has full
access to classical communications with the intercepted γ .
In addition, exploiting the noises of a2 and b2 in Eq. (11),
we have the SNRs Sxa2

= Sxb2
= (xα + xβ)2/2 for the given

T = 1/2. We assume that the relay information transfers of
a2 and b2 can be characterized by Ta2 = Sxa2

/x2
α and Tb2 =

Sxb2
/x2

β , respectively. The total relay information transfer for
the proposed PA-BS relay scheme is Ttot = Ta2 + Tb2 , which
reaches a minimum value of 4 for large gain G � g. However,
in the initial CV MDI-QKD protocol with only a BS at the relay
station, the minimum total information transfer is calculated
as 2, which is reduced by half. It implies that the PA-BS relay
scheme can result in an improvement in terms of the relay
information transfer.

B. Security analysis of coherent Gaussian attack

Before we consider the worst scenario with the PA-BS
relay scheme against optimal coherent Gaussian attacks,
we construct the general attack model first. As depicted in
Fig. 2(a), the relay station is controlled by Eve, namely, the
untrusted eavesdropper. Meanwhile, the two input modes a and
b are intercepted with Eve’s ancillary modes ea and eb, which

FIG. 2. Schematic diagram for the attacked CV-QKD system:
(a) the attacked PA-BS relay scheme, (b) the attacked BS-PA relay
scheme, and (c) the attacked PA-PA relay scheme.

are correlated in the globally combined system (ea , eb, and an
extra system ε) and are equivalent to BSs with transmission
efficiencies ta and tb, respectively. Thus, the reduced state σeaeb

can be repressed as a correlated thermal state with a zero mean
and covariance matrix Veaeb

given by

Veaeb
=

(
ωaI G
G ωbI

)
, (22)

where I = diag(1,1), G = diag(g1,g2), with g1 and g2 sat-
isfying the bona fide conditions [13], and the notations ωa

and ωb denote variances of the thermal noises effecting links.
Specifically, parameters g1, g2, and ω should satisfy the
following constraints [11] given by

|g1| < ω, |g2| < ω,
√

ω2 + g1g2 − ω|g1 + g2| � 1,

(23)
where ω is the thermal state noise corresponding to ωa and ωb.
In what follows, we analyze the worst scenario in which the
vulnerable links are subject to the optimal coherent Gaussian
attacks [19], g1 = −g2 = ±√

ω2 − 1. The different attacks
satisfied by constraint Eq. (23) are detailed in Appendix D.

Assuming that Alice is a transmitter and Bob is the receiver,
Bob can deduce Alice’s variable α through using an optimal
estimator of γ . This is an effective process, since for large gain
G � g at the relay station it can offer the estimated variable γ̃

given by

γ � γ̃ = G
√

taα
∗ + g

√
tbβ � G(

√
taα

∗ + √
tbβ), (24)

with transmission efficiencies ta and tb accessible to Alice and
Bob.

Adopting an equivalent entanglement-based (EB) scheme,
where each source of coherent state is an Einstein-Podolsky-
Rosen (EPR) state, as shown in Fig. 3, Alice and Bob prepare
two EPR states ρAa and ρBb with zero mean and the CM V (μ)
given by

V (μ) =
(

μI νZ
νZ μI

)
(25)

subject to μ2 − ν2 = 1, where Z = diag(1, − 1). After het-
erodyning modes A and B, Alice and Bob create coherent
states |α〉 and |β〉 on modes a and b, whose amplitudes are
modulated by two complex Gaussian variables α and β with
variance ϕ = μ − 1. For the given outcome γ , Alice, Bob,
and Eve share the conditional state �ABe|γ with the reduced
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FIG. 3. Schematic diagram for the EB CV-QKD, where Alice’s
and Bob’s measurements ᾱ and β̄ are equivalent to amplitudes of |α〉
and |β〉. “Het.” denotes heterodyne detection.

ρe|γ (for Eve) and ρAB|γ (for Alice and Bob). The reduced
states ρAB|γ (or ρe|γ ) have the same CM VAB|γ (or Ve|γ ), even
though their mean values vary with γ . Since Eve performs
homodyne detections, the state �ABe|γ is pure, leading to the
Holevo quantities S(ρAB|γ ) = S(ρe|γ ).

After Alice encodes information by heterodyning mode
A with outcome ᾱ, she projects �ABe|γ into ρBe|γ ᾱ so that
S(ρB|γ ) = S(ρe|γ ᾱ). It is worth noticing that the attack state
noise ω can be tuned to match the noise of the real channel
so that attacks can be deemed an extra channel loss and noise
during the security analysis. As a result, Eve’s intercepted
information on Alice’s variable ᾱ is upper-bounded by [13]

Ie|γ = S(ρe|γ ) − S(ρe|γ ᾱ) = S(ρAB|γ ) − S(ρB|γ ). (26)

To recover ᾱ, Bob heterodynes mode B with outcome β̄.
Conditional on γ , the mutual information Iab|γ of Alice and
Bob is derived as

Iab|γ = I (ᾱ,β̄|γ ) = I (α,β|γ ), (27)

which is determined by ρAB|γ with the CM VAB|γ given by
(see Appendix B for the derivation)

VAB|γ = μIAB − ν2

×

⎛
⎜⎜⎜⎜⎝

G2ta
δ1

0 Gg
√

ta tb
δ1

0

0 g2ta
δ2

0 −Gg
√

ta tb
δ2

Gg
√

ta tb
δ1

0 g2tb
δ1

0

0 −Gg
√

ta tb
δ2

0 G2tb
δ2

⎞
⎟⎟⎟⎟⎠,

(28)

where δ1 and δ2 are the parameters determined by the attack
strategies. Subsequently, we have the CM of Bob’s reduced
state ρB|γ and the CM of Bob’s state ρB|γ α̂ conditional on
Alice’s detection, i.e.,

VB|γ =
(

μ − g2ν2tb
δ1

0

0 μ − G2ν2tb
δ2

)
, (29)

and

VB|γ ᾱ =
(

μ − g2ν2tb
δ1+G2ta

0

0 μ − G2ν2tb
δ2+g2ta

)
. (30)

Therefore, the secret key rate can be calculated as

R(γ ) = ηIab|γ − Ie|γ , (31)

with reconciliation efficiency η � 1 (see Appendix C for the
derivation). The first term Iab|γ depends on VB|γ in Eq. (29) and
VB|γ ᾱ in Eq. (30) because of the association of measurement
outcomes (ᾱ,β̄) with Bob’s reduced CM Vb|γ = VB|γ + I and
the conditional CM Vb|γ ᾱ = VB|γ ᾱ + I. Then we have

Iab|γ = 1

2
log2

Vb|γ
Vb|γ ᾱ

, (32)

which can be rewritten as the SNR-based formula Iab =
1
2 log2 u/χ with χ = μVb|γ ᾱ/Vb|γ . In addition, according to
Eve’s intercepted information Ie|γ derived in Eq. (26), we have
the second term calculated as [13]

Ie|γ = h(λ1) + h(λ2) − h(λ), (33)

where h(x) = ( x+1
2 ) log2( x+1

2 ) − ( x−1
2 ) log2( x−1

2 ), {λ1,λ2} are
the symplectic spectrum of VAB|γ , and λ = √

detVB|γ ᾱ .

III. THE PA-CONCATENATED RELAY SCHEMES

Following the previous analysis, the MDI-based data
postprocessing can be reduced to the beam-splitting and
recombining operations, depending on the combined effect
of the BS and PA schemes. A similar realization scenario as
that of the PA-BS relay scheme is the reverse arrangement of
the PA and BS schemes, namely, the so-called reverse BS-PA
relay scheme. Unfortunately, because of the additional noise
at output fields, there is little advantage of the reverse BS-PA
relay scheme when comparing to either the only-one-BS
relay scheme or the PA-BS relay scheme. To maintain the
integrity of the wholeness, we also consider the reinforced
PA-PA relay scheme, where input fields of the first PA and
the second PA are correlated so that the additional noise can
be suitably canceled out when superimposing at the second
PA, giving rise to a slight SNR improvement of the CV-QKD
protocol.

A. The reverse BS-PA relay scheme

We first consider design of the reverse BS-PA relay scheme,
as shown in Fig. 1(b), where the beam-splitting operation is a
BS and the beam recombining operation is a PA. The beam-
splitting operation of a BS that separates the incoming states
can be expressed as

â1 =
√

T â + eiθ1
√

Rb̂, b̂1 = eiθ1
√

T b̂ −
√

Râ, (34)

subject to a phase shift θ1 on mode b. After that a recombining
operation a PA is subsequently applied on the resulting modes
a1 and b1 as follows:

â2 = Gâ1 + ge−iθ2 b̂
†
1, b̂2 = Geiθ2 b̂1 + gâ

†
1, (35)

subject to another phase shift θ2 on mode b1. As a result, for the
given θ1 = θ2 = θ , we achieve the following total input-output
relations:

â2 = G
√

T â − ge−iθ
√

Râ† + Geiθ
√

Rb̂ + ge−2iθ
√

T b̂†,

b̂2 = Ge2iθ
√

T b̂ + ge−iθ
√

Rb̂† − Geiθ
√

Râ + g
√

T â†.

(36)
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Adopting the available modes a2 and b2, we can create
quadrature momentums x̂a2 and x̂b2 given by

x̂a2 = G
√

T x̂a − g
√

Rx̂a(−θ )

+G
√

Rx̂b(−θ ) + g
√

T x̂b(−2θ ), (37)

x̂b2 = G
√

T x̂b(−2θ ) + g
√

Rx̂b(−θ )

−G
√

Rx̂a(−θ ) + g
√

T x̂a. (38)

When selecting θ = π/2, we obtain the signal variables

xa2 = G
√

T xα + g
√

Rpα − g
√

T xβ − G
√

Rpβ, (39)

xb2 = g
√

T xα + G
√

Rpα − G
√

T xβ − g
√

Rpβ. (40)

The noise of a2 and b2 can be thus derived as〈
�2x̂a2

〉 = 〈
�2x̂b2

〉 = G2 + g2. (41)

Using the homodyne measurements of â2 and b̂2, we achieve

x̂r = x̂a2 − λxx̂b2 , (42)

with an adjustable parameter λx . The output signal variables
can be represented by xr = xa2 − λxxb2 , and hence the noise
is calculated as 〈�2x̂r〉 = 〈(�x̂a2 − λx�x̂b2 )2〉. Subsequently,
we achieve 〈�2x̂r〉opt = 〈�2x̂a2〉 − 〈�2x̂b2〉 = 0 for the se-
lected parameter λx = (�x̂a2 · �x̂b2 )/〈�2x̂b2〉 in the optimal
noise reduction processing. For T = 1/2, we obtain an
approximative value λx = 1 with large G � g, rendering a
classical outcome xrπ/2 = xa2 − xb2 in a real variable

xrπ/2 = 1√
2

(G − g)(xα − pα + xβ − pβ). (43)

Similarly, we consider quadrature phases p̂a2 and p̂b2 of a2 and
b2, and obtain another classical outcome prπ/2 = pa2 + pb2 ,
expressed as

prπ/2 = 1√
2

(G − g)(pα − xα + xβ − pβ). (44)

According to the relations in Eq. (36), we take θ = 0 and
θ = π , and obtain the variables

xr0 =
√

2(G − g)xα, pr0 =
√

2(G − g)pβ,

xrπ
=

√
2(g − G)xβ, prπ

=
√

2(G − g)pα, (45)

which can be combined to form the variables

xr+ = xr0 + xrπ
=

√
2(G − g)(xα − xβ),

pr+ = pr0 + prπ
=

√
2(G − g)(pα + pβ). (46)

As a result, we obtain

xr ′ = 2xrπ/2 + pr− =
√

2(G − g)(xα + xβ),

pr ′ = 2xrπ/2 + xr− =
√

2(G − g)(pα − pβ), (47)

and create a classical complex variable

γ = 1√
2

(xr ′ + ipr ′) = (G − g)(α + β∗) (48)

for relay data processing.

According to the above-derived signal and noises of a2

and b2, we have the SNRs expressed as Sxa2
= 2x2

α[1 −
2Gg/(G2 + g2)] and Sxb2

= 2x2
β[1 − 2Gg/(G2 + g2)], re-

sulting in the information transfers Ta2 = Tb2 = 2 −
4Gg/(G2 + g2). The total information transfer, Ttot = Ta2 +
Tb2 , approaches zero for large G � g. It implies that there
is little advantage of the reverse BS-PA relay scheme as
compared with only the one BS relay scheme, not to mention
the previous PA-BS relay scheme. It is necessary to note that
the resulting output noise is correspondingly increased by a
factor of G2 + g2 as compared with the vacuum noise, whereas
the intensities of output signals are decreased by a factor of
2(G − g)2. The amplification of the activated noise at output
fields is due to the fact that two output fields of the BS are not
correlated and hence the noises of output fields are amplified
independently when being recombined at the PA.

B. The reinforced PA-PA relay scheme

Though the amplification of the additional noise may
decrease the output SNR of the output fields, the decline in
output SNR can be offset by the increased relations of input
noise. To enhance the performance of the CV-QKD protocol,
we consider the reinforced PA-PA relay scheme, as shown in
Fig. 1(c), where the beam-splitting operation and the beam
recombining operation are both performed with the PA. The
beam-splitting effect of the first PA is given by

â1 = Gâ + gb̂†, b̂1 = Gb̂ + gâ†. (49)

Adopting a recombining operation on a1 and b1 with the second
PA establishes the input-output relations

â2 = Gâ1 + ge−iθ b̂
†
1, b̂2 = Geiθ b̂1 + gâ

†
1, (50)

subject to another phase shift θ on mode b1. As a result, we
achieve the total input-output relations

â2 = (G2 + g2e−iθ )â + (Gge−iθ b̂ + Gg)b̂†,

b̂2 = (G2eiθ + g2)b̂ + (Ggeiθ + Gg)â†, (51)

which generate x̂a2 and x̂b2 given by

x̂a2 = G2x̂a + g2x̂a(θ ) + Ggx̂b + Ggx̂b(−θ ),

x̂b2 = G2x̂b(−θ ) + g2x̂b + Ggx̂a + Ggx̂a(θ ). (52)

For θ = 0, we have the signal variables of a2 and b2, i.e.,

xa2 = (G2 + g2)xα + 2Ggxβ,

xb2 = (G2 + g2)xβ + 2Ggxα. (53)

The noises of a2 and b2 can be calculated as〈
�2x̂a2

〉 = 〈
�2x̂b2

〉 = G4 + g4 + 6G2g2. (54)

Because of the correlation noise of â2 and b̂2, for the given
parameter λx , we consider the subtraction

x̂r = x̂a2 − λxx̂b2 (55)

and obtain the output signal variable xr = xa2 − λxxb2 , which
generates the additional noise 〈�2x̂r〉 = 〈(�x̂a2 − λx�x̂b2 )2〉.
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Taking λx = (�x̂a2 · �x̂b2 )/〈�2x̂b2〉, we achieve the optimal
noise reduction 〈�2x̂r〉opt = 〈�2x̂a2〉 − 〈�2x̂b2〉 = 0. For the
large G � g and hence λx � 1, we have a classical outcome
in a variable xr = xa2 − xb2 given by

xr = (G + g)2(xα − xβ). (56)

Similarly, we consider p̂a2 and p̂b2 of a2 and b2 and obtain
another classical outcome pr = pa2 + pb2 given by

pr = (G + g)2(pα + pβ). (57)

After combining xr with pr , we can generate a complex
variable γ = 1√

2
(xr + ipr ). Finally, the outcome γ , which

establishes an a posteriori correlation

γ = 1√
2

(G + g)2(α + β∗) + δ, (58)

is then broadcasted to Alice and Bob for the data postprocess-
ing, where δ denotes the detection noise.

As for the SNRs of a2 and b2 of the reinforced PA-PA
relay scheme, we have the approximated values Sxa2

= Sxb2
=

(xα + xβ)2/2 for large G � g. The information transfers of
a2 and b2 can be characterized by Ta2 = Sxa2

/x2
α and Tb2 =

Sxb2
/x2

β , respectively, and hence the total information transfer
can be calculated as Ttot = Ta2 + Tb2 , approaching a minimum
value 4, which is the same as that of the PA-BS relay scheme.
Therefore, there is a similar behavior of the reinforced PA-PA
relay scheme as that of the PA-BS relay scheme in terms of
the total information transfer. This result is illustrated with
numeric simulations in the following section.

IV. PERFORMANCE ANALYSIS AND DISCUSSION

In this section, we consider performance of the concate-
nated relay schemes by demonstrating the secret key rate of
the CV-QKD protocol with numeric simulations. The detector
imperfection is attributed to the channel loss and noise.
In both symmetric and asymmetric scenarios, the coherent
attack for the parameters g1 = −g2 = 0.1 is an effective
attacking strategy for security proof (see Appendix D for
the illustrations). In our simulations, we consider that Alice
and Bob encode their information in coherent states, and
at the relay station, the three concatenated relay schemes,
i.e., the PA-BS relay scheme, the reverse BS-PA relay scheme,
and the reinforced PA-PA relay scheme, may be employed for
relay data postprocessing.

By contrast, when considering the effect of the PA on the
relay schemes, we illustrate the secret key rates as a function
of transmission distances, where the gain G of the PA is 5, the
variances of α and β are both equal to 10, the reconciliation
efficiency is η = 0.97, and the thermal state noise is 1.2. As
depicted in Fig. 4, in a symmetric eavesdropping scenario, we
take LAR = LBR , which denotes the equal lengths of quantum
channels from Alice and Bob to the relay station, respectively.
We find that the PA-BS relay scheme outperforms the only-
one-BS relay scheme, whereas the only-one-BS relay scheme
defeats the reverse BS-PA relay scheme in terms of the secret
key rates. Meanwhile, the behavior of the PA-BS relay scheme
is similar to that of the reinforced PA-PA relay scheme, which
has been theoretically proved in the previous sections. It can

FIG. 4. The secret key rates (bits per relay use) of the CV-
QKD protocol using the concatenated relay schemes versus Bob’s
transmission distances. The red dash-dotted line denotes the secret
key rate of the PA-BS relay scheme, the blue solid line represents
the secret key rate of the reverse BS-PA relay scheme, and the green
dashed line is the secret key rate of the reinforced PA-PA relay scheme.
For the tangible comparison, we plot the secret key rate of the CV
MDI-based QKD with only one BS relay scheme with a black dotted
line.

be inferred that the suitably arranged PA-BS relay scheme can
generate the increased SNRs at the output fields, causing the
improvement of the CV-QKD protocol.

Apart from the symmetric scenario, the effect of the
asymmetric eavesdropping strategy with the relay station
close to one participant, say Alice, on the performance is
also plotted in Fig. 5. Let LAR ∈ {3 km,1 km,0.1 km} for
performance comparison. We find that there exists a slightly
increased improvement of the secret key rate for the short relay

FIG. 5. The secret key rates (bits per relay use) of the CV-QKD
protocol in an asymmetric scenario using the PA-BS relay scheme and
the only-one-BS relay scheme versus Bob’s transmission distances.
The thin green dash-dotted line and the thick green dash-dotted line
denote the secret key rates of the only-one-BS relay scheme and
the PA-BS scheme with LAR = 3 km. The thin blue dashed line and
the thick blue dashed line represent the secret key rates of the only-
one-BS relay scheme and the PA-BS scheme with LAR = 1 km. The
thin red solid line and the stick red solid line are the secret key
rates of the only-one-BS relay scheme and the PA-BS scheme with
LAR = 0.1 km.
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FIG. 6. The secret key rates (bits per relay use) of the CV-QKD
protocol in the symmetric and the asymmetric scenarios with LAR =
1 km using the only-one-BS relay scheme (red lines), the PA-BS relay
scheme (blue lines), and the reinforced PA-PA relay scheme (green
lines) versus Bob’s transmission distances. The thin lines denote the
secret key rates of the symmetric scenario and the thick lines denote
those of the asymmetric scenario.

distance LAR . Also, we show the effect of both symmetric and
asymmetric scenarios on the secret key rates, as shown in
Fig. 6. It implies that the secret key rate of the asymmetric
system is higher than that of the symmetric one for the given
distance LAR = 1 km.

Finally, we demonstrate the effect of the modulated gain pa-
rameter G on the secret key rates of the CV-QKD protocol. We
consider the PA-BS relay scheme for the distinct comparison
in a symmetric scenario and include the secret key rates when
the infinite gain is treated with the selected gain G = 100 and
hence g � 99.995. As shown in Fig. 7, we find that the large
gain can usually increase the high secret key rate. However,
for large enough gain, there is only a small advantage of the
PA-BS relay scheme for the performance improvement of the
CV-QKD protocol.

FIG. 7. The secret key rates (bits per relay use) of the CV-QKD
protocol with the PA-BS relay scheme in the symmetric scenario
versus Bob’s transmission distances. The blue solid line is for the
small gain G = 1.1, the red dashed line is for the medial gain G = 5,
and the green dotted line is for the infinite gain G = 100, respectively.

V. CONCLUSION

We proposed several PA-concatenated relay CV-QKD
schemes based on the PA and the BS, and we also analyzed
the security of these schemes under the two-mode coherent
attacks. These schemes would benefit the system performance
improvement by providing signal amplification and establish-
ing quantum correlations. Though the reverse BS-PA relay
scheme has little advantage over the traditional counterpart
that contains only one BS in relay data postprocessing, the
simulations show that the PA-BS relay scheme with suitably
selected gain G of the PA results in a higher secret key rate.
This is because the output fields of the PA are entangled with
the correlated quantum noises while the input fields of the
BS are superimposed, subsequently leading to the quantum
noise reduction of the total output fields of the relay station.
In addition, the reinforced PA-PA relay scheme with a small
gain G would outperform the PA-BS relay scheme and shows
a slight improvement of the secret key rate. Furthermore, the
proposed schemes implemented in an asymmetric scenario
would provide a higher secret key rate, as opposed to the
symmetric one. These proposed quantum relay schemes can
be performed through the beam splitting, the recombining
operations, and the relay data postprocessing, such that it
would be suitable for secret information exchange in complex
networks with intermediate stations.
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APPENDIX A: DERIVATION OF THE OPTIMIZED
OUTPUT NOISE

In what follows, we illustrate the derivation of Eq. (16)
from Eq. (15). After expanding 〈�2x̂r〉 in Eq. (15), we have

〈�2x̂r〉 = λ2
x

〈
�2x̂b2

〉 + 〈
�2x̂a2

〉
− λx

(〈
�x̂a2�x̂b2

〉 + 〈
�x̂b2�x̂a2

〉)
. (A1)

According to the derived input-output relations in Eq. (3),
the signal input â is independent of the other signal input b̂

in the coherent state. Then the correlation between them is
calculated as

〈�x̂a�x̂b〉 = 〈�x̂b�x̂a〉 = 0. (A2)

Consequently, the entangled output â2 and b̂2 are highly
correlated with the correlation that can be expressed as follows:〈

�x̂a2�x̂b2

〉 = 〈
�x̂b2�x̂a2

〉
. (A3)

Substituting the correlation in Eq. (A3) into the noise 〈�2x̂r〉
in Eq. (A1), we obtain

〈�2x̂r〉 = λ2
x

〈
�2x̂b2

〉 − 2λx

〈
�x̂a2�x̂b2

〉 + 〈
�2x̂a2

〉
. (A4)

When selecting λx = 〈�x̂a2 · �x̂b2〉/〈�2x̂b2〉, we can achieve
the minimum value of

〈�2x̂r〉opt = 〈
�2x̂a2

〉 − 〈
�2x̂b2

〉
. (A5)
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APPENDIX B: DERIVATION OF THE CM
OF THE CV-QKD SYSTEM

We derive the covariance matrix (CM) of the CV MDI-QKD
system with the EB PA-BS relay scheme. At the initial input
phase, Alice’s modes A and a, Bob’s modes B and b, and
Eve’s modes ea and eb are expressed in a tensor-product state

ρ = ρAa ⊗ ρBb ⊗ σeaeb
, (B1)

where ρAa and ρBb are both the EPR states with the CM

V (μ,ν) =
(

μI νZ
νZ μI

)
, (B2)

and σeaeb
is Eve’s zero-mean Gaussian state with the CM

Veaeb
=

(
ωaI G
G ωbI

)
. (B3)

It is a zero-mean Gaussian state with the CM described as

VaAbBeaeb
= V (μ,ν) ⊕ V (μ,ν) ⊕ Veaeb

(B4)

which can be reordered as an equivalent system with the CM
VABaeaebb. Eve’s actions on modes τ and eτ , ∀τ ∈ {a,b}, can
be described by the BS operation

Eτeτ
=

( √
tτI

√
rτI

−√
rτI

√
ττI

)
, (B5)

subject to tτ + rτ = 1. The attacking operation can be repre-
sented as

E = IAB ⊕ Eaea
⊕ ET

beb
. (B6)

Then the state of output modes ABa′e′
ae

′
bb

′, as shown in
Fig. 2(a), is a Gaussian state with zero mean and the CM

VABa′e′
ae

′
bb

′ = EVABaeaebbET, (B7)

which results in the reduced CM of the modes ABa′b′ given
by

VABa′b′ =
⎛
⎝VAB C1 C2

CT
1 A D

CT
2 DT B

⎞
⎠, (B8)

where VAB = μIAB , A = κaIa , B = κbIb, D = √
rarbG, and

C1 =
(

ν
√

taZ
0

)
, C2 =

(
0

ν
√

tbZ

)
, (B9)

with the notation κτ = tτμ + rτωτ [11]. The effect of the PA-
BS relay scheme on a′ and b′ can be described by applying an
operation

P = IAB ⊕
(P1 P2

P3 P4

)
, (B10)

where P1 = P2 = 1√
2
diag(G + g,G − g), P3 = − 1√

2
diag

(G − g,G + g), and P4 = 1√
2
diag(G − g,G + g). Then, the

CM of the state of ABa2b2 is derived as

VABa2b2 = PVABa′b′PT, (B11)

which can be rewritten as

VABa2b2 =

⎛
⎜⎝

VAB C ′
1 C ′

2

C ′T
1 A′ D′

C ′T
2 D′T B′

⎞
⎟⎠, (B12)

where C ′
1 = C1P1 + C2P2, C ′

2 = C1P3 + C2P4, A′ = P1A
P1 + P2DP1 + P1DP2 + P2BP2, B′ = P3AP3 + P4DP3 +
P3DP4 + P4BP4, and D′ = P1AP3 + P2DP3 + P1DP4 +
P2BP4. Adopting the notation

� = diag(δ1,δ2) = 1

2
(ZA′Z + B′ − ZD′ − D′TZ), (B13)

with δ1 = 2G2κa + 2g2κb + 4Gg
√

rarbg1 and δ2 = 2G2κa +
2g2κb − 4Gg

√
rarbg2, we obtain the conditional CM VAB|γ

expressed as

VAB|γ = VAB − 1

2det�

2∑
i,j=1

Ci

(
X T

i �Xj

)
CT

j

= μIAB − ν2 ·⎛
⎜⎜⎜⎜⎝

G2ta
δ1

0 Gg
√

ta tb
δ1

0

0 g2ta
δ2

0 −Gg
√

ta tb
δ2

Gg
√

ta tb
δ1

0 g2tb
δ1

0

0 −Gg
√

ta tb
δ2

0 G2tb
δ2

⎞
⎟⎟⎟⎟⎠,

(B14)

where

X1 =
(

0 1
1 0

)
, X2 =

(
0 1

−1 0

)
. (B15)

According to the aforementioned analysis, we can calculate
the CM of the CV-QKD system with the reverse BS-PA relay
scheme. Based on the derived CV in Eq. (B8), the effect of
the relay data postprocessing on a′ and b′ can be described by
using the operation

Pbp = IAB ⊕
(
Pbp

1 Pbp

2

Pbp

3 Pbp

4

)
, (B16)

where

Pbp

1 =
(

G g

g G

)
, Pbp

2 =
(−g −G

−G −g

)
,

Pbp

3 =
(−g G

G −g

)
, Pbp

2 =
(−G g

g −G

)
. (B17)

After adopting the reverse the BS-PA relay scheme in the
CV-QKD protocol, we obtain

�bp =
(

δ
′
1 δ

′
2

δ
′
2 δ

′
1

)
, (B18)

with δ
′
1 = 2(G2 + g2)(κa + κb) + 2(g1 + g2)

√
rarb and δ

′
2 =

−2(G2 + g2)(g1 + g2)
√

rarb, respectively. Then we derive the
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conditional CM V
bp

AB|γ expressed as

V
bp

AB|γ = μIAB − ν2

δ
′
1δ

′
2

·

⎛
⎜⎜⎜⎝

v+ Ggδ
′
2 Gu+ + Ggv0 gu+ + G2v0

taGgδ
′
2 v− Gu− − g2v0 gu− − Ggv0

gu+ −Gu− tbGgδ
′
1 tbGgδ

′
1

gu+ −gu− 2tbG
2δ

′
1 2tbG

2δ
′
1

⎞
⎟⎟⎟⎠,

where v± = ta(G ± g)(G + g)(δ
′
1 + δ

′
2), u± = √

tatb(G ±
g)(δ

′
1 ± δ

′
2), and v0 = √

tatbδ
′
2.

Similarly, we derive the CM of the reinforced PA-PA relay
scheme in the CV-QKD protocol by using the effect of the
relay data processing on a′ and b′ with the operation

Ppp = IAB ⊕
(Ppp

1 Ppp

2

Ppp

3 Ppp

4

)
, (B19)

where Ppp

1 = Ppp

4 = (G2 + g2)I, Ppp

2 = 2GgI, and
Ppp

3 = −2GgI. After implementing the reinforced PA-PA
relay scheme, we calculate �pp = diag(δ

′′
1,δ

′′
2), with δ

′′
1 =

[(G2 + g2)(G + g)2 + 4G2g2]κa + [(G2 + g2)(G − g)2 +
4G2g2]κb − 2g1

√
rarb, and δ

′′
2 = [(G2 + g2)(G − g)2 +

4G2g2]κa + [(G2 + g2)(G + g)2 − 4G2g2]κb − 2g2
√

rarb.
Finally, we derive the conditional CM V

pp

AB|γ given by

V
pp

AB|γ = μIAB − ν2 ·

×

⎛
⎜⎜⎜⎜⎜⎝

ξ ta

δ
′′
1

0 ξ
√

ta tb

δ
′′
1

0

0 (G−g)4ta

δ
′′
2

0
√

ta tb

δ
′′
2−√

ta tb

δ
′′
1

0 ξ tb

δ
′′
1

0

0
√

ta tb

δ
′′
2

0 (G+g)4tb

δ
′′
2

⎞
⎟⎟⎟⎟⎟⎠,

with ξ = (G2 + g2)2 + 4G2g2.

APPENDIX C: PA-CONCATENATED RELAY
DATA POSTPROCESSING

Assume that Alice and Bob prepare two modes a and b with
â = (x̂α + ip̂α)/2 and b̂ = (x̂β + ip̂β)/2, respectively, where
[x̂α,p̂α] = [x̂β ,p̂β] = 2i. Exploiting an EB-relay scheme, Al-
ice and Bob prepare two EPR states ρAa and ρBb with the same
zero mean and the CM given by

V (μ) =
(

μI νZ
νZ μI

)
. (C1)

As shown in Fig. 3, after heterodyning modes A and B, Alice
and Bob create coherent states |α〉 and |β〉 on modes a and
b, whose amplitudes are modulated by the complex Gaussian
variables α = (xα + ipα)/2 and β = (xβ + ipβ)/2 with the
same variance ϕ = μ − 1. The measurement outcomes ᾱ and
β̄ are related to |α〉 and |β〉 [11], i.e., ᾱ = ια and β̄ = ιβ

with ι = (μ + 1)/ν. We have ᾱ � α and β̄ � β for the large
modulation ϕ, and thus variables ᾱ and β̄ are equivalent to α

and β from an informational-theoretical viewpoint.
In what follows, we calculate the secret key rate of the PA-

concatenated relay scheme of the CV-QKD protocol. Without
loss of generality, we assume that Alice encodes information
through heterodyning mode A with outcome ᾱ, projecting

�ABe|γ into the pure state ρBe|γ ᾱ so that S(ρB|γ ) = S(ρe|γ ᾱ),
where γ denotes the measurement of the PA-concatenated
relay scheme at the relay station. Eve’s information on Alice’s
variable ᾱ is upper-bounded by the Holevo quantity [13]:

IE|γ = S(ρE|γ ) − S(ρe|γ ) = S(ρAB|γ ) − S(ρB|γ ). (C2)

In order to recover Alice’s information ᾱ, Bob heterodynes
mode B with outcome β̄. As a result, conditioned on γ , the
mutual information Iab|γ of Alice and Bob can be determined
by ρAB|γ , which gives birth to Iab|γ = I (ᾱ,β̄|γ ) = I (α,β|γ ).
Consequently, the secret key rate can be calculated as [20]

R(γ ) = ηIab|γ − Ie|γ , (C3)

with reconciliation efficiency satisfying the constraint η � 1.
Actually, the term Iab|γ is closely related to the CM

VAB|γ , which can be determined by Alice and Bob with the
complex CM V (α,β,γ ) yielded by PA-concatenated relay data
postprocessing. According to [11], we can use the related
variables α and β, and the matrix V (α,β,γ ) is equivalent to a
real CM given by

V (xα,pα,xβ,pβ,xr ,pr ) =
(

Vab C
CT R

)
, (C4)

where Vab = Vab(xα,pα,xβ,pβ) denotes the CM of Alice and
Bob’s reduced state,R = R(xr,pr ) is the CM of output modes
at the relay station, C is the correlation matrix, and the notation
T denotes the transpose operation. For the given γ of the
PA-concatenated relay scheme, the conditional CM of Alice
and Bob can be estimated through calculating

V (xα,pα,xβ,pβ |γ ) = Vab − CR−1CT. (C5)

In the EB PA-concatenated relay scheme, adopting the
equivalent variables ᾱ = (xᾱ + ipᾱ)/2 and β̄ = (xβ̄ + ipβ̄)/2
for the large modulation, we obtain an approximate CM
V (xα,pα,xβ,pβ |γ ) = ι−2V (xᾱ,pᾱ,xβ̄ ,pβ̄ |γ ). Then we obtain
the CM

VAB|γ = V (xᾱ,pᾱ,xβ̄ ,pβ̄ |γ ) − I, (C6)

which can be rewritten as

VAB|γ =
(

a c

cT b

)
. (C7)

For the given outcomes ᾱ, we achieve VB|γ ᾱ = b − cT(a +
I)−1c, which can be thus estimated by

VB|γ ᾱ = V (xβ̄,pβ̄ |γ ᾱ) − I (C8)

using the Gaussian elimination of Alice’s outcome variables.
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FIG. 8. Correlation plan of Gaussian attack with ωa = ωb = 1.2.
The attack is determined by two coherent parameters g1 and g2. The
gray region represents a separable attack and the black region denotes
a coherent attack. The original point represents the collective attack.

APPENDIX D: PARAMETER-DEPENDENT
ATTACKING STRATEGY

In the performance analysis of the CV-QKD protocol, the
coherent attack will be used for the security analysis. Whether
it is the symmetric eavesdropping scenario or not, plotting
the coherent attack is an effective attacking strategy, where
channel losses and noises play a key role with regard to the

maximal transmission distance. Besides, for the accessible
points in the correlation plane, as shown in Fig. 8, the pair
of parameters (g1,g2) have a significant effect on the secret
key rates and the maximal transmission distance as well. For
example, the parameters (g1,g2) can be set to be zero, leading
to the collective attack in the traditional CV-QKD protocol.
In order to implement the coherent attack, Eve prepares two
entangled states expressed in Eq. (B3). The parameters (g1,g2)
should satisfy the bona fide constraints [11] in Eq. (23). To
create two separable states, we can select the smallest partially
transposed symplectic eigenvalue satisfying the separability
constraints, i.e.,√

ω2 − g1g2 − ω|g1 − g2| � 1. (D1)

According to the constraints in Eqs. (23) and (D1), we
have three kinds of attacking strategies. The first one is the
collective attack [21], corresponding to the original point for
(g1 = g2 = 0) (or point 1 in Fig. 8). There is no entanglement
between two EPR pairs prepared by Eve under this attack. The
second one is the separable attack, which can be described
in the gray region. For example, the points {2,3,4} that
satisfy the condition |g1| = |g2| = ω − 1 can be selected for
the separable attack. The third one is the coherent attack,
whose parameters g1 and g2 are characterized by the black
area. Attacking channels E1 and E2 jointly may extract more
information. Moreover, the points {5,6}, corresponding to
g1 = −g2 = √

ω2 − 1 and g1 = −g2 = −√
ω2 − 1 that result

in the most entanglement, are the suitable candidates for our
coherent attacks in the performance analysis.
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