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Using quantum devices supported by classical computational resources is a promising approach to quantum-
enabled computation. One powerful example of such a hybrid quantum-classical approach optimized for
classically intractable eigenvalue problems is the variational quantum eigensolver, built to utilize quantum
resources for the solution of eigenvalue problems and optimizations with minimal coherence time requirements by
leveraging classical computational resources. These algorithms have been placed as leaders among the candidates
for the first to achieve supremacy over classical computation. Here, we provide evidence for the conjecture that
variational approaches can automatically suppress even nonsystematic decoherence errors by introducing an
exactly solvable channel model of variational state preparation. Moreover, we develop a more general hierarchy
of measurement and classical computation that allows one to obtain increasingly accurate solutions by leveraging
additional measurements and classical resources. We demonstrate numerically on a sample electronic system that
this method both allows for the accurate determination of excited electronic states as well as reduces the impact
of decoherence, without using any additional quantum coherence time or formal error-correction codes.
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I. INTRODUCTION

First conceived of by Feynman [1], quantum computers
have the potential to offer radical advances in solving important
problems ranging from optimization and eigenvalue problems
to materials design. One problem of particular interest is that
of quantum chemistry, where quantum computers have the
potential to offer an exponential speedup in the determination
of physical and chemical properties [2–4]. This problem has
received attention both because of its great practical utility and
because it is believed that it may be one of the first approaches
to demonstrate the superiority of a quantum computer over
currently available classical computers [5,6].

Recently, there have been a number of advances in quantum
chemistry on quantum computers both algorithmically and
technologically. The original approaches utilized the quantum
phase estimation (QPE) algorithm [7–9] and analyzed the use
of adiabatic state preparation in chemical problems [2,10–14].
Prototype implementations of several QPE-like algorithms
have now been verified in the laboratory [15–20]. However,
despite significant developments in quantum hardware across
a variety of platforms, many of these algorithms cannot be run
on current or near-future technology with sufficient accuracy to
reproduce and predict even simple chemical properties. This
is a result of the strict coherence time limitations of some
algorithmic implementations [21], which can be several orders
of magnitude larger than the capabilities of current hardware.

A hybrid quantum-classical approach was developed to
overcome these decoherence limitations [18,22]. Hybrid al-
gorithms rely on quantum processors only for specific tasks
that have a strong comparative advantage in the quantum
domain. Specifically, and critically, they are purposefully
designed to require coherent quantum superpositions for
minimal total operation time, thus reducing the overall impact
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of decoherence on the algorithm. Hybrid quantum-classical
variational approaches work analogously to classical varia-
tional approaches, by preparing a parametrized ansatz on the
quantum device and minimizing the energy with respect to the
parameters. The use of a quantum device expands the classes
of states one may explore, including many which are believed
to be classically intractable to model. This approach does not
require previous knowledge of the total quantum state, even a
parametrized set of a priori unknown unitary rotations are in
many cases sufficient, provided that the unitaries contain some
entangling elements. Since this approach was introduced, it has
been expanded and enhanced theoretically both in the general
sense [5,10,22] and for specific use with ion trap quantum
computers [23]. Recently, variants using a similar approach
for thermodynamic properties and extended systems have also
appeared [24,25].

The robustness and resource adaptive nature of this ap-
proach places it as a strong contender for the first algorithm to
surpass the capabilities of a classical computer. This crossover
could occur on a prethreshold or minimally error-corrected
quantum device, making it a near-term technological possibil-
ity [22]. This conjecture is supported by recent experimental
work comparing the performance of quantum phase estimation
with variational approaches on superconducting qubits, which
showed that variational methods have distinct advantages in
practice today [21]. The first algorithm to provide a clear,
demonstrable advantage in experiments over the best classical
alternatives will have enormous consequences, and even more
so if that application is industrially or societally relevant,
as in the case of chemistry. Error-resistant algorithms speed
the technological path to quantum supremacy, and therefore
are critically important at this juncture in the technology as
the field moves from proof-of-principle experiments toward
more complex tasks. To date, however, no theoretical studies
have addressed these algorithms specifically in the presence of
noise, nor have they introduced a practical method for lever-
aging their robustness for states other than the ground state.
Furthermore, current known methods for preparing excited
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FIG. 1. A cartoon schematic of the quantum subspace expansion
proposed in this work. One prepares a quantum state |�〉 that is
passed through a quantum channel. At the exit of the channel, partial
tomography of the state is used to expand in a linear subspace around
the resulting quantum state. This subspace is used to determine both
the ground and excited states of a quantum Hamiltonian of interest
while also potentially correcting for errors caused by the quantum
channel.

states are restricted to adiabatic preparation of excited states,
which suffer from prohibitive coherence time requirements, or
folded spectrum approaches which are prohibitively expensive
from both a measurement and optimization perspective.

In this work, we make two important strides forward
by showing that the robustness to errors holds in a
parametrization-independent model of these variational
algorithms in nonideal conditions and extend results to
excited states with no additional coherence time costs. We
do so by developing a model of variational state preparation
in the presence of noise, termed the variational channel
state (VCS) model. We then introduce a method we term a
quantum subspace expansion (QSE) (Fig. 1) requiring only a
polynomial amount of additional measurements and classical
computation that both mitigates the effect of decoherence
and provides approximations to electronic excited states.
This approach is placed within a more general hierarchy of
quantum and classical computation that further elucidates
the connection between these two types of computational
resources. Finally, the performance of these methods is
demonstrated numerically on a simple example electronic
system and the outlook of such methods are discussed.

A. Quantum chemistry

The electronic structure problem is a problem of great
interest due both to its ability to accurately model real
molecules from first principles and the potential of quantum
computers to greatly accelerate finding its solutions. Here, we
provide background on this topic and its mapping to quantum
computers to make the exposition self-contained. The problem
is defined by the electronic eigenstates of a fixed nuclear
configuration with positions and charges Ri and Zi with a
fixed number of electrons Ne. Under the Born-Oppenheimer
approximation, the nonrelativistic Hamiltonian governing the
interactions is given by

H = −
∑

i

∇2
ri

2
−

∑
i,j

Zi

|Ri − rj |

+
∑
i,j>i

ZiZj

|Ri − Rj | +
∑
i,j>i

1

|ri − rj | (1)

in atomic units, and Ri are nuclear positions, ri electronic
positions, and Mi are nuclear masses. This real-space rep-
resentation where fermion antisymmetry may be enforced
in the solutions is called the first-quantized representation.
While progress has been made in solving the first-quantized
problem on a quantum computer [26–30], in this work we will
focus on the case where the solution is projected into a finite
orthonormal basis and antisymmetry is enforced through the
operators, also known as the second quantized approach [31].
In this approach, the Hamiltonian is given by

H =
∑
pq

hpqa
†
paq + 1

2

∑
pqrs

hpqrsa
†
pa†

qaras, (2)

where the coefficients are determined by the integrals over the
chosen finite basis as

hpq =
∫

dσ ϕ∗
p(σ )

(
−∇2

r

2
−

∑
i

Zi

|Ri − r|

)
ϕq(σ ), (3)

hpqrs =
∫

dσ1dσ2
ϕ∗

p(σ1)ϕ∗
q (σ2)ϕs(σ1)ϕr (σ2)

|r1 − r2| , (4)

where ϕi are spin orbitals and σi are the spatial and spin degrees
of freedom of an electron as σi = (ri,si). The operators a

†
i and

ai obey the standard fermion commutation relations as

{a†
p,ar} ≡ a†

par + ara
†
p = δp,r , (5)

{a†
p,a†

r } = {ap,ar} = 0. (6)

In quantum computing, one must represent antisymmetric
fermions by distinguishable qubits. At least two isomorphisms
are known for accomplishing this, namely, the Jordan-Wigner
[32,33] and Bravyi-Kitaev transformations [34–36]. Each of
these approaches have their tradeoffs in implementation, but in
this work we will use the Jordan-Wigner (JW) transformation
defined by

a†
p =

(∏
m<p

σ z
m

)
σ+

p , (7)

ap =
(∏

m<p
σ z

m

)
σ−

p , (8)

σ± ≡ (σx ∓ iσ y)/2. (9)

This encoding allows one to express the second-quantized
Hamiltonian entirely in terms of tensor products of Pauli
operators. Moreover, this transformation leaves the number
of terms the same up to a constant factor, and may be used to
derive the Pauli representation of any desired fermion operator.

One practical property to note with regards to this mapping
is that it encodes all particle-number manifolds. That is, the
quantum chemistry Hamiltonian commutes with the number
operator N = ∑

i a
†
i ai , such that the number of electrons is

a good quantum number. Equivalently, the Hamiltonian can
be decomposed into a block-diagonal representation where
different number states are uncoupled. Using this symmetry
classically allows one to remain in the desired number
manifold at all times. However, on a quantum device, the
plethora of unphysical excited states can pollute the spectrum
as a result of this wasteful encoding. While some approaches
have been developed to project out only the correct states
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at the operator level [37], provably polynomial methods for
doing this are still under development. We explore in the body
of this work how these unphysical excited states may enter in
practice, and show how they can be tempered using the extra
structure in our method.

B. Hybrid quantum-classical variational approach

Quantum phase estimation provided the first demonstra-
tion that quantum computers could aid in the solution of
electronic structure problems for quantum chemistry [2].
However, this approach requires long coherent sequences
of quantum operations that are not easily implemented on
current quantum architectures. In order to study this problem
on current and near-future architectures, a hybrid quantum-
classical approach called the variational quantum eigensolver
(VQE) was developed, which leverages classical computing
power alongside the power of a quantum device to minimize
coherence time requirements. Here, we briefly review the parts
of this algorithm relevant to the main body of this work,
and refer readers to the original works for more detailed
algorithmic analysis of the original approach [18,22].

The VQE approach depends on the choice of a state ansatz
parametrized on some set of experimental parameters �θ . These
parameters could be used to specify a gate sequence such
as in the unitary coupled cluster or parametrized adiabatic
state preparation approach [21,22], or they could be more
directly related to the hardware such as the angles on beam
splitters as was used in the first experimental implementation
of the algorithm [18]. In either case, the state that is produced
becomes a function of the discrete set of input parameters,
and we may call the resulting state |�(�θ)〉. The goal of
the algorithm is to find a set of parameters �θ such that the
expectation value of the energy 〈H 〉 is a minimum. That is,
we exploit the Rayleigh-Ritz variational formulation of the
eigenvalue problem [38,39] such that the best approximation
to the ground-state eigenvalue may be found from

min
�θ

〈H 〉 (�θ) = 〈�(�θ )| H |�(�θ )〉
〈�(�θ )|�(�θ)〉 . (10)

Generically, the VQE approach can be broken into three
subtasks, namely, preparation of |�(�θ )〉, measurement of
〈H 〉 (�θ) with respect to |�(�θ)〉, and the update of �θ based
on the measured values. In this work, we focus on how
projective measurement-type approaches can be extended and
better utilized.

In particular, we advocate a projective measurement ap-
proach for the determination of the average energy 〈H 〉 (�θ)
through repeated state preparation and partial tomography.
The specific Pauli measurements one performs following state
preparation can be derived from the mapping from fermionic
operators to qubits such as the JW transformation. That is,
without considering potential variance reducing optimizations,
the estimator for our average may be constructed as

〈H 〉 (�θ) =
∑
ij

〈a†
i aj 〉 (�θ) + 1

2

∑
ijkl

hijkl 〈a†
i a

†
j akal〉 (�θ) (11)

with each average 〈a†
i aj 〉 (�θ ) and 〈a†

i a
†
j akal〉 (�θ ) being de-

termined by first mapping the operator to a Pauli string

through the JW transformation, and determining the average
by repeated state preparation and measurement of the resulting
term on the quantum state |�(�θ )〉. The energy estimator is
then evaluated by classically adding each of the individual
estimators along with the weight factors hijkl . However, as
we will emphasize, the information gained by evaluating the
expectation values 〈a†

i a
†
j akal〉 on a quantum state is actually

far greater than simply the energy.
As has been shown previously [22], the minimization can

be modified using penalty terms to enforce certain constraints
on the final solution, similar to other penalty methods used
in quantum computing [40]. This is done by modifying the
Hamiltonian to

H → H +
∑

i

λi(Oi − oi)
2, (12)

where Oi and oi are the corresponding symmetry operators and
eigenvalues desired. In the limit that the penalty parameters λi

approach infinity, the solutions of the minimization exactly
satisfy the desired symmetry, assuming it is possible with the
given parametrization of the wave function. In practice, finite
values of λi are usually sufficient to satisfy the symmetry
to a desired precision. Of particular interest in this work
will be the spin and number operators S2 and N . We note
that if the symmetry operator is a one-fermion operator such
as the number operator N , then this modification requires
no additional measurements beyond those required for the
original measurements.

II. QUANTUM CHANNEL STATE PREPARATION

To understand the performance of a hybrid quantum-
classical variational approach on a quantum device experi-
encing interactions with an environment, here we develop a
theoretical model of variational state preparation that we term
the variational channel state (VCS) preparation. Specifically,
we define the VCS model as the preparation of an arbitrary
pure state followed by the action of a quantum channel defined
by a set of Kraus operators [41]. This model is well suited to the
study of quantum variational algorithms that are designed such
that the computation time is dominated by state preparation,
and the total run time is much smaller than the coherence
time of the device. The purpose of this model is to allow
one to study the optimal possible performance of quantum-
classical variational algorithms in experiments separate from
the considerations of ansatz choice or experimental protocol.

In this model, the problem to solve is to find the pure state
|�〉 that minimizes the energy given a target Hamiltonian H

after action by a quantum channel that maps ρ = |�〉 〈�| →∑
i KiρK

†
i , where Ki are the Kraus operators defining ef-

fective nonunitary actions of a dissipative quantum channel,
potentially determined by prior experiments. We assume that
errors in the system are independent between qubits, and thus
the Kraus operators have efficient local descriptions. While this
is not required for the theory to describe the optimal state under
given circumstances, it represents a situation where one would
expect to be able to obtain this information experimentally in
an efficient way. Mathematically, we may state this as choosing
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FIG. 2. The fidelity of the initial and final states as a function
of internuclear distance (R) in H2 after being passed through three
different quantum channels (Ph: dephasing, AP : amplitude and
phasing damping; Depol: depolarizing) improves under variation in
the presence of the channel (VCS solution, solid lines with markers)
when compared to the exact less ground state as input (ground state of
untransformed Hamiltonian, markers only). The dotted lines represent
the expected value of S2 for the same color line under the ideal
solution with a channel (solid line). From this, one can see the kinks
correspond precisely to discontinuous changes in the spin symmetry.
The discontinuities are indicators of locating a decoherence-resistant
state that is symmetry broken with respect to the exact, ideal
solution. The channels are characterized by an experiment time Tp

relative to coherence time parameters T1 = T2 = TDepol time such that
Tp/T1 = 0.05.

the pure state |�〉 that minimizes

Tr

[(∑
i

Ki |�〉 〈�| K†
i

)
H

]
. (13)

This problem is equivalent to an eigenvalue problem on the
transformed Hamiltonian H ′ = ∑

i K
†
i HKi (see the Appendix

for a short proof) such that one may solve

H ′ |�〉 = E |�〉 (14)

for the lowest eigenvalue and eigenvector pair to find the
solution, which both quantifies the optimal performance of
a quantum variational algorithm in these conditions and deter-
mines the input state that achieves this optimal performance,
independent of state parametrization.

In Fig. 2, we use the VCS model to compare the fidelity of a
4-qubit quantum state representing H2 communicated through
several channels with and without variational optimization,
with details of the channels given in the Appendix. We find that
variational optimization in the presence of the channel is able to
improve the fidelity and find decoherence-resistant subspaces
automatically in some cases. In the case of the dephasing
channel, the variational algorithm automatically locates a
decoherence-free subspace, whereas input of the ideal solution
without variational relaxation (or exact diagonalization of the
untransformed Hamiltonian, possible in this case due to the
limited number of qubits) in the presence of the channel
degrades in quality. The plot is shown as a function of R

due to the different nature of the quantum ground state over
the course of the dissociation, which leads to susceptibility to

different types of errors. In particular, as the bond stretches,
the required entanglement increases, and correspondingly the
sensitivity to dephasing and symmetry breaking.

The discontinuities in the variational curves of Fig. 2
correspond to a spin symmetry breaking in the Hamiltonian
resulting from an effective interaction induced by the quantum
channel. The nature of these discontinuities is highlighted by
plotting the expected value of S2 for each of the channels,
which is known to be 0 for the exact ground state. The
discontinuous change from a singlet to a mixed spin state
near a triplet correlates exactly with the kink seen in the curve.
This is an instance where the VCS model has automatically
found that triplet states are naturally more resistant to this type
of environmental noise, resulting in an effective symmetry
breaking in the preferred state. Interestingly, in the case of a
purely dephasing channel in this representation, the spin triplet
state forms an effective decoherence-free subspace. Thus, we
see that the variational eigensolver is partially self-correcting
in the presence of inevitable qubit decay and dephasing.

III. QUANTUM CHANNELS

While the quantum channels used in this work are standard,
for completeness we detail the specific Kraus operators
and channels used in this section as well as our mappings
between the experimental parameters corresponding to the
total experiment time Tp, the decay time T1, and the dephasing
time T2. In particular, we will recall the Kraus operator
definitions for the dephasing, amplitude and phase damping,
and depolarizing channel in terms of these parameters.

One of the simplest quantum channels is the dephasing
channel, which is related to the T2 time of quantum systems.
It has a set of Kraus operators defined by

FP (p̃i)[ρ] =
∑

i

KiρK
†
i , (15)

K0 =
√

1.0 − p̃i

2
I, (16)

K1 =
√

p̃i

2
Z, (17)

where Z is the standard Pauli z matrix. The effect of this map
on an arbitrary one-particle density matrix is given by

FP (p̃i)[ρ] =
(

ρ00 (1 − p̃i)ρ01

(1 − p̃i)ρ10 ρ11

)
, (18)

where we choose the values of p̃i = 1 − exp(−Tp/T2) such
that the resulting action on a one-qubit density matrix is given
by

FP (p̃i)[ρ] =
(

ρ00 e−Tp/T2ρ01

e−Tp/T2ρ10 ρ11

)
. (19)

Another important quantum channel we will consider in
more detail in this work is an amplitude and phase damping
channel applied independently to each qubit with three input
parameters, namely, a total time of state preparation Tp and the
qubit decay and dephasing times T1 and T2. Mathematically,
we construct the amplitude and phase damping channels
in a Kraus operators formalism such that the quantum
map FAP (pi)[ρ] = FP (p̃i)[FA(pi)[ρ]] where FA and FP are
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amplitude and phase damping operators. FP is defined as
above, and FA is given by

FA(pi)[ρ] =
∑

i

KiρK
†
i , (20)

K0 =
(

1 0
0

√
1 − pi

)
, (21)

K1 =
(

0
√

pi

0 0

)
. (22)

The probabilities are determined by the probability such an
event would have occurred in the preceding gate operation,
given some values of T1 and T2.

The effect of the composite map on an arbitrary one-particle
density matrix is given by

FAP (pi)[ρ] =
(

ρ00 + piρ11 (1 − p̃i)
√

1 − piρ01

(1 − p̃i)
√

1 − piρ10 (1 − pi)ρ11

)

(23)

and the values of pi and p̃i are determined such that

FAP (p̃i)[ρ] =
(

ρ00 + (1 − e−Tp/T1 )ρ11 e−Tp/T2ρ01

e−Tp/T2ρ10 e−Tp/T1ρ11

)
.

(24)

It is clear from this construction that the relevant dimensionless
parameters that determine performance will be Tp/T1 and
Tp/T2, or the ratios of the state preparation time to the decay
and dephasing time of the qubits.

Finally, we also consider the depolarizing quantum channel
FD that corresponds to uniform contraction of the Bloch
sphere of a qubit, and has corresponding Kraus operators given
by

FD(pi)[ρ] =
∑

i

KiρK
†
i , (25)

K0 =
√

1 − pi, (26)

K1 =
√

pi

3
X, (27)

K2 =
√

pi

3
Y, (28)

K3 =
√

pi

3
Z, (29)

where X, Y , and Z correspond to the standard Pauli matrices.
In the case of the depolarizing channel, we choose pi = 1 −
exp(−Tp/T2).

The qualitative effects of a different number of channels
under the VCS model on the electronic ground state of H2

in a STO-3G basis are depicted in Fig. 3. In this work, all
channels utilize parameters of (Tp/T1) = (Tp/T2) = 0.05, or
a total gate sequence time corresponding to roughly 5% of an
expected coherence time.
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FIG. 3. The exact solution of the VCS model for the ground
state of H2 is shown for a number of different quantum channels
including amplitude and phase damping (AP ), dephasing only (Ph),
and depolarizing noise (Dep). These results are shown alongside
both the exact (Ex) ground state, an antisymmetric product state
approximation (RHF), and the best solution of a dephasing channel
constrained to have correct spin (S2 = 0). It is seen that dephasing
noise is sufficient to destroy the entanglement required to describe the
dissociated limit, in that the solution without symmetry constraints
obtains an accurate energy, but only by breaking spin symmetry in an
unphysical way, as evidenced by the difference when compared to the
optimal dephasing solution under symmetry constraints. Other types
of noise raise the energy of the whole curve due to number symmetry
breaking. The kink in the curves without symmetry enforcement
results from a spin symmetry breaking in the variationally optimal
solution in the presence of decohering noise.

IV. QUANTUM SUBSPACE EXPANSION FOR
EXCITED STATES

We now move on to extensions of the variational method
to the capturing of excited states. To date, hybrid variational
quantum-classical algorithms have focused on the ground state
in ideal conditions, however, we will show that through a
straightforward extension of the original machinery, one may
both substantially mitigate decoherence and obtain excited
states. The original VQE algorithm determines one- and
two-electron reduced density matrices (1- and 2-RDM) of
the system from which static properties of the chemical or
material can be determined without any additional quantum
experiments. The one- and two-electron reduced density
matrices for fermionic systems are defined as

1Di
k = 〈�| a†

i ak |�〉 = Tr[a†
i akρ], (30)

2D
ij

kl = 1
2 〈�| a†

i a
†
j alak |�〉 = 1

2 Tr[a†
i a

†
j alakρ], (31)

where here a
†
i and ai are fermionic creation and annihilation

operators acting on spin orbitals or a generic lattice and ρ =
|�〉 〈�| but may represent a more general mixed quantum
state ρ. The average energy is obviously expressible as the
following contraction once the 1- and 2-RDM are determined:

〈H 〉 =
∑
ik

hik

(
1Di

k

) +
∑
ijkl

hijkl

(
2D

ij

lk

)
. (32)
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Extending this idea, we now develop a method that requires
only a polynomial number of additional measurements to de-
termine the 3- and 4-RDM of the system (see the Appendix for
explicit matrix elements), from which excited-state energies
and properties can be determined. More explicitly, we expand
about the reference |�〉 to form a linear subspace spanned by
the vectors

a
†
i aj |�〉 . (33)

The justification for including these particular states is that they
are the dominant contribution in a linear response (LR) theory
of local time-dependent perturbations to the system [42].
This expansion is commonly referred to within the quantum
chemistry community as a configuration interactions singles
(CIS) expansion [31]. This choice targets excited states within
the lowest-lying energy manifolds, as the energy of the system
is related in many cases to the number of excitations of the
reference system. These states make dominant contributions
to the photochemistry and photophysics for systems of interest.

In this linear subspace, the optimal solution within this
subspace can be found by solving the generalized eigenvalue
problem

HLRC = SLRCE (34)

for the ground and excited states, where HLR is the Hamiltonian
in this subspace, SLR is the overlap matrix, E is the diagonal
matrix of eigenvalues, and C is the matrix of eigenvectors.
One may continue to expand the subspace about the reference
to an arbitrary order. In quantum chemistry, these orders
are enumerated by the number of excitations away from the
ground state in a configuration interaction expansion, such
as configuration interaction with single and double excitations
(CISD). This forms a natural hierarchy of subspaces built from
the quantum reference state with bases

Bk
f = {a†

i1
aj1a

†
i2
aj2 . . . a

†
ik
ajk

|�〉 | ik,jk ∈ [1,M]}, (35)

where B1
f is clearly the linear response space above, with

more and more of the space being spanned until k = Ne

and BNe

f spans the entire Ne-fermion space. At this point,
the classical diagonalization is equivalent to classical exact
diagonalization and provides an exact result but has a com-
putational cost that scales exponentially in the size of the
system. A cartoon schematic of this expansion is depicted in
Fig. 4. While exact diagonalization is not advantageous from
a complexity point of view, at fixed levels of the hierarchy
before this, one efficiently determines a result that is difficult
to obtain classically by virtue of the difficulty of preparing
and manipulating |�〉 and attains more information from |�〉
from only additional measurements and classical computation.
We refer to this approach generically as fermionic quantum
subspace expansion (QSE). A cartoon schematic of this work
is depicted in Fig. 1, where the effect of a quantum channel
contracts an ideal pure state, and expanding about the result
allows one to compensate for the effect of the dissipative
channel while also capturing additional information with the
structure of the linear subspace.

FIG. 4. A cartoon schematic of the basis hierarchy obtained from
expanding about the VQE solution reference. At k = 1 one has the
linear response (LR) subspace and at k = 2 one has the the quadratic
response (QR) space continuing to k = Ne, where one spans the entire
subspace corresponding to the particle number of the reference state.

V. SYMMETRIES IN THE SUBSPACE

One advantage of the QSE approach is that the additional
structure of the linear subspace allows one to exactly enforce
symmetries. As discussed in the body of the text, with this
representation of the operator and overlap in this linear
subspace, the optimal solution within this subspace can be
found by solving the generalized eigenvalue problem

HLRC = SLRCE. (36)

Expanding the problem into a linear subspace also allows
the use of additional analysis and solution tools. One tool of
great practicality is the ability to enforce particular symmetries
in this linear subspace. For example, in the JW encoding of
the quantum chemistry Hamiltonian, all number states from
Ne = 0 to M are encoded, however, often only a particular
number state is of physical interest. The nonlinear penalty
method introduced for the VQE is one way to enforce this
symmetry on the reference, however, it can be prohibitively
expensive and also may not generalize well to excited states
if they are of a different symmetry than the ground state. An
example of this is when the ground state is known to be a spin
singlet while excited states of interest are spin triplets.

To enforce desired symmetries in the linear subspace,
one first constructs the matrix representation of both the
Hamiltonian and the symmetry operator O in the linear
response subspace as was done for the Hamiltonian. General
expressions for these expansions are given later in the
Appendix. The eigenvectors corresponding to the desired
symmetry eigenvalues of OLR may then be used to project
the Hamiltonian into a particular symmetry subspace, where a
subsequent diagonalization yields the optimal solution subject
to the symmetry constraint.

A. Spin quantum subspace expansion

While the fermionic specification of the quantum subspace
expansion (QSE) is of great interest for the study chemistry
and materials, it is valuable to consider such expansions at
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the level of qubits as well. Moreover, before using a quantum
device, fermionic problems are first mapped to qubit systems
where similar considerations will apply. Given a quantum state
of N qubits |�〉, we can define a qubit QSE about that state as

Bk
q = {

σ
α1
i1

σ
α2
i2

. . . σ
αk

ik
|�〉 | αi ∈ [I,X,Y,Z]

}
, (37)

where an operator σα
i is Pauli operator acting on qubit i

and α identifies if the operator is I , X, Y , or Z. This
hierarchy expands in a basis that has low Hamming dis-
tance (or number of spins different) from the original state.
Whether this constitutes a good approximation hierarchy
will depend on this problem of interest, and indeed hier-
archies should be based on the interactions the problems
are likely to experience. However, low-order truncations of
this hierarchy play an interesting role with respect to error
suppression.

Specifically, imagine that after preparation of |�〉 the state
is passed through a channel in which one of its spins is acted
upon by a Pauli error operator such as X1. By expanding in
B1

q , the original desired state is contained within the subspace,
and the error can be corrected exactly through the solution
of the linear eigenvalue problem on B1

q . More generically, k

qubit errors can be mitigated by solving the problem in the
subspace Bk

q , requiring again, only additional measurements
and classical computation. This is especially appealing for
prethreshold devices and those with minimal error correction,
as it utilizes classical computation to extend the capabilities of
the quantum device. Our numerical work exclusively focuses
on the performance of error suppression in fermionic QSE in
this work, leaving more general expansions as a subject of
future research.

B. Linear response representations from RDMs

In this short section, we explicitly construct the repre-
sentations of one- and two-body fermion operators in the
linear response subspace from the reduced density matrices
of the system. The reduced density matrices are defined
as

kD
i1i2...ik
j1j2...jk

= 1

k!
〈�| a†

i1
a
†
i2

. . . a
†
ik
ajk

ajk−1 . . . aj1 |�〉

= 1

k!
Tr

[
a
†
i1
a
†
i2

. . . a
†
ik
ajk

ajk−1 . . . aj1ρ
]
, (38)

where we call kD the k fermion reduced density matrix or
k-RDM. We will examine matrix elements that couple the
reference state |�〉 denoted by index g and the linear response
space. For any operator O, these matrix elements are defined
as

Oij
g = 〈�| (a†

i aj )†O |�〉 = Tr[(a†
i aj )†Oρ], (39)

O
ij

kl = 〈�| (a†
i aj )†Oa

†
kal |�〉 = Tr[(a†

i aj )†Oa
†
kalρ]. (40)

A crucial factor in all the above calculations is the overlap
operator or metric S, which in the linear subspace of ρ is given
by

Sij
g = 1D

j

i , (41)
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FIG. 5. The energy of different electronic states as a function of
internuclear separation for the H2 molecule in a minimal STO-6G
basis, encoded into qubits by the Jordan-Wigner mapping. Both the
entire exact spectrum is shown with dotted-dashed lines, as well as
the exact spectrum restricted to a neutral molecule (Ne = 2). The
blue dotted lines depict only ionic Ne = 2 states that are not the
focus in this study. This depicts the volume of states in a naive
mapping that must be avoided to capture physical solutions. In this
case, the linear response (LR) approximation from an exact reference
is sufficient to capture exactly the excited states with the correct
number symmetry, as the excitation operators conserve the number
from the exact reference state.

S
ij

kl = δik
1D

j

l − 2 2D
jk

li . (42)

One-electron operators F = ∑
pr a

†
par have the following

matrix elements:

F ij
g =

∑
pr

[
δip

1Dj
r − 2 2D

jp

ri

]
, (43)

F
ij

kl =
∑
pr

[−2δik
2D

jp

rl + δipδkr
1D

j

l + 2δip
2D

jk

rl

− 2δkr
2D

jp

li − 6 3D
jkp

rli

]
. (44)

Two-body operators V = ∑
pqrs a

†
pa

†
qaras have matrix ele-

ments given by

V ij
g =

∑
pqrs

[
2δip

2Djq
sr − 2δiq

2Djp
sr + 6 3D

jpq

sri

]
, (45)

V
ij

kl =
∑
pqrs

[
6δik

3D
jpq

srl + 2δipδkr
2D

jq

sl − 2δipδks
2D

jq

rl

− 6δip
3D

jkq

srl − 2δiqδkr
2D

jp

sl + 2δiqδks
2D

jp

rl

+ 6δiq
3D

jkp

srl + 6δkr
3D

jpq

sli − 6δks
3D

jpq

rli − 24 4D
jkpq

srli

]
.

(46)

The Hamiltonian and any other operators expressed as sums
of one- and two-body operators in the linear response sub-
space can be formed by simply summing these expressions
together.
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−1.10

−1.05

−1.00

−0.95

−0.90

−0.85
E

 (
u

n
it

s 
of

 E
)

h

Exact
AP
AP LR
AP LR (S2 = 0)
No Var

FIG. 6. In examining the energy as a function of separation for the
ground state of H2 under a particular amplitude and phase damping
channel (AP ), one sees that in the linear response subspace (AP LR),
the solution quality in increased with respect to the optimal solution
of the quantum channel model (AP ). The qualitative kink in the
approximate solution can be repaired by enforcing the correct spin
symmetry (S2 = 0). This also demonstrates the effect on the energy
between variational minimization with the channel (AP ) and without
(No Var).

C. Numerical application on excited states

We assess the performance of the QSE extension to the
original hybrid quantum classical approach on the spectrum of
a simple molecule H2 in a minimal STO-6G basis [43] under
the Jordan-Wigner (JW) qubit encoding [32], using the VCS
model.

First, we examine the performance of the fermionic LR
expansion in determining excited states on the exact ground
state of H2. This allows one to understand properties of the
method in situations where very good approximations to the
ground state may be prepared. The excellent accuracy of
the method in this case is exemplified in Fig. 5. One sees
from this plot a nice feature of the LR method, which is that it
confines one to the physical subspace of Ne = 2 particles ex-
actly even though the Jordan-Wigner transformation encodes
the unphysical space of Ne = 0 to the number of spin-orbital
sites.

In an imperfect preparation, a quantum channel effectively
restricts the space of preparable quantum states. As such, it is
reasonable that reexpanding the resulting state and solving
the problem within the expanded space may also help to
improve the quality of the ground state. This calculation is
shown in Fig. 6 for an amplitude and phase damping channel
with an experiment time Tp relative to coherence parameters
T1 = T2 of Tp/T2 = 0.05, demonstrating the capability of the
expansion to improve the quality of the solution under noise.

VI. CONCLUSIONS

In this work, we explore a variational channel state model to
understand the performance of quantum variational algorithms
in currently realizable physical systems. We introduce a simple

but powerful approach that naturally mitigates noise, improves
estimates of the ground state, and finds excited states based
on the projective measurement scheme of the original VQE,
which we call the quantum subspace expansion. Additionally,
we develop a variational channel state model (VCS) to
understand the potential performance of quantum variational
algorithms in nonideal conditions. This approach motivates
a general hierarchy of quantum-classical approximations, in
which a tradeoff between numbers of measurements and
system accuracy can be easily tailored to suit computational
purposes. We believe our advances pave the way for better
understanding of quantum devices in the role of coprocessors
and pushes the boundaries of our capabilities closer to the edge
of outperforming a purely classical computing device in the
near future.
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APPENDIX

1. Quantum channel model solution

Here, we present the short proof that the quantum channel
state preparation model is equivalent to a Hermitian eigenvalue
problem on the transformed Hamiltonian H ′ = ∑

i K
†
i HKi .

We include this proof largely for illustrative purposes in
order to emphasize the requirement that the initial state is
pure, and that the transformation preserves Hermiticity of the
Hamiltonian. Starting with the original problem

min
|�〉

Tr

[(∑
i

Ki |�〉 〈�| K†
i

)
H

]
, (A1)

we require that the function we are minimizing vanish under
arbitrary variations in the state 〈�| → 〈�| + 〈δ�| [note that
we only need consider variations in the bra(dual) for simplicity
due to the symmetric real valued nature of this functional],
and enforce the constraint of normalization on the pure state
through a Lagrange multiplier E, resulting in

Tr

[(∑
i

Ki |�〉 〈δ�| K†
i

)
H

]
− E〈δ�|�〉 = 0. (A2)

By cyclic invariance of the trace and independence of |�〉 from
i, equivalently,

Tr
[|�〉 〈δ�| H ′] − E〈δ�|�〉 = 0. (A3)

Expanding the trace over a basis composed of |�〉 and its
orthogonal complement

〈δ�| H ′ |�〉 − E〈δ�|�〉 = 0. (A4)
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By requiring that this vanish under arbitrary variations 〈δ�|,
we arrive at the eigenvalue equation

H ′ |�〉 = E |�〉 (A5)

and the Hermiticity of H ′ follows trivially from the Hermiticity
of H and the form of H ′, guaranteeing it may be diagonalized
by a unitary matrix.

2. Cumulant expansions of the k-RDMs

Here, we document the cumulant expansions of the re-
duced density matrices up to k = 4, which are important in
approximation schemes for the reduced density matrices. The
fermionic k-RDM on a quantum state ρ is defined by

kD
i1i2...ik
j1j2...jk

= 1

k!
Tr[a†

i1
a
†
i2

. . . a
†
ik
ajk

ajk−1 . . . aj1ρ]. (A6)

The cumulant expansions decompose the reduced density
matrices into their nonseparable (connected) components and
separable unconnected components, and are quite useful for
both developing approximations and enhancing understand-
ing. A convenient notation for expressing these expansions is
given by the Grassmann wedge product defined generally by

a ∧ b =
(

1

N !

)2 ∑
π,σ

ε(π )ε(σ ) π σ a ⊗ b, (A7)

where π and σ are permutations on the upper and lower
indices of the tensor a ⊗ b and ε denotes the parity of each
permutation. As an example, one might consider the wedge
product of a cumulant matrix with itself

[1� ∧ 1�]i1i2
j1j2

= 1

2

(
1�

i1
j1

1�
i2
j2

− 1�
i1
j2

1�
i2
j1

)
. (A8)

With this notation, the reduced density matrices up to k = 4
are iteratively defined in terms of the cumulant expansions as

1D = 1�, (A9)

2D = 2� + 1� ∧ 1�, (A10)

3D = 3� + 32� ∧ 1� + 1� ∧ 1� ∧ 1�, (A11)

4D =4� + 43� ∧ 1� + 32� ∧ 2�

+ 62� ∧ 1� ∧ 1� + 1� ∧ 1� ∧ 1� ∧ 1�. (A12)

Physically, we may interpret terms such as m� ∧ n� as the
product between irreducible m and n body correlations which
contribute to the overall (m + n) body correlations.

3. Approximate QSE

While the fermionic QSE approach has favorable coherence
time requirements, it can still be prohibitively expensive in
the number of measurements required. As such, we examine
here some techniques that have been developed in classical
electronic structure theory for 2-RDMs for approximating the
eigenvalue problem requiring only the 3-RDM or even only the
2-RDM for approximating the solution in the linear response
space B1

f following closely the techniques developed by Mazz-
iotti [44,45]. In such a scheme, even the original measurements
used to determine the ground-state energy are sufficient to
determine approximations for the excited states of the system.
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−1.5

−1.0

−0.5

0.0

0.5

1.0

E
 (

u
n

it
s 

of
 E

 ) h

Exact (Ne = 2)
ZA
ZC

FIG. 7. The ground and first two excited states of H2 are
plotted as a function of internuclear separation using both
the zero approximation (ZA) and the zero approximation un-
der the commutator construction (ZC). Both methods require
only the original measurements used for the ground state to
approximate the excited states, and we see here that ZC achieves
an extremely high accuracy, while ZA is qualitatively correct in some
cases but produces subvariational solutions in others.

Suppose that the quantum state prepared |�〉 is the exact
ground state. In this case, the following commutator identity
may be used to remove dependence of the solution on the
4-RDM:

H
ij

kl = 〈�| (a†
i aj )†[H,a

†
kal] |�〉 + Eg 〈�| (a†

i aj )†a†
kal |�〉 ,

(A13)

where Eg is the eigenvalue associated with the exact
ground state, or expectation value of |�〉 in the case of an
approximation, which depends at most on the 2-RDM. The
commutator reduces the rank of this expression such that
it depends at most on the 3-RDM requiring only O(M6)
terms to be measured, and is exact in the case that |�〉
is exact. The explicit dependence on the 3-RDM can be
removed through approximate density matrix reconstruction
techniques, requiring only the original 2-RDM measurements
to produce excited-state approximations. The simplest such
approximation neglects the irreducible three-body correlations
in the commutator expansion above, setting 3� = 0, where 3�

is the three-particle cumulant, and we call this approximation
the zero in commutator approximation (ZC).

Another similar approximation starts from the original
expression for the 4-RDM without the commutator reduction,
and assumes that both the irreducible three- and four-particle
correlations are negligible and reconstructs the 4-RDM from
only the 2-RDM assuming 4� = 3� = 0. We term this this
full zero approximation, or ZA. The performance of the ZC
and ZA methods is shown in Fig. 7. We see that the extra
structure in the ZC approximations yields superior qualitative
and quantitative accuracy for the sample problem.
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