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Quantum speed limits for quantum-information-processing tasks
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We derive algebraic bounds on achievable rates for quantum state transfer and entanglement generation in
general quantum systems. We apply these bounds to graph-based models of local quantum spin systems to obtain
speed limits on these tasks. A comparison to numerical optimal control results for spin chains suggests that
unexplored regions of the dynamical landscape may support enhanced performance of key quantum-information-
processing tasks.
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I. INTRODUCTION

Robust and efficient quantum control is increasingly rele-
vant to quantum science and technology. At present, the theory
of quantum control of small systems (low-dimensional Hilbert
spaces) is significantly more advanced than the corresponding
theory for large systems (high-dimensional Hilbert spaces).
While this situation reflects the current experimental state of
the art, a complete toolkit for the quantum control of future
experiments and devices must include strategies suited to both
small and large systems.

In the low-dimensional setting, e.g., for one or two qubits,
a Lie algebraic framework exists for finding optimal control
protocols for many tasks [1]. Unfortunately, the relevant
algebraic tools and techniques are intractable in generic
high-dimensional (many-body) cases. As a partial remedy
to this obstacle, there is a large body of work on numerical
techniques for finding efficient control protocols for quantum
information processing in many-body systems. In the absence
of analytic solutions to optimal control problems in this
setting, bounding optimal times for accomplishing various
tasks becomes important, see, e.g., [2]. Given the complexity
of numerically obtained optimal control sequences for simple
tasks such as quantum state transfer, using such bounds to
check the near-optimality of numerical solutions may be the
only tractable option for high-dimensional quantum optimal
control.

The problem of bounding optimal control times is also
significantly different in the small and large system contexts.
In small quantum systems, it is not unreasonable to suppose
that a wide range of couplings is available, and “quantum speed
limits” such as those of Margolus-Levitin and Mandelstam-
Tamm [3,4] can be used to obtain meaningful bounds on the
rate at which information processing tasks may be achieved.
In Appendix A, we set out several such results for comparison
to the many-body case studied here. It is important to note
that such bounds reflect only the spectral properties of the
Hamiltonian, and place no further constraint on its form.

In contrast to the low-dimensional case, many-body control
problems must, in general, account for real-space properties
of the system. While it may be possible to directly couple
any two qubits in a small quantum processor, direct coupling
of distant spins in a long spin chain may be impossible.
For this reason, the bounds available in the low-dimensional

setting tell us little about the minimum time required, given
certain local interactions and external control fields, to apply
a swap gate to a distant pair of qubits. In other words,
the bare Hilbert space structure alone fails to capture some
relevant information. Different techniques are required to
obtain meaningful information.

Bravyi et al. showed [5] that the Lieb-Robinson bound [6]
can be used to obtain bounds on classical channel capacity
and correlation formation in spin systems evolving under
local Hamiltonians. In this paper, we use similar techniques
to establish bounds on the speed with which high-fidelity
quantum state transfer and entanglement generation can be
performed in general quantum systems, then specialize to
local spin systems. This bound is directly relevant to proposed
quantum computer architectures based on spin chains, such as
the nitrogen-vacancy center proposal of Yao et al. [7].

II. MATHEMATICAL FRAMEWORK

Finite-dimensional quantum mechanics can be studied with
no reference to spatial organization. In practice, however, some
tensor product decompositions of Hilbert spaces have physical
interpretations that are relevant for understanding what is
experimentally achievable. A convenient way to formalize this
notion of locality uses graphs to construct Hilbert spaces by
associating small Hilbert spaces to each vertex. The full Hilbert
space is taken to be the tensor product of the vertex spaces, so
that any subset of vertices constitutes a subsystem. As in many
other accounts, e.g., [8], we consider a graph G = (V,E) with
the following dictionary:

Graph Hilbert Space or Operator

v ∈ V Hv

X ⊆ V HX = ⊗
v∈X Hv

X ⊂ Y ⊂ V B(HX) � B(HX) ⊗ 1Y\X .

The isomorphism is the obvious one. For compactness of
notation, elements of B(HX) will be called “operators acting
on X”. V is assumed to be finite, as are the Hv .

A useful procedure [5] that is natural to define in this graph
picture is the localization of an operator to a particular region,
i.e., a subset of vertices. Given an operator A, the X localization
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of A, [A]X, is defined as

[A]X =
∫

U (X̄)
UAU †dμ(U ), (1)

where μ is the Haar measure over the unitary group on X̄ =
V \ X. Note that [A]X acts as the identity on X̄ and ‖[A]X‖ �
‖A‖, where ‖ · ‖ is the operator norm.

III. ALGEBRAIC BOUNDS ON CONTROL

In this section, we show that achievable rates of two impor-
tant tasks in quantum information processing, quantum state
transfer between subsystems, and entanglement generation
obey bounds that follow directly from bounds on the norms of
certain commutators. This allows the extensive work on such
bounds (see, e.g., [8]) to be used to obtain speed limits for
quantum control tasks.

A. Quantum state transfer

Suppose we would like to transfer a quantum state from
region X to region Y of a local spin system (perhaps a
spin chain) by applying an operator T , which may, for
instance, be the time-evolution operator generated by some
local Hamiltonian. To bound the speed with which this task
can be accomplished, we must fix an appropriate figure of
merit. One possible choice would be

inf
ρ

F (TrX̄ρ,TrȲ ρT ), (2)

where ρT = TρT †, F is the fidelity, and the infimum is taken
either over all density operators of the full system or perhaps
over all density operators of the form ρX ⊗ ρX̄ for fixed ρX̄. If
this quantity is large, then T can be used to transfer arbitrary
states from X to Y .

Unfortunately, upper bounding this figure of merit is
difficult due to the presence of the infimum. A more convenient
figure of merit follows from noting that if T is able to effect
state transfer for any input state, then there must be some
operator A on X, which can be thought of as a state-preparation
operator, such that

F (TrȲ TρT †,TrȲ T AρA†T †) (3)

is small since we must be able to transfer orthogonal pairs
of states. In Appendix A, we show that this characterization
of state transfer is related to the speed with which classical
information can be sent from one end of the chain to the other.

Now we can prove a bound on this figure of merit. Denote
OT = TOT †.

Theorem 1. Let X and Y be disjoint subsystems of a system
S in the initial state ρ. For some fixed unitary T on S, suppose
that for any OX, OY acting on X and Y , respectively,

‖[(OX)T ,OY ]‖ � cT (X,Y )‖OX‖‖OY ‖ (4)

holds, with cT a scalar function of subystems X and Y , for
operator T . Then if A is some operator on X, the fidelity
between the reduced states of subsystem Y given the overall
states TρT † and T AρA†T † satisfies

F � 1 − cT (X,Y )‖A‖, (5)

where we use the definition of the fidelity F (ρ,σ ) =
Tr

√√
σρ

√
σ generalizing the pure state definition F (ψ,φ) =

|〈ψ |φ〉|.
Proof. The trace distance between the two reduced states

on system Y is

d = ‖TrȲ (AT ρT A
†
T − ρT )‖1. (6)

Using the triangle inequality, the properties of localized
operators as defined above, and the monotonicity of the trace
distance under partial trace, we obtain the following bound:

d � ‖TrȲ (AT ρT A
†
T − [AT ]Ȳ ρT [A†

T ]Ȳ )‖1

+‖TrȲ ([AT ]Ȳ ρT [A†
T ]Ȳ − ρT )‖1

� ‖AT ρT A
†
T − [AT ]Ȳ ρT [A†

T ]Ȳ ‖1

� 2‖AT − [AT ]Ȳ ‖, (7)

where the final inequality is proven in the lemma below. Note
that the second term in the first line of this calculation vanishes
because the operator [A]Ȳ acts as the identity on Y , so that
when the partial trace is taken, the two resulting operators
are the same. Following [5], we bound this norm distance by
taking advantage of the unitary invariance of the Haar measure

‖AT − [AT ]Ȳ ‖ =
∥∥∥∥AT −

∫
UAT U †dμ(U )

∥∥∥∥
=

∫
‖[AT ,U ]‖dμ(U )

� cT (X,Y )‖A‖, (8)

where the integral is over the unitary group on Y . We conclude
that d � 2cT (X,Y )‖A‖. Using the relation F (ρ,σ ) � 1 −
1
2‖ρ − σ‖1 between the fidelity and the trace distance, we
obtain the stated bound on fidelity, Eq. (5). �

This theorem quantifies the relationship between the alge-
braic features of the operator T , as captured by the bound
cT (X,Y ) on the norms of the commutator Eq. (4), and its
operational features. In particular, if cT (X,Y ) is small, the
influence of a local operator on system X on the state of system
Y after application of T is also small. The most interesting
situations to consider are those in which local operations on X

and Y may be applied at will, but T is given, as might be the
case for a pair of coupled qubits or a spin system with fixed
interaction terms and variable local control fields.

Here we prove the lemma connecting the trace distance
of density operators to the operator norm distance of unitary
operators.

Lemma 1. Let A and B be unitary operators on a finite-
dimensional Hilbert space. Then for density operator ρ

‖AρA† − BρB†‖1 � 2‖A − B‖. (9)

Proof. The norm difference on the left-hand side can be
bounded by a supremum over operators on the Hilbert space
as

‖AρA† − BρB†‖1 � sup
X �=0

‖AXA† − BXB†‖1

‖X‖1
. (10)

This is the trace norm ‖A × A† − B × B†‖1 of the superop-
erator defined by (A × A† − B × B†)(ρ) = AρA† − BρB†.
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Using results from [9] for the superoperator trace and diamond
norms for superoperators of this form, we obtain

‖A × A† − B × B†‖1 � ‖A × A† − B × B†‖�
� 2‖A − B‖. (11)

�
As a simple illustration of the main result of this section,

consider a spin chain with N sites evolving under a Hamilto-
nian H that preserves the numbers of up and down spins. In
other words, we have [H,Z1 + · · · + ZN ] = 0. Suppose that
the chain is initialized in the state |1〉 with all spins down
except the first, then allowed to evolve under H for time t . We
would like to know the probability p(t) of a spin flip at the N th
site. Denoting spin down and up by |0〉 and |1〉, respectively,
we have

1 − p(t) = 〈0|(e−iH t |1〉〈1|eiHt )N |0〉
= F 2[(e−iH t |1〉〈1|eiHt )N,(e−iH t |0〉〈0|eiHt )N ]

= F 2[(e−iH tX1|0〉〈0|X1e
iHt )N,(e−iH t |0〉〈0|eiHt )N ],

(12)

where |0〉 is the state with all spins down. Applying the bound
Eq. (5) and using the fact that ‖X1‖ = 1 we find

1 − p(t) � [1 − ct ({1},{N})]2, (13)

where ct ({1},{N}) is the Lieb-Robinson coefficient for regions
separated by graph distance N − 1 at times t apart. For
compactness, we have written ct instead of cU (t). See Sec. IV
for explicit expressions for this coefficient. Rearranging, we
obtain

p(t) � ct (N − 1)[2 − ct (N − 1)]. (14)

B. Entanglement generation

Another task of interest for quantum information processing
is entanglement generation. Suppose that two distant regions
begin in a separable state and we would like to entangle
them by applying T . Can we do so? We start by proving
a theorem showing that if all correlations between two
subsystems, as measured by connected correlation functions
of norm-bounded operators, are initially small and the constant
cT (X,Y ) [see Eq. (4)] is bounded close to zero, the fidelity of
the reduced state of XY with any maximally entangled state
after application of T is bounded by a number less than 1.

Theorem 2. Let ρ be a state of a bipartite d × d-
dimensional system XY such that for any A,B Hermitian
operators on X and Y , respectively, with ‖A‖,‖B‖ � 1, the
bound |〈AB〉c| � f � 2/3 on the magnitude of the connected
correlator 〈AB〉 − 〈A〉〈B〉 holds. Then

F (ρ,ψ) �
√

79

81
+ 2f

27
− f 2

18
(15)

for any maximally entangled state �.
Proof. Let |�〉 be a maximally entangled state of Cd ⊗ Cd .

For an arbitrary density matrix ρ, let � = ρ − |�〉〈�|.
For A ∈ B(Cd ) ⊗ 1d and B ∈ 1d ⊗ B(Cd ) Hermitian with
‖A‖,‖B‖ � 1, the connected correlation function of A and

B in the state ρ is

〈AB〉c = Tr(ρAB) − Tr(ρA)Tr(ρB)

= 〈�|AB|�〉 − 〈�|A|�〉〈�|B|�〉
+ Tr(�AB) − Tr(�A)Tr(�B). (16)

Rearranging and taking the modulus

|〈AB〉c − 〈�|AB|�〉 + 〈�|A|�〉〈�|B|�〉|
� |Tr(�AB)| + |Tr(�A)||Tr(�B)|
� ‖�‖1‖A‖‖B‖ + ‖�‖2

1‖A‖‖B‖
� ‖�‖1 + ‖�‖2

1 � 3‖�‖1. (17)

The last inequality used the fact that ‖�‖1 � ‖ρ‖1 +
‖|�〉〈�|‖1 = 2. Now using the reverse triangle inequality

3‖�‖1 � ||〈�|AB|�〉 − 〈�|A|�〉〈�|B|�〉| − |〈AB〉c||
(18)

For any maximally entangled state, there are A′ and B ′ such
that 〈A′B ′〉c � 2/3, so that

3‖�‖1 �
∣∣ 2

3 − |〈A′B ′〉c|
∣∣ (19)

Now, it is given that for any A, B, |〈AB〉c| � f . Then

3‖�‖1 � 2
3 − f, (20)

where we can drop the modulus since by assumption f � 2/3.
Then using F 2 � 1 − ‖�‖2

1/2 where F is the fidelity of ρ with
|�〉〈�|, we obtain the stated bound Eq. (15). �

Now we relate the correlation structure of the system after
application of the operator T to the algebraic structure of the
time-evolved operators, as captured by Eq. (4).

Theorem 3. Let a system S be initialized in the state ρ

with the property that for any disjoint subsystems X,Y ⊂ S

and any A and B with ‖A‖,‖B‖ � 1 acting on X and Y ,
respectively, |〈ABc〉| � f0(X,Y ). Then fixing subsystems X

and Y and operators A and B on these, for any unitary operation
T on S the following inequality holds for ρT :

|〈AB〉c| � f0(Z,Z̄) + 2[(cT (X,Z̄) + 1)(cT (Z,Y ) + 1) − 1]

(21)

for any subsystem Z such that X ⊆ Z and Y ⊆ Z̄.
Proof. Define �A = AT − [AT ]Z and �B = BT − [BT ]Z̄ .

Then we have

|〈AT BT 〉c| = |〈(�A + [AT ]Z)(�B + [BT ]Z̄)〉c|
� |〈[AT ]Z[BT ]Z̄〉c| + |〈[AT ]Z�B〉c|

+ |〈�A[BT ]Z̄〉c| + |〈�A�B〉c|
� |〈[AT ]Z[BT ]Z̄〉c| + 2‖�B‖

+ 2‖�A‖ + 2‖�A‖‖�B‖
� f0(Z,Z̄) + 2cT (Y,Z) + 2cT (X,Z̄)

+ 2cT (X,Z̄)cT (Y,Z), (22)

where the last inequality was established in the proof of a
previous theorem. Now we can switch into the Schrödinger
picture, i.e., interpret this as a bound on |〈AB〉c| in the state
ρT . This is the stated bound, Eq. (21). �
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Note that the appearance of the subset Z in Eq. (21)
accounts for correlations between subregions of the spin
system that may lead to correlations between regions X and Y

after application of T .
Here again we have elucidated the relationship between

algebraic and operational features of the operator T , this time
to show that a small value of cT (X,Y ) implies low fidelity of
the state of the joint system XY with any maximally entangled
state of the two subsystems. This allows us to bound the
entanglement-generating capabilities of T .

IV. LIEB-ROBINSON BOUNDS

In this section, we restrict to the case in which T is the
time-evolution operator for a system built from a graph G =
(V,E) as described above, generated by a local Hamiltonian
of the form

H (t) =
∑
v∈V

�1(v,t) +
∑
e∈E

�2(e,t), (23)

where the graph-Hamiltonian dictionary is

Graph Hamiltonian

v ∈ V �1(v,t) ∈ B(Hv), ‖�1(v,t)‖ � B

e ∈ E �2(e,t) ∈ B(He), ‖�2(e,t)‖ � J .

We can now derive the Lieb-Robinson velocities for simple
graphs that model cases of experimental importance. With
these results, we shall convert the bounds Eqs. (5) and (15)
into concrete speed limits on quantum-information-processing
tasks in local spin systems.

If the vertex spaces represent spin degrees of freedom, the
�1 operators represent magnetic fields and the �2 operators
nearest-neighbor spin-spin couplings. Many control problems
assume that the �2 operators are time-independent and the
�1 vary in time. This model captures, for example, the
setting in which the couplings between spins are fixed but
an experimentalist is free to vary some applied fields.

The Lieb-Robinson bound [6] demonstrates that a local
Hamiltonian in the above sense implies a dynamical locality
in the space of operators on the full graph Hilbert space. For
our purposes a convenient statement is provided below.

Theorem 4. Let H be a local Hamiltonian of the form in
Eq. (23) for some graph G = (V,E) with the correspondences
described above. Then if X,Y ⊂ V disjoint and A, B are
operators on X and Y , respectively,

‖[A(t),B]‖ � 2‖A‖‖B‖
∞∑

n=1

(2J t)n

n!
N (n), (24)

where A(t) = U
†
t AUt for Ut the time-evolution operator

generated by H (t) and N (n) is the number of paths of length
n from X to Y .

A more general form of this theorem was presented origi-
nally in [6]. An easier proof for time-independent Hamiltonian
is given in [8] and may be readily extended to time-dependent
Hamiltonians (see Appendix B).

To find bounds on quantum state transfer and entanglement
generation, we must find ct (X,Y ) satisfying Eq. (4). This
comes down to counting the number N (n) of paths of length n

FIG. 1. Contour plot of IR(4J t), the function controlling the
bound on the fidelity of quantum state transfer in a spin chain [see
Eqs. (5) and (26)]. The function is truncated above 1, the bound c � 2
always holds by the triangle inequality. A very sharp light cone with
speed 6J emerges.

starting in X and ending in Y . Suppose that G is an arbitrary
graph with maximum vertex degree d, and let dist(X,Y ) = R,
the minimum graph distance between vertices in subsets X and
Y . For n < R, N (n) = 0. Otherwise, we have N (n) � |X|dn.
Then as in [10]

ct (X,Y ) � 2
∞∑

n=R

(2J t)n

n!
N (n)

� 2|X|e−R

∞∑
n=0

(2eJdt)n

n!

� 2|X|e2edJ t−R. (25)

For G a linear graph (d = 2), with diam(X) < R and
similarly for Y , notice that we can collapse all the vertices
of X (and any vertices surrounded by X) into a single vertex
vX with associated Hilbert space HvX

= HX, and similarly for
Y , to obtain a new graph G′ describing the same system but
with the subsystems of interest now single vertices. This does
not change the maximum strength of the edge interactions,
nor does it change the degree of the graph, so we can assume
without loss of generality that |X| = |Y | = 1. Then we have
N (n) � C(n, 1

2 (n + R)), so that

ct � 2
∞∑

n=R

(2J t)n

n!

(
n

n+R
2

)

= 2IR(4J t), (26)

where Iν(x) is the modified Bessel function of the first kind.
The exponential form of the bound [last line of Eq. (25)]

lends itself to interpretation as a speed limit v = 2edJ for
arbitrary graph structure. The bound Eq. (26) for the d = 2
linear graph is not as convenient, but graphically (Fig. 1) it
can be seen to correspond to a speed limit with speed 6J ,
an improvement over the d = 2 case of the general limit in
Eq. (25).

It is easy to insert these bounds into the bound Eq. (5) on
quantum state transfer. We then see that the fidelity of quantum
state transfer is exponentially suppressed outside a light cone
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defined by the Lieb-Robinson speed, i.e., for R > 6J t in the
case of the spin chain.

To obtain an illuminating speed limit for entanglement
generation, note that the time-dependent term in Eq. (21) is
proportional to

[cT (X,Z̄) + 1][cT (Y,Z) + 1]. (27)

If as above cT (X,Y ) is a function of R and t , i.e cT (X,Y ) =
g(R,t), let Z be such that dist(X,Z̄) = dist(Z,Y ) = R/2. Then
this term can be bounded by

[g(R/2,t) + 1]2. (28)

Recalling Eq. (25), we see that the maximum speed associated
to entanglement generation is twice that associated to quantum
state transfer. This is reminiscent of the picture of entanglement
spread via diverging Bell pairs proposed in [11].

V. DISCUSSION

As an example of the use of these bounds for determining
the limits of control of quantum information tasks we consider
the problem of quantum state transfer over a finite Heisenberg
spin chain, i.e., a chain of length L with nearest-neighbor
couplings −J �σn × �σn+1/2, under the application of arbitrary
local magnetic fields, i.e., 1-local control terms Bn(t)σ z

n .
The two-body interaction terms have norm J , so application
of Eq. (26) yields a maximum transfer speed v = 6J in
the presence of arbitrary magnetic fields, including time-
dependent fields with local spatial variation along the chain. In
a previous study, Murphy et al. [12] searched numerically for
optimal controls from a set of time-dependent magnetic fields
that would transfer a single spin state between the two ends
of the chain. For chains of length L, they found control pulses
that achieved high fidelity (�∼ 10−4) quantum state transfer
from one end of the chain to the other in times greater than
t∗ ≈ L/2J [12].

The achievable fidelity was found to fall off rapidly for
shorter transfer times, indicating a numerically extracted speed
limit of v ≈ 2J . This is consistent with our result for quantum
state transfer, which applies to a general system with any 2-
local interactions and 1-local control fields.

It is interesting to consider the meaning of the gap between
our bound v = 6J for general 2-local spin chain Hamiltonians
and the numerically obtained maximal velocity. The latter
was obtained for simulations restricted to the single-particle
subspace, where the dynamics are amenable to treatment in
terms of a group velocity. Indeed, the value v = 2J is the
maximum value of the group velocity for this system, which
may be obtained from analytic solution of the Heisenberg
Hamiltonian restricted to the single excitation subspace.

It has been previously noted that there can be a large gap
between the group velocity, an intrinsic single-particle dy-
namical metric relevant to propagation of local excitations, and
Lieb-Robinson bounds [10,13]. The latter hold for arbitrary ex-
citations not restricted to single spins and thus are relevant also
to more general quench dynamics, in particular to the global
quenches that have been rationalized in terms of creation and
subsequent interference of multiple entangled quasiparticle
pairs [14]. Experiments with ion traps illustrate this distinction
for local [15] and global [10] quenches of a finite chain of ions

emulating the XY model with approximately nearest neighbor
interactions. Specifically, the authors of [15] indicated single
excitation propagation velocities equal to the group velocity
(Fig. 4(e) in [15]) for interactions scaling as 1/r1.41, while the
authors of [10] showed significantly higher velocities for the
propagation of correlations under global quenches (Fig. 3(l)
in [10]) although extraction of a velocity is problematic here
since the system was not as well located in the nearest-neighbor
regime. For longer-range power-law (1/rα) interactions, recent
theoretical work showed that, depending on the relative
magnitude of the power law α and the lattice dimensionality
D, generalizations of the Lieb-Robinson bounds can also
allow finite information propagation velocities [16–19]. In
this context it is interesting that the authors of [17] also
noted a striking gap between the generalized Lieb-Robinson
bound and considerably smaller actual propagation times for
a long-range many-body Hamiltonian.

A second example of correlations propagating at a velocity
greater than the single excitation group velocity following
a global quench can be found in experiments with trapped
atoms under conditions of restricted occupancy. Although the
Lieb-Robinson bounds do not apply in general to bosonic
systems because the Hamiltonians are unbounded [20], a
finite Hamiltonian norm is nevertheless obtained if the site
occupancy is restricted to a fixed finite value. The experiments
in [21] fall into this category, restricting site occupancy to
two or fewer atoms within an emulation of the Bose-Hubbard
model in a finite one-dimensional chain of atoms trapped in an
optical lattice. These experiments, and associated calculations
in [22], also showed propagation velocities for correlation
functions that were intermediate between group velocity and
the Lieb-Robinson bound.

While qualitative, these recent experiments nevertheless
indicate that there is a significant unexplored range of complex
dynamics for increasingly efficient and fast quantum state
transfer with nonlocal control fields. It is thus an interesting
challenge for engineering of spatiotemporal control fields to
determine whether our commutator bound on quantum state
transfer can be achieved.

Our results are related to those of Bravyi and co-workers
in [5], but we focus here more on constraints on the
performance of quantum-information-processing tasks. For
instance, whereas [5] showed that a state obeying an area
law for entanglement will evolve in finite time to another
area law state under a local Hamiltonian, we examine the
rate at which entanglement may form between two specific
subsystems, not necessarily bipartitioning the entire graph. In
principle, the bound of Bravyi et al. on the classical channel
capacity between two subregions separated in space and time
and linked by evolution under a local quantum Hamiltonian can
be used to bound quantum state transfer times. Our formulation
in terms of fidelities provides a direct and natural language for
general analysis of quantum-information-processing tasks.

In this work, we use algebraic methods to prove the
existence of fundamental limits on rates of quantum state
transfer and entanglement generation. These limits can prove
useful for understanding the ultimate limits of physical real-
izations of quantum information processing. The application
to quantum spin systems with local interactions and control
fields yielded Lieb-Robinson-type bounds for quantum state
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transfer and entanglement generation. A comparison to the
results of numerical optimal control calculations [12] for
such systems suggests that unexplored regimes of quantum
dynamics may offer opportunities for enhanced performance
of essential quantum processing tasks.
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APPENDIX A: ORTHOGONALIZATION TIMES AND
QUANTUM INFORMATION PROCESSING

A fundamental question in quantum mechanics is how fast
a system can evolve from some initial state to an orthogonal
one. This has been addressed before, for example, in [3]
and [4]. Here we use this approach to obtain bounds on the
rates at which classical information, quantum information, and
entanglement can be shared between the two parts of a bipartite
system under generic Hamiltonian evolution (not necessarily
local). Note that, in general, these rates are much larger than
those achievable with local Hamiltonians, as in the body of the
paper.

We begin with a lemma that will allow us to construct
explicitly the state that orthogonalizes the fastest under a given
Hamiltonian evolution. This inequality then gives us a way to
bound several interesting minimum times for any quantum
system in a pure state.

Lemma 2. Let E1 � E2 � · · · � EN with EN − E1 � π .
Then for Mij = cos(Ei − Ej ), ri = (δi,1 + δi,N )/2 minimizes
rT Mr subject to the constraints ri � 0 and

∑
i ri = 1.

Proof. Define the function f (r) by

f (r) =
∑
ij

rirjMij . (A1)

Then the first and second derivatives of f are given by

∂f

∂rk

= 2
∑

j

rjMjk,
∂2f

∂rj ∂.rk

= 2Mjk. (A2)

From the value of r in the statement of the lemma, we can move
in the direction ±(r̂1 − r̂N ) and still satisfy the constraints. The
first derivative in this direction is proportional to(

∂

∂r1
− ∂

∂rN

)
f = 2

∑
j

rj (Mj1 − MjN )

= M11 − M1N + MN1 − MNN = 0 (A3)

and the second derivative to

M11 − M1N − MN1 + MNN = 2 − M1N − MN1 > 0. (A4)

We can also move in the direction 2r̂k − r̂1 − r̂N . In this
direction, the first derivative is proportional to

2
∂

∂rk

− ∂

∂r1
− ∂

∂rN

= 2
∑

j

rj (2Mjk − Mj1 − MjN )

= (2M1k − M11 − M1N + 2MNk − MN1 − MNN )

= 2(M1k + MkN − 1 − M1N ) � 0, (A5)

where we used that for x,y,x + y ∈ [0,π ],

tan

(
y

2

)
� tan

(
π

2
− x

2

)
= cot

(
x

2

)

1 � tan

(
x

2

)
tan

(
y

2

)

=
(

cos(x) − 1

sin(x)

)(
cos(y) − 1

sin(y)

)
sin(x) sin(y) � (cos(x) − 1)[cos(y) − 1]

cos(x) + cos(y) − 1 � cos(x) cos(y) − sin(x) sin(y)

= cos(x + y). (A6)

This establishes that ri = (δi,1 + δi,N )/2 is a local minimum
of the constrained optimization problem. Since all the Mjk are
nonnegative, it is simple to verify that f is convex on the region
over which we arre optimizing, where the ri are nonnegative.
Therefore the local minimum is a global minimum.

1. Whole system orthogonalization

Now we are in a position to find bounds on rates of
orthogonalization. Let ψ be a pure state of a d-dimensional
system evolving under a Hamiltonian H with energies Ek .
Defining �max = Emax − Emin, we see that for times t such
that �maxt � π/2,

|〈ψ(t),ψ〉|2 =
d−1∑

j,k=0

rj rke
i(Ej −Ek)t

=
∑
j,k

rj rk cos(�jkt) � 1

2
[cos(�maxt) + 1]

= cos2

(
1

2
�maxt

)
(A7)

with the eigenbasis basis chosen so that the rk are real. The
inequality follows from the lemma proven above. Then the
Bures angle between the initial and time t states is bounded
by [23]

θ (ψ(t),ψ) = arccos |〈ψ(t),ψ〉| � 1
2�maxt, (A8)

resulting in an orthogonalization time t = π/�max. Note that
the presence of �max in the bound reflects the fact that
entangled states are useful for estimation of parameters corre-
sponding to classical fields (1-body operators). An entangled
state takes advantage of the large �max of the sum of many
local operators, while a product state does not. In terms of
fidelities, this is the difference between (cos θ )n and cos(nθ ).
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2. Quantum information transfer

Consider a bipartite system in a pure state ψ with
Tr1(ψψ†) = ρ(2). Then, since the Bures angle is nondecreasing
under partial trace, we also have

θ (ρ(2)(t),ρ(2)) � 1
2�maxt. (A9)

We define t
Q
∗ = π/�max. This is the minimum time required

after an operation on subsystem 1 for subsystem 2 to evolve to
an orthogonal state. Since, in sending quantum information,
the sender should be able to cause the receiver’s system
to evolve to any state, this is a reasonable measure of the
minimum time to send a qubit.

3. Classical information transfer

Now let ψA(t) = e−iH tAψ and ψB (t) = e−iH tBψ for some
A,B ∈ B(H). By the triangle inequality

θ [ψA(t),ψB(t)]� θ [ψA(t),Aψ] + θ (Aψ,Bψ) + θ [Bψ,ψB(t)]

� θ (Aψ,Bψ) + �maxt. (A10)

If θ (Aψ,Bψ) = π/2, then this bound is trivial. However,
consider the situation in which the system is bipartite and
A,B act as the identity on subsystem 2. Then

θB

(
ρ

(2)
A (t),ρ(2)

B (t)
)

� θB

(
ρ

(2)
A (t),ρ(2)

A

) + θB

(
ρ

(2)
A ,ρ

(2)
B

) + θB

(
ρ

(2)
B ,ρ

(2)
B (t)

)

� θB[ψA(t),ψA] + θB

(
ρ

(2)
A ,ρ

(2)
B

) + θB(ψB,ψB(t))

� θB

(
ρ

(2)
A ,ρ

(2)
B

) + �maxt. (A11)

Using that θB(ρ(2)
A ,ρ

(2)
B ) = 0, we find

θB

(
ρ

(2)
A (t),ρ(2)

B (t)
)

� �maxt. (A12)

We define tC∗ = π/2�max. Since this is the minimum time
required for the reduced states on subsystem 2 conditioned on
the choice of one of two operations on subsystem 1 (a classical
random variable) to become perfectly distinguishable, this is
a reasonable measure of the minimum time to send a classical
bit.

4. Entanglement generation

Let ψ be a product state of a bipartite d2-dimensional
system and let φ be maximally entangled. Using the Schmidt
basis for φ as follows:

|〈φ,ψ〉| =
∣∣∣∣∣∣
(

1√
d

∑
k

〈kk|
)⎛

⎝∑
ij

αiβj |ij 〉
⎞
⎠

∣∣∣∣∣∣
= 1√

d

∣∣∣∣∣
∑

k

αkβk

∣∣∣∣∣ � 1√
d

. (A13)

Then θB(φ,ψ) � arccos d−1/2 so that the minimum time to
generate a maximally entangled state from a product state is

tE∗ = 2

�max
arccos d−1/2. (A14)

These bounds can all be achieved, as may be demonstrated
constructively using a system of two qubits evolving under
the Hamiltonian H = Z1Z2 from the initial state |0+〉 with
operators A = X1, B = 1 (for the information transfer times)
or initial state | + +〉 (for entanglement time). Thus we have

tC∗ � tE∗ < tQ∗ = 2tC∗ . (A15)

In this sense, classical information can be sent from one
part of a bipartite system to another twice as fast as quantum
information. This leads to an interpretation of teleportation as
a way to beat a quantum speed limit using entanglement as
a resource if we imagine using the quantum dynamics of the
coupled systems to do the necessary classical communication.
This interpretation is bolstered by the fact that first generating
entanglement and then performing teleportation takes at least
as long as the minimum quantum transfer time.

It is not clear from this analysis that the distinction between
transfer times for classical and quantum information would
persist in the situation where the interaction between the
sender and the receiver is mediated by intervening subsystems,
as is the case in the spin chain. In the two-qubit example
given above, the halving of the transfer time is directly
related to the existence of what might be termed a “local
time-reversal operator”, i.e., an operator acting nontrivially
only on subsystem 1 that anticommutes with the Hamiltonian.
Such an operator cannot exist in the case of the spin chain with
local interactions.

APPENDIX B: LIEB-ROBINSON BOUNDS WITH
TIME-DEPENDENT HAMILTONIANS

A very clear proof of the Lieb-Robinson bound, in the
form given in Eq. (24), may be found in [8] for the case of
time-independent Hamiltonians. For application to quantum
control, we need to extend the result to the time-dependent
setting. This may be accomplished by a minor modification
of the proof given in that work. We present only the modified
step here.

Equation (2.27) of [8] defines the function

f (t) = [Tt (A),B] = [
τt

(
τ loc
−t (A)

)
,B

]
, (B1)

where A and B are operators on regions X and Y of a local spin
system, τt is the time-evolution superoperator corresponding
to a local Hamiltonian H , and τ loc

t is the time-evolution
superoperator corresponding to the Hamiltonian obtained by
getting rid of all terms in H that couple X and its complement
X̄. In particular, note that τ loc

t has B(X) as an invariant
subalgebra.

To extend to the time-dependent case, we replace τt by
τt→t0 , as the superoperator is no longer time-invariant. Now
we may compute the time-derivative of the first term in the
commutator. U (t ← s) is the unitary operator corresponding
to time-evolution from time s to time t , �(Z,t) is the operator
in the Hamiltonian at time t acting on subset Z of vertices,
and S�(X) is the set of all subsets of vertices with nonempty
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intersection with both X and X̄

d

dt
τt←0

(
τ loc

0←t (A)
) = d

dt
[U †(t ← 0)U †

loc(0 ← t)AUloc(t → 0)U (0 → t)]

= iU †(t ← 0)H (t)U †
loc(0 ← t)AUloc(t → 0)U (0 → t)

− iU †(t ← 0)Hloc(t)U †
loc(0 ← t)AUloc(t → 0)U (0 → t)

+ iU †(t ← 0)U †
loc(0 ← t)AUloc(t → 0)Hloc(t)U (0 → t)

− iU †(t ← 0)U †
loc(0 ← t)AUloc(t → 0)H (t)U (0 → t)

= iτt←0(H (t))Tt (A) − iτt←0(Hloc(t))Tt (A) + iTt (A)τt←0(Hloc(t)) − iTt (A)τt←0(H (t))

= i[τt←0(H (t)),Tt (A)] − i[τt←0(Hloc(t)),Tt (A)]

= i[τt←0(H (t) − Hloc(t)),Tt (A)]

= i
∑

Z⊂S�(X)

[τt←0(�(Z,t)),Tt (A)]. (B2)

The time derivatives of the unitary time-evolution operators follow from the time-dependent Schrödinger equation. Now the time
derivative of the function f (t) is

d

dt
f (t) =

[
d

dt
Tt (A),B

]

= i
∑

Z⊂S�(X)

[[τt←0(�(Z,t)),Tt (A)]B]

= −i
∑

Z⊂S�(X)

[[Tt (A),B],τt←0(�(Z,t))] − i
∑

Z⊂S�(X)

[[B,τt←0(�(Z,t))],Tt (A)]

= i
∑

Z⊂S�(X)

[τt←0(�(Z,t)),f (t)] − i
∑

Z⊂S�(X)

[Tt (A),[τt←0(�(Z,t)),B]]. (B3)

This matches Eq. (2.28) of [8], and the rest of the proof proceeds as in that work.
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