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Optimal control of two qubits via a single cavity drive in circuit quantum electrodynamics
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Optimization of the fidelity of control operations is of critical importance in the pursuit of fault-tolerant
quantum computation. We apply optimal control techniques to demonstrate that a single drive via the cavity
in circuit quantum electrodynamics can implement a high-fidelity two-qubit all-microwave gate that directly
entangles the qubits via the mutual qubit-cavity couplings. This is performed by driving at one of the qubits’
frequencies which generates a conditional two-qubit gate, but will also generate other spurious interactions.
These optimal control techniques are used to find pulse shapes that can perform this two-qubit gate with high
fidelity, robust against errors in the system parameters. The simulations were all performed using experimentally
relevant parameters and constraints.
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I. INTRODUCTION

Fault-tolerant architectures for quantum computation re-
quire individual gate operations to be performed with high
fidelity [1]. This requires strict control of all the parameters
in the system and robustness of the performed function with
respect to any noise or uncertainties in the system. In su-
perconducting circuits, experimental two-qubit gate fidelities
F > 0.99 have recently been demonstrated [2–5], at the
threshold for fault tolerance with a surface code architecture
[6,7], but well below that required for a gate-model machine
[1,8]. Although some of the infidelity is due to decoher-
ence, there are also errors due to fluctuations and inaccuracies
in the driving field and measured system parameters.

The systems are also required to be scalable, so that more
qubits can be added in order to realize a full quantum computer
[9]. A crucial challenge in scaling up is to maintain high
coherence, which becomes more difficult as more controls are
added. Therefore, it can be ideal to keep the circuit complexity
to a minimum in order to reduce the potential avenues for
decoherence. Then, the problem becomes one of how to control
the system with fewer sources. Control in quantum mechanics
is an open problem and equivalent to a nonlinear optimization,
which is difficult to parametrize and solve analytically, but is
an important problem for quantum computing.

In this paper, we investigate an all-microwave gate in circuit
quantum electrodynamics (cQED) using a single-microwave
drive applied to a single cavity containing two transmon [10]
qubits. The system dynamics are controlled by selecting the
frequency, phase, and amplitude of the microwave control
drive [11–13]. Using only a single-microwave drive for the
control means the circuit complexity is kept to a minimum
while also minimizing the external sources of noise. We use the
sequential convex programming (SCP) algorithm developed
in [14] to find pulses that are capable of implementing an
entangling operation between two qubits in one cavity to a high
degree of fidelity via the cross-resonance gate [11,15]. This
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gate was first implemented in circuit QED using microwave
drives local to each qubit and utilizes the qubit-qubit coupling
via the common mode of the cavity. Using a fixed system and
modifying only the drive pulses, we show that it is possible to
implement the desired unitary with fidelitiesF > 0.9875 using
a two-level approximation for the qubits, and F > 0.9639 for
a full multilevel transmon model. We also show that these
fidelities are robust to uncertainty in the system parameters
and incorporation of experimentally realistic pulse filtering,
while also imposing constraints on the drive power.

Advanced pulses for control in quantum systems have
been investigated previously, such as dynamical decoupling
schemes which use trains of pulses to cancel out environmental
noise and get rid of any dephasing on the qubit [16,17]. DRAG
(derivative removal via adiabatic gate) was designed in order
to remove any leakage to the noncomputational levels of the
qubit; here two pulses are applied to the system with the second
being the derivative of the first [18,19]. Other examples include
spline-shaped pulses for the resonator-induced phase gate
where the pulse shapes are used to remove unwanted effects
during the gate such as photon loss and residual entanglement
between the qubits and cavity after the gate implementation
[20], and SWIPHT (speeding up wave forms by inducing
phases to harmful transitions) that purposely drives the nearest
harmful transition so that it undergoes one cyclic revolution
while maximizing the fidelity to the desired unitary [21]. While
these methods have proven to be effective, they have not
included any potential sources of error in the system which
will inevitably be present in a real experiment. More recently,
optimal control methods were used to find the minimum time
to perform quantum operations in superconducting systems,
in particular the cross-resonance gate was investigated for this
purpose using the common method of dedicated qubit control
drives [22]. Work was also performed in superconducting
circuits for a single global cavity drive, searching for the best
parameter regime to perform single- and two-qubit gates in
the shortest possible time and maximizing the fidelity to the
gates of interest for the best parameter regime [23]. In these
cases again potential error sources were not included in the
investigation.
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Quantum optimal control theory is one method for design-
ing pulse shapes to perform required interactions [24,25].
In particular, it has been used to develop algorithms for
numerically designing pulse shapes that maximize a chosen
fidelity function [14,26–32]. It has shown success in designing
pulses for single-qubit gates, two-qubit gates, and readout
[33]. There have also been applications of quantum optimal
control algorithms towards high-fidelity gates that are robust
to errors in the system [14,31,34], but these have focused
either on single-qubit gates, assuming that the control came
via changing the system parameters, for example, via flux
tuning, or by direct driving of the qubit of interest.

The rest of the paper is organized as follows: In Sec. II we
define the Hamiltonian for two qubits in a three-dimensional
(3D) cavity driven by a single microwave drive, then perform
a set of transformations relevant to the system in order to
derive the two-qubit interaction. We see that upon making these
transformations that there will be some unwanted interaction
terms that are being driven resonantly that will be harmful to
the desired entangling operation. In Sec. III we describe the
quantum optimal control method, and in particular we review
the sequential convex programming algorithm and how it can
be used to perform robust quantum optimal control. In Sec. IV
we present our results and discussion, showing that using SCP
we can design a pulse shape that can perform the desired
entangling operation with high fidelity for both a two-level
system and a multilevel system even in the presence of resonant
unwanted rotations, errors in the system parameters, and pulse
filtering.

II. ALL-MICROWAVE GATE USING A SINGLE
CAVITY DRIVE

The cross-resonance gate is an all-microwave gate that uti-
lizes coupling between two qubits to generate a two-qubit op-
eration [11,15]. For all-microwave gates the system is set up so
that the qubits are far detuned from one another, and also from
the cavity (i.e., the system is in the dispersive regime). This
ensures that the qubits and cavity do not interact until some
external control is applied, and will extend the lifetimes of the
qubits when they are not being operated on. In the case where
there are microwave drives local to each qubit, a microwave
resonant with the target qubit would be applied directly to
the other control qubit via a direct microwave line. Due to the
coupling between the two qubits via the common mode of the
cavity this would activate a two-qubit operation which could be
used to generate entanglement. This system ideally requires a
local drive on each qubit, but it is interesting to consider a case
in which only a single drive is available that globally addresses
both qubits. This could be an advantage in large-scale systems,
as it reduces the number of required controls.

One such simple architecture is to have a single drive
coupled to the cavity and use this to perform all the control;
this is relevant when the system consists of two-qubits in a 3D
cavity. This has been shown to be of interest due to the long
coherence times enabled by the design [35]. In the case of the
cross-resonance gate this would mean that the microwave drive
that is resonant with the target qubit will not only activate the
two-qubit operation, but will also cause unwanted rotations of
the target qubit.

In superconducting circuits, one of the qubits of interest,
and the focus of this work, is the transmon [10]. This is a
charge-based qubit that is designed in such a way as to be less
susceptible to charge noise, thus increasing coherence times.
However, the tradeoff is that the system is less anharmonic and
is thus not a true two-level system but is in fact multilevel. The
Hamiltonian for two transmons coupled to a resonator with a
single-microwave control is given by

H = ωra
†a +

∑
i=1,2

∑
ji

ωji
|ji〉 〈ji | +

∑
i=1,2

gi(a
†ci + ac

†
i )

+ [ε(t)a†e−iωd t + ε∗(t)ae+iωd t ], (1)

where ωr is the cavity resonance frequency, i denotes transmon
1 and 2, ωji

is the frequency of the j th level of the ith transmon
|ji〉, gi is the coupling between transmon i and the cavity, ε(t) is
the time-dependent pulse envelope, ωd is the drive frequency,
a(†) are the annihilation (creation) operators of the cavity mode
photon, and c(†) are the annihilation (creation) operators of the
transmon excitations.

In order to investigate the two-qubit operation of interest,
it is instructive to first look at a case in which the transmon
is approximated as a two-level system. This will be less com-
putationally expensive in numerical optimization calculations,
and will give an indication as to the effectiveness of these
techniques in such a system while also revealing the single- and
two-qubit interactions during the operation. The Hamiltonian
for two two-level systems and a microwave drive coupled to a
common cavity mode is given by

H = ωra
†a +

∑
j=1,2

ω
(j )
a

2
σ (j )

z +
∑
j=1,2

gjσ
(j )
x (a† + a)

+ ε(t)(a†e−iωd t + ae+iωd t ), (2)

where j denotes qubits 1 and 2, ω
(j )
a is qubit j transition

frequency, gj is the coupling between qubit j and the cavity,
and σ

(j )
x/z are the Pauli spin matrices for qubit j . Here, we have

assumed a real drive.
When the drive is far detuned from the cavity, as is the case

here, the effect of the drive on the cavity is not important. In
order to see the effect of the drive on the qubits, the time-
dependent displacement operator D(α) = exp(αa† − α∗a) is
applied [36], choosing α to satisfy

ωrα + εe−iωd t − iα̇ = 0, (3)

this Hamiltonian becomes

H ′ = ωra
†a +

∑
j=1,2

ω
(j )
a

2
σ (j )

z +
∑
j=1,2

gjσ
(j )
x (a† + a)

+
∑
j=1,2

�
(j )
R σ (j )

x cos(ωdt), (4)

where �
(j )
R = 2gjε/(ωr − ωd ). This shows an important dif-

ference to [15], where each drive term would only apply to the
qubit it was localized to. In this case, the single-microwave
control drives both qubits.
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Since the qubits are far detuned from the cavity, with
gj � |�j | = |ω(j )

a − ωr |, the dispersive transformation can be
applied:

U = exp

[
g1

�1
(a†σ−1 − aσ+1 ) + g2

�2
(a†σ−2 − aσ+2 )

]
. (5)

Expanding to second order in the small parameter gj/�j and
dropping fast oscillating terms gives the effective Hamiltonian

H ′′ = ωra
†a +

∑
j=1,2

ω′(j )
a

2
σ (j )

z

+ g1g2(�1 + �2)

2�1�2
(σ (1)

+ σ
(2)
− + σ

(1)
− σ

(2)
+ )

+
∑
j=1,2

�
(j )
R σ (j )

x cos(ωdt), (6)

where ω′(j )
a is the shifted qubit frequency given by

ω′(j )
a = ω(j )

a + 2
g2

j

�j

(
a†a + 1

2

)
. (7)

This is now the Hamiltonian for two coupled qubits with a
single-microwave drive that drives both qubits.

Following Ref. [37], the final step is to perform a
Schrieffer-Wolff transformation which transforms the effective
Hamiltonian via

H eff = H 0 + 1
2 [H 2,S(1)] + Hd (t) + [Hd (t),S(1)], (8)

where H 0 is the unperturbed part of the Hamiltonian [given on
the first line of Eq. (6)], H 2 is the small perturbation term that
contains off-diagonal terms [second line of Eq. (6)], and Hd (t)
is the drive term [third line of Eq. (6)]. For this derivation, S(1)

is given by

S(1) = − J

�12
(σ+1σ−2 − σ−1σ+2 ), (9)

with J = g1g2(�1 + �2)/2�1�2 and �12 = ω′
a1

− ω′
a2

,
where J � �12. The final Hamiltonian is then given by

H eff = ωra
†a + ω̃(1)

a

2
σ (1)

z + ω̃(2)
a

2
σ (2)

z

+�
(1)
R

(
σ (1)

x + J

�12
σ (1)

z σ (2)
x

)
cos(ωdt)

+�
(2)
R

(
σ (2)

x − J

�12
σ (1)

x σ (2)
z

)
cos(ωdt), (10)

where ω̃(1)
a /2 = ω′(1)

a + J 2/�12 and ω̃(2)
a = ω′(2)

a − J 2/�12.
This Hamiltonian contains the two-qubit terms σ (1)

z σ (2)
x and

σ (1)
x σ (2)

z . To activate one of these terms, a drive at the correct
frequency must be applied. In order to perform the σ (1)

x σ (2)
z

operation, for example, a microwave drive at ωd = ω̃(1)
a must

be applied. This σ (1)
x σ (2)

z is two single-qubit rotations away
from being a controlled-not (CNOT) gate.

According to Eq. (10), choosing ωd = ω̃(1)
a will not only

perform the σ (1)
x σ (2)

z operation, this will also drive a single-
qubit rotation on qubit 1 while also driving some off-resonant
rotations of qubit 2 and the σ (1)

z σ (2)
x term. However, performing

the relevant single- or two-qubit operation is not as simple

FIG. 1. Example of a pulse shape where the pulse has been broken
up into 16 piecewise constant parts over an interval of 12.5 ns each.
c(t) = ε(t)/2π gives the pulse amplitude in GHz and is over an
interval of 200 ns total time. Each separate part can be varied to
optimize over some problem. This one takes the form of a Gaussian
turn on, with a flat top and a Gaussian turn-off.

as just choosing the correct frequency and driving; the pulse
shape also plays an important part. For example, choosing
to drive at ωd = ω̃(1)

a using the pulse shape shown in Fig. 1
would achieve a fidelity of F = 0.1461 for a π/2 rotation on
the σx1σz2 operation, and F = 0.3230 for a π/2 rotation on the
σx1 operation.

In very few cases, solutions for the problem of finding
pulse shapes to perform required operations can be found
analytically. In most cases, however, such as here, this is not
possible, as the solutions must be found numerically. There
may also exist many solutions to the problem; this makes
finding a solution nontrivial.

III. QUANTUM OPTIMAL CONTROL

The aim of optimal control theory is to maximize or
minimize a function subject to certain constraints and bounds.
For quantum information processing the function we wish to
maximize is the fidelity of the system unitary evolution after
some time T , U (T ), with respect to a desired target unitary
operator, W ∈ Cns×ns where ns is the size of the system. In
quantum systems the evolution of the system can be described
by

iU̇ (t) =
⎛
⎝H0 +

∑
j

cj (t)Hj

⎞
⎠U (t), (11)

with H0 the drift (i.e., not controlled) Hamiltonian, j the index
of the control, cj (t) the control function at time t ∈ [0,T ],
and Hj the control Hamiltonian that is under the influence of
control j . The fidelity function used here is

F =
∣∣∣∣ 1

ns

tr[W †ÔU (T )Ô]

∣∣∣∣
2

, (12)

where Ô is the projector onto the subspace of interest. With
this definition we have F ∈ [0,1], when F = 1 there is no
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measurable distinction between W and U (T ), and no leakage
out of the relevant subspace.

In general, maximizing the fidelity function is performed
numerically and can be very computationally expensive,
particularly when using smooth analytic control functions,
due to the large size of the control space (i.e., the dimension
of the control space). For the purposes of optimization it can
be more efficient to approximate the controls as a series of
piecewise constant amplitudes over N uniform time intervals
τ = T/N , giving the Hamiltonian for time tk = kτ in Eq. (11)
as

H (tk) = H0 +
∑

j

cj (tk)Hj, tk = kτ. (13)

In this case, and with Hj time independent, U (T ) is now given
by U (T ) = ∏N

k=1 Uk with Uk = exp[−iH (tk)τ ].
The most successful methods for finding optimal controls

have been local optimizers based on gradient ascent [24–26].
For these algorithms an initial control pulse is chosen, the
fidelity and the gradient are calculated and the optimizer is run
which uses the gradient at each iteration of the optimization to
determine in which direction in the landscape to travel. These
algorithms have been shown to converge on a solution in fewer
iterations than other algorithms and are computationally less
expensive, however, they do not guarantee a global maximum
as this depends on where you start in the control landscape.

When applying optimal control to quantum information
problems, the pulses that are developed must be robust to any
errors in the system, such as errors in the measured system
parameters. In order to perform numerical optimal control
simulations, the system parameters must be entered into the
simulator, but this requires the parameters to be known with
absolute precision which will not be the case in experiment.
The estimated parameters will come with some error range,
which must be included in the numerical calculation. As
discussed in [14], a method for doing this is to sample points δ

from the parameter range �, calculate the fidelity for each of
these points, and then to maximize the worst-case fidelity Fwc:

maximize Fwc = min
δ

F(θ,δ)

subject to θ ∈ �, δ ∈ �, (14)

where θ are the controls and � is the set of allowed controls
subject to any constraints imposed. Maximizing the minimum
fidelity of the range, rather than the average fidelity of the
range, places a more strict requirement on the optimizer
and ensures that the control found by the optimizer does not
include points with very low fidelity that are balanced by
high-fidelity terms.

Sequential convex programming

The method proposed for solving the optimization problem
stated above is sequential convex programming [14,38]. This
is a gradient-based local optimizer and is therefore efficient at
locating local optimal solutions, provided the initial guess is
a good one. The algorithm is initialized with a control θ ∈ �,
which is typically a convex set, or well approximated by one.
Points δi are then sampled from the error range �, and a
convex trust region �̃trust is initialized. The trust region is

chosen so that the linearized fidelity F(θ,δi) + θ̃ᵀ∇θF(θ,δi),
where θ̃ ∈ �̃trust used in the optimization step retains sufficient
accuracy.

With the initial points set, the fidelities F(θ,δi) and
gradients ∇θF(θ,δi) are calculated for each point δi selected
from the error range. The linearized fidelity is then used to
solve for the increment θ̃ in the convex optimization:

maximize min
i

[F(θ,δi) + θ̃ᵀ∇θF(θ,δi)]

subject to θ + θ̃ ∈ �, θ̃ ∈ �̃trust. (15)

If miniF(θ + θ̃ ,δi) > miniF(θ,δi), then replace θ by θ + θ̃ ,
increase the trust region �̃trust, and repeat the process of
calculating fidelities, gradients, and solving for the increment
θ̃ . If, however, the miniF(θ + θ̃ ,δi) < miniF(θ,δi), then
decrease the trust region �̃trust and repeat the optimization
step with the same θ . This process is repeated until some
stopping criteria are satisfied, such as the number of iterations
reaching the maximum number imposed or the gradient is
below some threshold such that it is flat and has thus found a
local maximum.

IV. CROSS RESONANCE USING SCP

To perform quantum optimal control, the effective Hamil-
tonian in Eq. (10) must be cast in the form of Eq. (13). This
investigation focuses on having all the system parameters
fixed and the control variable as the pulse shape ε(t). To
begin the investigation, we first look at the Hamiltonian in
the two-level approximation. Moving to a frame rotating at the
drive frequency, the drift Hamiltonian is given by

H0 = �ra
†a +

∑
j=1,2

�̃
(j )
a

2
σzj

, (16)

where �r = ωr − ωa and �̃aj
= ω̃

(j )
a − ωd . The control

Hamiltonian is given by

Hj = 2g1

ωr − ωd

(
σx1 + J

�12
σz1σx2

)

+ 2g2

ωr − ωd

(
σx2 − J

�12
σx1σz2

)
, (17)

and thus c(t) = ε(t). In these simulations the system pa-
rameters are set as ωr/2π = 6.44 GHz, ω(1)

a /2π = 4.50 GHz,
ω(2)

a /2π = 4.85 GHz, g1/2π = g2/2π = 133 MHz; these are
parameters that have been used in a previous cQED experiment
[39]. The desired unitary is

Udes = exp

(
−i

π

4
σx1σz2

)
, (18)

which, when applied to the state |+y〉 |+y〉 [where |+y〉 =
(|0〉 + i |1〉)/√2], gives the maximally entangled Bell state
|−〉 = (|00〉 − |11〉)/√2. In order to perform this, we choose
ωd = ω̃a1 .

To ensure realistic pulses are produced, constraints on the
maximum and minimum amplitudes have been imposed. By
doing this the control space becomes fragmented, as there will
be areas that are off limits to the optimizer. This means that
the control space may contain many local maxima that the
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FIG. 2. The initial pulse sequence for the SCP algorithm (colored
area), with F = 0.1461, and the optimal pulse sequence (outlined
area) showing the variation from initial to final, when the pulse is
broken into 16 piecewise constant parts. As is shown, the solution
tends to stay close to the initial solution if a good initial guess is
chosen. Here, c(t) = ε(t)/2π is given in GHz while t is given in
ns. This optimal pulse sequence generates the desired unitary with
F = 0.9945.

optimizer may become stuck in, as the optimization problem
is very sensitive to initial conditions.

In [15], it was stated the pulse used to perform the cross-
resonance gate was a slow Gaussian turn-on with a flat top.
Therefore, as an initial pulse guess for the SCP algorithm we
have chosen to use a pulse that has the form of a Gaussian
turn-on, a flat top, and then a Gaussian turn-off, as shown
in Fig. 1.

From these initial conditions, with F = 0.1461, a pulse
sequence can be generated that is able to perform the desired
unitary with a fidelity of F = 0.9945. Figure 2 shows the
changes that have been made from the original pulse sequence,
shaded area, to the optimal pulse shape, outlined area. Due to
a good choice of initial guess the optimizer hugs this shape
and rapidly finds a solution with high fidelity, even with the
constraint on maximum amplitude and few pulse pixels to
optimize over. Figure 3 shows, with respect to the state,

Ũm |+y〉 |+y〉 = �m
k=1exp[−iH (tk)τ ] |+y〉 |+y〉 , (19)

how the entanglement (given by 2|ad − bc| for an arbitrary
two-qubit state |ψ〉 = a |00〉 + b |01〉 + c |10〉 + d |11〉) and
the fidelity (given by F = | 〈−| Ũm |+y〉 |+y〉 |2) change
with each successive c(tk). We see that although the fidelity
fluctuates, the entanglement monotonically increases with
each pulse. For example, at k = 8, the entanglement is higher
than 0.6 but the fidelity is nearly 0 because the outcome state
is given by

Ũ 8 |+y〉 |+y〉 ≈ α |+〉 + β |�−〉 ,

F ≈ | 〈−| (α |+〉 + β |�−〉)|2 = 0, (20)

where |+〉 = (|00〉 + |11〉)/√2, |�−〉 = (|01〉 − |10〉)/√2,
and α,β ∈ C. This suggests that the pulse shape continually
performs the desired two-qubit operations, but has optimized

FIG. 3. 16 pulses are applied over an interval of τ = 12.5 ns
each. The entanglement of a pure state is given by 2|ad − bc| for
an arbitrary two-qubit state |ψ〉 = a |00〉 + b |01〉 + c |10〉 + d |11〉.
The fidelity curve is given by F = | 〈−| Ũm |+y〉 |+y〉 |2 where
Ũm |+y〉 |+y〉 = �m

k=1exp[−iH (tk)τ ] |+y〉 |+y〉.

to produce single-qubit rotations at each step such that at the
end the qubits will be rotated into the correct basis and that
the function performed at the end is effectively just the desired
two-qubit operation.

For the purposes of our optimization, the assumption of
piecewise constant controls has been made. This is to make the
optimization less computationally expensive as there will be
fewer parameters to optimize; the control space dimension will
be given by the number of piecewise constant parts in the pulse.
It has been suggested that piecewise constant controls are not as
powerful as analytic controls, and that analytic controls should
always be used where possible [29]. However, the assumption
was made that the piecewise constant controls were used as an
approximation of a continuous function and thus would need
many time slices to accurately portray such a function. This
then made the optimization very computationally expensive.
Here instead we choose our control amplitudes, not as an
approximation of a continuous function, but as a standalone
pulse shape. State-of-the-art arbitrary waveform generators
(AWGs) can generate pulses that change amplitude at least on
the order of 1 ns. We found that the optimal choice of pulse
with fewer piecewise constant parts was a pulse over 200 ns
that has 16 individual constant pulses that can be optimized,
so that each constant pulse is over an interval of 12.5 ns. This
is well within the capability of many AWGs, and allows us to
carry out a resource-efficient optimization. Use of pulses with
shorter time steps, to approximate a continuous function, does
not necessarily improve the fidelity. In Fig. 4, a pulse sequence
generated is shown where each pulse length is 2 ns, getting
closer to the limit of the AWGs, which implements the desired
unitary with F = 0.9940. This optimization performed the
calculations around 12 times more slowly than with fewer
piecewise constant parts (3 h for the larger control space
compared with 15 min for the smaller one).

A. Optimal pulses with filtering effect

In general, the pulse shown in Fig. 2 will not be the pulse
that reaches the cavity and qubits. The microwave pulse will
be (mostly low pass) filtered by control hardware; we can
model this by discretizing the control further and using a linear
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FIG. 4. The initial (colored area) and optimal (outlined area)
pulses when the control is split up into 100 piecewise constant
parts, each over an interval of 2 ns which is close to the limit of
microwave generators. In this case, the final pulse, while showing
a similar overall structure to the initial pulse, has large amplitude
changes between each piece. This could off resonantly drive unwanted
higher-frequency terms and cause problems in actual implementation.
c(t) = ε(t)/2π is in GHz and t is in ns. The fidelity that this pulse
generates is F = 0.9940.

transfer function to approximate the filtering effect [40]. In this
case, each new piecewise constant pixels s(tl) are given by

s(tl) =
N−1∑
k=0

Tl,kc(tk), (21)

where Tl,k is the transfer function as given in [40] for a
Gaussian filter.

This is applied to the pulse in Fig. 2, the fidelity calculated
drops to F = 0.8303, but upon reoptimizing with this pulse as
the initial guess a fidelity of F = 0.9947 is achieved. Figure 5
shows the optimal pulse before re-optimizing (colored area)
and the new pulse generated after the filter effect is taken into
account (outlined area). Thus, pulses that are robust to any
filtering effect may be produced by the algorithm, which is
ideal for experimental implementation.

B. Robust pulses for errors in system parameters

As mentioned in Sec. III, the values of the system
parameters are going to have some error associated with them,
as any measured system parameter is given with some error
range. A sample from the error ranges must be taken and the
SCP algorithm can be performed while optimizing for the
minimum fidelity in the range. This is similar to the approach
taken in [34], except that the more stringent condition of
maximizing the minimum fidelity is made, as in [14], rather
than optimizing for the average fidelity. This method is first
performed for an error of ±1% in the transition frequency of
qubit 2, ω(2)

a /2π = 4.85 ± 0.05 GHz. 11 points are sampled
from the error range, which has been shown to be adequate to
cover the range [34]. Figure 6 shows the range of fidelities for
each point sampled from the error range of ω(2)

a . This shows

FIG. 5. The optimal pulse when there is no filtering (colored area)
gives a fidelity of F = 0.8303 when the simulation takes into account
filtering. Upon reoptimizing, a new pulse is generated (shaded area)
which generates the desired unitary with F = 0.9947.

that even in the presence of error in one parameter the SCP
algorithm has been able to find a solution that can produce the
desired unitary with F > 0.986 for the whole range. When
filtering is included, a solution is found which gives the range
of fidelities in Fig. 7.

Since there are two qubits, potential errors in both of the
qubit parameters, ω(1)

a and ω(2)
a , must be accounted for. This

proves to be a greater challenge since the drive is on resonance
with the dressed qubit-1 transition frequency and thus will
cause the drive to become slightly off resonant if there are

FIG. 6. Fidelity against ω(2)
a /2π when there is no filter in the

simulation. It can be seen that the fidelity for each point i Fi > 0.986,
and that in the range 4.83 GHz < ω(2)

a /2π < 4.88 GHz the fidelities
are all Fi > 0.995. Therefore, a robust pulse has been generated for
the range of qubit-2 values: ω(2)

a /2π = 4.85 ± 0.5 GHz.
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FIG. 7. Fidelity against ω(2)
a /2π when the filter effect has been

taken into account. In this case, a robust pulse has been generated
that gives Fi > 0.992 for all points in the range ω(2)

a /2π = 4.85 ±
0.5 GHz.

errors. Reducing the error range for ω(1)
a to ±0.1% achieves a

solution with the range of fidelities shown in Fig. 8, where all
points have fidelity F > 0.9875. Using the robustness method
can be effective in designing a pulse to be robust to errors in
some range, but that it becomes increasingly difficult as more
error parameters are introduced. This can perhaps be solved
by choosing different start points for the optimizer, but thus
far the flat-top-like Gaussian has proven to be the optimal
start point for the Hamiltonian and desired unitary of interest.
Future work will look at a scheme to overcome this.

C. Multilevel transmon model

We now proceed to look at the case in which a full model of
the transmons is incorporated. This is more computationally
expensive to calculate, but is important for capturing leakage

FIG. 8. Fidelity against ω(1)
a /2π and ω(2)

a /2π when filtering is
turned on in the simulation. Here, we have Fi > 0.9875 for all points
i in the ranges of ω(2)

a /2π = 4.85 ± 0.05 GHz, ω(1)
a /2π = 4.50 ±

0.005 GHz.

out of the two-level logical basis. In the deep transmon limit,
with EJ /EC = 100, the anharmonicities for the transmons are
δ1/2π = −160 MHz for transmon 1 and δ2/2π = −170 MHz
for transmon 2. In this limit, the transmons can be approxi-
mated as Duffing oscillators, the Hamiltonian for two Duffing
oscillators coupled to a common cavity mode with a single
drive is given by

H = ωra
†a +

∑
j=1,2

[
ω(j )

a c
†
j cj + δj

2
c
†
j cj (c†j cj − 1)

]

+
∑
j=1,2

gj (a†cj + ac
†
j ) + [ε(t)a†e−iωd t + ε∗(t)ae+iωd t ].

(22)

The first two lines of this equation can be diagonalized to find
the Hamiltonian for the cavity + two transmons in the dressed
basis, where the frequencies of each component will now
include dependencies on all the other parts. For the purposes of
optimal control, this will now form the drift Hamiltonian. The
drive term can then be transformed to form the new operators
in the dressed basis, and can be used as the new drive term Hc

for the simulations.
For the multilevel simulations, the drive term has been

cast into two parts to include complex control as it has been
shown that using both quadratures can be useful in suppressing
leakage [18]. The drive term in this case becomes

Hd = εx(t)(a†e−iωd t + ae+iωd t ) + iεy(t)(a†e−iωd t − ae+iωd t ).

(23)

In the new transmon limit it is that the control must be
discretized more in order to reach a good fidelity. In this case,
each piecewise control amplitude is now 2 ns long, well within
the capabilities of current AWGs. In the case where there are
no errors in the system there are many points in time that
perform well with fidelities F > 0.9999, due to this extra
discretization of the control. Figure 9 shows the fidelity of
the optimized pulses, where each initial pulse has taken the
form of a flat-top Gaussian with dt = 2 ns for each piecewise
amplitude, against time. The fidelities converge to F > 0.999
for all times T > 100 ns.

We now investigate the robustness of one of these pulses
to parameter variation. In Fig. 10 we plot the pulse fidelity
F against ω(2)

a . While the pulse performs well for the specific
chosen parameters, it can clearly be seen that the fidelity is
highly dependent on the frequency ω(2)

a , hence not robust to
variation in this parameter.

As in the previous section, the robust methods are used
to find a pulse robust to errors in ω(2)

a first. In this case,
the algorithm finds a solution that gives a result of F ≈
0.9937 for all values in the range ω(2)

a /2π ∈ [4.80,4.90] GHz,
shown in Fig. 11, for a time of 199 ns. Performing again
the robustness method with variations in the two-qubit pa-
rameters, a solution is found that is able to perform the
desired entangling gate with a fidelity of Fi ≈ 0.9639 for
all parameters in the range ω(2)

a /2π ∈ [4.80,4.90] GHz and
ω(1)

a /2π ∈ [4.495,4.505] GHz, for a time of 199 ns.
In the multilevel case, the same feature appears when

attempting to a find a solution that is robust to fluctuations
as in the two qubit parameters, i.e., that for just errors in ω(2)

a
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FIG. 9. Fidelity of optimized pulses using a multilevel system
Hamiltonian comprised of two Duffing oscillators each coupled to
a common cavity mode with a single cavity drive. The initial pulse
had the form of a flat-top Gaussian with each piecewise constant part
being 2 ns long, for different total times ranging from 2 to 200 ns.
For T < 100 ns, the optimized pulses perform poorly, however, for
all times T > 100 ns the fidelity converges to F > 0.999 and even to
F > 0.9999 for certain times in this range.

the algorithm is able to find a solution with F > 0.99 for an
error of ±1%, but that if we wish to include ω(1)

a it is more
difficult to account for this. Nonetheless, as shown in Fig. 12,
with an error of ±0.1% in the parameter ω(1)

a and ±1% in ω(2)
a

a pulse is found that achieves F > 0.96.
One of the causes of the discrepancy between the fidelities

of the two-level case and the multilevel case is the anhar-

FIG. 10. Variation in the fidelity F , with changing ω(2)
a for a pulse

given without taking into account an error range in this parameter
during the optimization. The area of interest is highlighted by the
red rectangle: at the ideal parameter, with ω(2)

a /2π = 4.85 GHz, F >

0.9999, but the fidelity rapidly decreases as the value moves away
from the optimal.

FIG. 11. Fidelity against ω(2)
a /2π for an optimized pulse using

the robust methods on a multilevel system comprised of two Duffing
oscillators each coupled to a common cavity mode with a single
cavity drive. Here,Fi = 0.9937 for all points i in the range ω(2)

a /2π =
4.85 ± 0.05 GHz, which is the range that has been optimized for. It
can be seen that outside of this range, the fidelity falls off rapidly.

monicity of the transmons we have simulated. Currently, we
are operating deep in the transmon regime with Ej/Ec = 100
and so one of the limiting factors is down to leakage out of
the computational subspace as fluctuations in the qubits ω01

transition bring them even closer to the ω12 transition.
For this paper, we have chosen not to include errors in the

coupling strengths between the transmons and the cavity gj .

FIG. 12. Fidelity against ω(2)
a /2π , ω(1)

a /2π for an optimized pulse
using the robust methods on a multilevel system comprised of two
Duffing oscillators each coupled to a common cavity mode with a
single cavity drive. Here, Fi = 0.9639 for all points i in the range
ω(2)

a /2π = 4.85 ± 0.05 GHz, ω(1)
a /2π = 4.50 ± 0.005 GHz, which

the pulse has been optimized for. Outside of this range, the fidelity
falls off rapidly.
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Preliminary tests with errors in coupling strengths have shown
minimal effect on the output given without including these
errors up to 10%, while this range is feasible in experiments
this would merely add to the parameter range selection in the
simulations. Errors specifically in the cavity frequency have
also not been included since the drive and qubit resonances are
far off resonant from the cavity.

This paper focuses on achieving high-fidelity controls
on time scales much shorter than decoherence times and,
therefore, we do not include decoherence in our simulations.
Obviously, it is important to correct control errors in this
regime if they represent the largest source of infidelity. For
example, a state-of-the-art circuit with two transmons with
50-μs coherence times acted on with an entangling unitary
operation that requires 200 ns will see a probability of
corruption of the operation due to decoherence estimated at
0.4%. Since typical operations errors due unoptimized controls
will be larger than this, we can focus on optimizing without
including decoherence. Usually this is the only relevant
regime in which we will gain by optimizing. However, since
some forms of decoherence can be tackled actively with
dynamical decoupling schemes [16,17], it would be interesting
to consider optimizing for Hamiltonian control errors and
external decoherence together in the future.

V. CONCLUSION

In conclusion, we have shown that robust quantum control
can produce pulse shapes that achieve a desired unitary with
high fidelity for a realistic quantum system. In particular, we
have shown that in a system where a single-microwave drive
coupled to a cavity containing two transmon qubits is chosen
on resonance with a qubit, modifying the shape of the driving

microwave pulse can produce a desired two-qubit interaction
while mitigating the unwanted rotation of the qubit that is also
on resonance with the drive. This can be done even in the
presence of filtering on the control and errors in the system
parameters with a modest amount of resources, and can be
achieved even when realistic constraints are placed on the
pulses.

We have seen that including constraints on the pulse opens
up more areas of local maxima in the control space, and in
this case we found that there were many. These “traps” may
be what is limiting the range of robustness in the two-qubit
frequencies. Future work will look at how to make the error
range for ω(1)

a larger, potentially by combining these methods
with a nonlocal optimizer in order to circumvent local traps.

We have shown that it is still possible to achieve high-
fidelity control with reduced circuit complexity, by increasing
the complexity of the control. This shows a tradeoff between
the circuit complexity and pulse complexity, and that as
quantum computers grow we are likely to require more
complex pulse shapes if we wish to keep the circuit complexity
down. Future work will study the limitations of current
algorithms to solving these problems.
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