
PHYSICAL REVIEW A 95, 042306 (2017)
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Fault-tolerant quantum computers compose elements of a discrete gate set in order to approximate a target
unitary. The problem of minimizing the number of gates is known as gate synthesis. The approximation error is
a form of coherent noise, which can be significantly more damaging than comparable incoherent noise. We show
how mixing over different gate sequences can convert this coherent noise into an incoherent form. As measured by
diamond distance, the postmixing noise is quadratically smaller than before mixing, without increasing resource
cost upper bounds. Equivalently, we can look for shorter gate sequences that achieve the same precision as unitary
gate synthesis. For a broad class of problems this gives a factor 1/2 reduction in worst-case resource costs.
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The constraints of fault-tolerant quantum computing mean
that the available quantum gates form a discrete set. Such a
gate set is said to be universal if it generates a group that gives
a dense cover over all unitaries. That is, any target unitary
can be approximated to any desired level of precision with a
sufficiently long sequence of gates. The Solovay-Kitaev [1–4]
theorem ensures that whenever we have a universal gate set, we
can achieve a circuit depth that is polylogarithmic in the inverse
precision. The Solovay-Kitaev theorem is a very powerful and
general result, but in practice yields very long gate sequences.
Remarkable progress beyond Solovay-Kitaev has been made
in recent years by focusing on gate sets that naturally arise in
fault-tolerant quantum computing, in particular the Clifford +
T gate set, with the flourishing topic becoming known as gate
synthesis [5–8].

A common feature of both new and old approaches to
gate synthesis is the approximation of the target unitary
with a different unitary. Then the approximation error is
a form of coherent noise, which has attracted attention as
being especially pernicious to quantum computations [9,10].
It has, however, been observed several times that mixing
over equivalent circuits can average out coherent noise into
less damaging incoherent noise [11–15]. For instance, when
the individual gates suffer from coherent noise, randomized
compiling has been shown to quadratically reduce this noise
source [14]. In the context of gate synthesis, the approximation
error appears even when the components of our gate set are
perfect, and so a different approach is required.

Here we give a general set of tools for mixing out the
approximation errors in gate synthesis. Quantifying this noise
by the diamond norm, we find our approach reduces noise
from ε to O(ε2), without increasing the any worst-case metric
of resource cost. To be clear, by worst-case resource cost
we mean the tightest available upper bound on resource
cost. Alternatively, we can achieve O(ε) noise with reduced
worst-case resource cost. If the worst-case resource cost
of unitary gate synthesis scales as Alog(ε−1)γ , then using
quantum channels ε noise can be attained with resource costs
upper bounded by A(1/2)γ log(ε−1)γ in the small ε limit.
Many recent gate-synthesis algorithms have γ = 1 scaling,

*earltcampbell@gmail.com

and so in these settings we cut worst-case costs in half.
This is an extension of the notion of magic state dilution in
Ref. [16], but here applied to synthesis of operations, rather
than states. When completing this work, some similar insights
were reported by Hastings [17], though without the explicit
convex hull finding algorithm provided here.

I. NOTATION

We use || · · · || throughout for the operator norm, so that
||X|| is the largest singular value of X. We also make use
of the Schatten 1 norm on operators denoted || · · · ||1, which
equals the sum of the singular values. Throughout we make use
of several norm properties discussed in standard texts [18,19].
For a quantum channel we use the diamond norm || · · · ||�,
where

||E ||� := sup{||(E ⊗ 1)(X)||; ||X||1 � 1}. (1)

The diamond norm induces the diamond distance between two
channels, E and E ′, so that

d�(E,E ′) := 1
2 ||E − E ′||�, (2)

and is widely used [20] to quantify how well an imperfect
channel E ′ approximates an ideal, target channel E . The
diamond distance is well behaved under composition of
channels, allowing it to be used in rigorous proofs, including
proofs of the threshold theorem for fault-tolerant quantum
computing [21]. Despite the average fidelity gaining popularity
and being easily measurable by randomized benchmarking
[22–25], various commentators have observed that average
fidelity is less meaningful than the diamond distance [9].

In inexact gate synthesis, a sequence of available gates is
composed to produce some U that gives a good approximation
to a target unitary V . Techniques for gate synthesis typically
report the precision of these approximations by taking U − V

and evaluating some norm. This prompts us to ask how this
notion of precision corresponds to the more versatile diamond
distance. Denoting, U and V as the channels corresponding to
U and V , we have

d�(U ,V) � ||U − V ||, (3)

as shown in Refs. [26,27]. In general, there is no simple lower
bound. For instance, if U = −V , then ||U − V || = 2, but U =
V , and so d�(U ,V) = 0. However, these pathologies arise only
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when ||U − V || is large, and many families of unitaries are
well behaved. Consider, for instance, unitaries of the form U =
eiθZ and V = eiθ ′Z; for small |θ − θ ′| we find ||U − V || is very
close to the diamond distance (see Appendix B of Ref. [16] for
more a more detailed discussion). So while unitary precision
and diamond distance are very different measures, they often
coincide.

Throughout we will use G to denote the available gate set,
and C : G → R+ for the associated cost function. To assess
the depth of a circuit we would use a constant cost function
C(V ) = 1 for all V ∈ G. However, for the Clifford + T gate set
the T gates can be significantly more expensive than Clifford
gates due to the resource overhead of magic state distillation
[28–31]. In this setting, one often takes C(T ) = 1 and C(C) =
0 for all C in the Clifford group. The cost of a gate sequence is
then taken to be the numerical sum of the composite gate costs.
We also use 〈G〉 for the group generated by set G. We say a
gate set is finite when G contains a finite number of elements.
Last, we will use Conv[· · · ] to denote the convex hull of a set
of operators.

II. RESULTS

Here we present two main results of this paper.
Theorem 1. Let L be some d-dimensional Lie group, which

is a subgroup of a unitary group SU(D). Let G be a finite gate
set with cost function C : G → R+ such that 〈G〉 is a dense
cover of L and 〈G〉 ⊂ L. Assume we have a unitary synthesis
algorithm: For every V ∈ L and all ε > 0 the algorithm outputs
a finite sequence U = W1W2 · · ·WN ∈ 〈G〉, such that

||U − V || � ε, (4)

N∑
j=1

C(Wj ) � f (ε), (5)

where f is the worst-case cost of the unitary synthesis
algorithm. It follows that we can construct a channel of the
form

E(ρ) =
n∑

j=1

pjUjρU
†
j , (6)

where all Uj ∈ 〈G〉 and each have cost upper bounded by f (ε),
and provided ε < 0.01 the postmixing noise satisfies

d�(E,V) � 10ε2. (7)

Therefore, there is O(ε2) error in the diamond norm.
The simplest setting is that L = SU(D), so d = D, but

we also allow for subgroups with d < D. Few gate-synthesis
techniques exist for qudit or multiqubit problems, but our
results apply there also. It applies directly to the familiar
problem of performing general single-qubit rotations from
the Clifford + T gate set. The natural cost function of this
gate set is C(T ) = 1 and C(C) = 0 for all C in the Clifford
group. For such a cost function, Ross and Selinger [7]
showed that efficient gate synthesis of any single-qubit gate is
possible with fRS(ε) = 9 log2(ε−1) + O{log2[log2(ε)]}. Using
quantum channels, and no more gates, we can ensure 10ε2

precision in diamond distance.

We use the terminology axial rotation for single-qubit
rotations about the Z axis and denote the group Lax. For
such rotations the above findings apply with the function fRS.
However, the Ross and Selinger algorithm can generate axial
rotations at a slightly lower cost with leading order 3 log2(ε−1),
and other algorithms have been tailored to this special case.
So one might anticipate that resource savings could be made
by tailoring our approach to axial rotations. We find this is
indeed the case, but we cannot blindly apply the above result
to algorithms for axial rotations. Note that Theorem 1 does not
apply in this setting since the generated group 〈G〉 contains
gates outside Lax. That is, with G as the Clifford + T set, the
generated group has gates outside the axial rotation group,
so 〈G〉 
⊂ Lax. However, our techniques are straightforwardly
extended to such scenarios.

Theorem 2. Let Lax be the group of axial rotations. Let
G be a single-qubit gate set with cost function C : G → R+,
with Pauli Z ∈ G and C(Z) = 0. Assume we have a unitary
synthesis algorithm: For every V ∈ Lax and all ε > 0 the
algorithm outputs a finite sequence U = W1W2 · · ·Wn ∈ 〈G〉,
such that

||U − V || � ε, (8)

N∑
j=1

C(Wj ) � fax(ε), (9)

where fax is the worst-case cost of the unitary synthesis
algorithm. It follows that we can construct a channel of the
form

E(ρ) =
4∑

j=1

pjUjρU
†
j , (10)

where all Uj ∈ 〈G〉 and each has cost upper bounded by fax(ε),
and provided ε < 0.01 the postmixing noise satisfies

d�(E,V) � 5ε2. (11)

Therefore, there is O(ε2) error in the diamond norm.
This result has a slightly better 5ε2 instead of 10ε2, but more

importantly it benefits from using fax, which gives a smaller
resource overhead than for general qubit rotations.

Let us reflect on how this free error suppression can be
swapped in exchange for cheaper gate sequences. We instead
run our protocol and use gate sequences of cost not exceeding
f (

√
ε/α), where α is 5 or 10 depending on which theorem

we employ. It follows that the postmixing noise is bounded
by ε, but worst-case resource costs are reduced. However, in
a particular instance of a problem the resource cost could be
much less than the worst-case cost. As such, whenever a new
protocol offers a superior worst-case cost, there is no ironclad
promise that the protocol will have a lower resource cost in
all problem instances, though such anomalies are probably
quite rare. We proceed on the mild assumption that improved
worst-case resource costs accurately reflect actual resource
savings and next give a precise account of this saving.

The form of f for unitary gate synthesis is typically f (ε) ∼
A log2(ε−1)γ up to a small O{log2[log2(ε−1)]} contribution.
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FIG. 1. The resource savings of our approach over unitary gate
synthesis is Cγ

α,ε , and here we show Cα,ε [see Eq. (13)] for α = 5,10
and a range of postmixing error rates. The different α correspond to
different constant factors in Eqs. (7) and (11).

Our reduced cost is then

f (
√

ε/α) ∼ A log2[(ε/α)−1/2]γ ∼ A

[
log2(ε−1) + log2(α)

2

]γ

∼ A log2(ε−1)γ
{(

1

2

)[
1 + log2(α)

log2(ε−1)

]}γ

. (12)

Therefore, our resource savings are a factor C
γ
α,ε , where

Cα,ε =
(

1

2

)[
1 + log2(α)

log2(ε−1)

]
(13)

collects the terms in the square bracket of Eq. (12). In the
small ε limit we have Cα,ε → 1/2. Typically, ε is very small
with many algorithms requiring ε  10−10, and so Cα,ε ∼ 1/2
is a reasonable approximation. Convergence toward 1/2 is
shown in Fig. 1, with the speed of convergence dictated by α.
When proving our theorems we focus on clarity rather than
minimizing α and believe smaller α is plausible. Last, recall
that for single-qubit problems known algorithms have γ = 1,
but in other settings different γ may appear.

III. THE MIXING LEMMA

Here we prove a lemma that underpins both Theorem 1 and
Theorem 2 and may also enable further extensions.

Lemma 1. Let V be a target unitary, with associated channel
V(ρ) = VρV †. Let a,b > 0 and {U1,U2, . . . ,Un} be a set of
unitaries such that

(1) for all j ∈ {1, . . . ,n} we have ||Uj − V || � a;
(2) there exist positive numbers {pj } such that

∑n
j=1 pj =

1 and ||(∑j pjUj ) − V || � b.
It follows that E = ∑

j pjUj satisfies

||E − V||� � a2 + 2b. (14)

We will find constructions where a = O(ε) and b = O(ε2),
so that the diamond norm is upper bounded by O(ε2).

For now, we prove the above lemma. We begin by defining
δj := Uj − V so that ||δj || � a. We also have

∑
j

pj δj =
⎛
⎝∑

j

pjUj

⎞
⎠ − V, (15)

with condition (2) of the lemma entailing that ||∑j pj δj || �
b. The channel E acts as

E(X) =
∑

j

pjUjXU
†
j ,

=
∑

j

pj (V + δj )X(V † + δ
†
j ). (16)

Since the diamond norm is unitarily invariant, we have
d�(E,V) = d�(V† ◦ E,1), where

(V† ◦ E)(X) =
∑

j

pjV
†UjXU

†
j V

=
∑

j

pj (1 + δ̃j )X(1 + δ̃
†
j )

=
∑

j

pj (X + δ̃jX + Xδ̃
†
j + δ̃jXδ̃

†
j ), (17)

where δ̃j := V †δj . Since the operator norm is unitarily invari-
ant, we have ||∑j pj δ̃j || = ||∑j pj δj || � b. Compared to
the identity channel 1, and using

∑
j pj = 1, we have

(V† ◦ E − 1)(X) =
∑

j

pj (δ̃jX + Xδ̃
†
j + δ̃jXδ̃

†
j ). (18)

Taking the 1-norm and using the triangle inequality, we have

||(V† ◦ E − 1)(X)||1 �||
∑

j

pj δ̃jX||1 + ||
∑

j

pjXδ̃
†
j ||1

+
∑

j

pj ||δ̃jXδ̃
†
j ||1. (19)

Using the Hölder inequality and ||X||1 � 1, we have

||(V† ◦ E − 1)(X)||1 � ||
∑

j

pj δ̃j || + ||
∑

j

pj δ̃
†
j ||

+
∑

j

pj ||δ̃j || · ||δ̃†j ||. (20)

Noting the property ||M|| = ||M†|| and condition (1) of
Lemma 1, we conclude that ||δ̃†j || = ||δ̃j || � a. Therefore,
the last sum of terms is upper bounded by a2. The first two
summations are likewise bounded by b by virtue of condition
(2). Therefore,

||(V† ◦ E − 1)(X)||1 � a2 + 2b, (21)

which is true for all X. If we tensor the channels with the
identity, this does not affect the proof except to burden the
notation, and so

||((V† ◦ E − I) ⊗ I)(X)||1 � a2 + 2b. (22)

Since this is true for all X, the diamond norm is also upper
bounded by a2 + 2b. This completes the proof.

IV. GENERAL ROTATIONS

We show here that Theorem 1 follows from Lemma 1. First,
let Gε be the subset of 〈G〉 such that they can be synthesized
with cost not exceeding f (ε). We have that Gε is an ε cover
of L. That is, for all V ∈ L there exists a U ∈ Gε with ||U −
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V || � ε. Since we work with a unitarily invariant norm this
can be restated as ||V †U − 1|| � ε. We shift to a Hermitian
representation and define a H such that U = V eiH . Since
U ∼ V we can choose H to have small norm, which we verify
later. Our goal is to not just find a single U close to V but a
whole set {Uj }j that allows us to use the following

Lemma 2. Let {Hj }j be a set of bounded Hermitian
operators ||Hj || � c for all j . Assume the origin lies within
the convex hull 0 ∈ Conv[{Hj }j ] with convex decomposition
0 = ∑

j pjHj . It follows that

(1) ||eiHj − 1|| � c + c2

2 for all j ;

(2) ||∑j pj e
iHj − 1|| � c2

2 .
When Uj = V eiHj for some unitary V , this can be restated

as
(1) ||Uj − V || � c + c2

2 for all j ;

(2) ||∑j pjUj − V || � c2

2 .
Clearly, such a set of Hermitian operators would allow us to

use Lemma 1 with constants related by a = c + c2

2 and b = c2

2 ,
yielding an upper bound of a2 + 2b = O(c2). The lemma is
proved by expanding the exponentials into a power series and
using standard norm properties, as shown in Appendix A.

The key point is that we seek a set of Hermitian operators,
such that the origin is contained within the convex hull of these
points. Next we present an explicit method for finding such
a convex decomposition of Hermitian operators. We assume
access to an oracle performing the relevant gate-synthesis
decompositions. We outline the algorithm for finding a suitable
convex set containing the origin.

Convex hull finding algorithm
(1) Call oracle to find U1 such that ||U1 − V || � ε;
(2) Find principle H1 such that U1 = V eiH1 ;
(3) Set n = 2 and loop the following:

(a) Find μn ∈ Conv[{Hj }1�j�n−1] with minimum
||μn||;

(b) If ||μn|| = 0, then EXIT LOOP;
(c) Define Wn = V eiτn , where τn := −rεμn/||μn||;
(d) Call oracle to find Un such that ||Un − Wn|| � ε;
(e) Find principle Hn such that Un = V eiHn and append

to set {Hj }1�j�n−1;
(f) n → n + 1 and return to start of loop.

The calculation in step (3)(a) is a convex optimization
problem and can be solved using standard interior-point
methods. The whole algorithm has two free parameters, ε

and r [see step (3)(b)]. In our analysis we assume ε � 0.01,
and for all practical applications this is easily satisfied.
We take r = 2 for simplicity, and the exact constants in
our bounds and convergence rates depend on this choice.
The algorithm behaves qualitatively the same for different
r settings, assuming ε−1 � r > 1. The algorithm has two
important properties that we discuss below, leaving technical
details until the appendixes. The basic geometric intuition
behind the algorithm is illustrated in Fig. 2.

First, for all Hj found by the algorithm we have

||Hj || � 3ε + 7ε2, (23)

which we show in Appendix B. This provides us with the
value c = 3ε + 7ε2 to be substituted into Lemma 2, which

traced back leads to the diamond norm upper bound

d�(E,U) � 1

2
(a2 + 2b) = 1

2

[(
c + 1

2
c2

)2

+ c2

]

� 10ε2, (24)

where the last line uses ε < 0.01 to simplify higher-order
terms. This gives the upper bound stated in Theorem 1.

The second important property of the algorithm is that it
eventually terminates. Each Un is distinct, and, in particular,
its Hn falls outside the convex hull of previous points (see
Appendix C for proof). If we further assume that there are a
finite number of distinct points with bounded resource cost,
then there are only a finite number of possible Un for the
algorithm to output. Since each is distinct, the algorithm
must terminate in a finite number of steps. The additional
assumption of a finite number of suitable points is very mild
and is satisfied for both the Clifford + T gate set and any gate
set where all gates have nonzero cost. Furthermore, below we
see that the algorithm need not terminate, but that sufficient
iterations will work equally well.

A finite number of steps may still be very many, but we
have evidence the converge is very fast. First we note that
in a d-dimensional space, a simplex of d + 1 points will
suffice to enclose a nontrivial volume. Though the algorithm
is not ensured to converge in d + 1 steps, it may often do so.
Looking at Fig. 2, the analogous setup in Euclidean geometry
hints that it will always find an enclosing simplex in d + 1
iterations, though it is unclear whether this carries over to
the topology induced by the operator norm. We can be more
quantitative by considering the quantity ||μn||, which measures
the distance from the convex hull. Recall that the convex hull
finding algorithm halts when ||μn|| = 0. Further evidence of
rapid convergence is that ||μn|| decreases exponentially fast.
Specifically, we find there exists a w > 0.62 such that

||μn|| < 6εe−wn, (25)

so the convergence toward zero is exponentially fast. Even
exponentially small ||μn|| may be nonzero, but once ||μn|| 
ε2 the preceding proofs can be adapted to account for nonzero
||μn|| with negligible influence on the upper bounds. All
convergence proof details are given in Appendix C.

V. AXIAL ROTATIONS

We now consider a setting where the target V is an axial
rotation of a single qubit. The only assumption we make about
the generating gate set is that it contains Pauli Z as a free
resource. Given a protocol for axial synthesis, for all such
V = eiθZ and any ε > 0 there exists at least one U1 such that
||U1 − V || � ε and where U1 has cost not exceeding fax(ε)
for some fax. Recall that fax is polylogarithmic in ε−1. For
instance, the Ross-Selinger algorithm satisfies the worst-case
bound fax(ε) � 4 log2( 1

ε
), and 3 log2( 1

ε
) on average. It will

prove useful to consider V †U1 and expand in the Pauli basis,

V †U1 = α11 + iαXX + iαY Y + iαZZ. (26)

We say U1 is an overrotation if αZ � 0 and an underrotation
if αZ < 0. We require a second unitary U2 such that the
pair {U1,U2} contains one overrotation and one underrotation.
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FIG. 2. The geometric intuition of the convex hull finding algorithm. The cross marks the origin corresponding to V . (a) We find a
U1 = V eiH1 so that H1 is near the origin. (b) We extrapolate from μ2 = H1 through the origin to a point τ2. (c) We find a U2 = V eiH2 close to
V eiτ2 , so that H2 is near to τ2. (d) We form the convex hull of H1 and H2 and find the point μ3, which is closest to the origin. From here we
extrapolate out through the origin to the point τ3. (e) We find a U3 = V eiH3 close to V eiτ3 , so that H3 is near τ3. (f) We form the convex hull of
H1, H2, and H3 and find the origin lies inside the hull, and so the algorithm terminates. Note that none of the Hj can stray far from the origin.

We can assume αZ 
= 0 as otherwise the second rotation is
not needed. For the second rotation, we will use the Pauli
expansion

V †U2 = β11 + iβXX + iβY Y + iβZZ. (27)

Gate synthesis ensures only one unitary such that ||U1 − V || �
ε, but a suitable U2 can be found only slightly further away.
Specifically, there must exist a suitable U2 with cost below
f (ε). To verify this, one first constructs an axial rotation V ′,
with ||V − V ′|| = ε and ||U1 − V ′|| > ε. Specifically, using
V = eiθZ and V ′ = ei(θ+δ)Z , then the two values,

δ = ±2 arcsin(
√

ε/2), (28)

each ensure that ||V − V ′|| = ε. Choosing the the sign of δ

to match the sign of αZ , it follows that ||U1 − V ′|| > ||V −
V ′|| = ε. Unitary gate synthesis must then provide a U2 
= U1

within ε of V ′, such that ||U2 − V || � 2ε. Furthermore, within
the same cost budget we can synthesize unitaries U3 = ZU1Z

and U4 = ZU2Z, with

V †U3 = α11 − iαXX − iαY Y + iαZZ, (29)

V †U4 = β11 − iβXX − iβY Y + iβZZ.

Considering the set {U1,U2,U3,U4} it follows immediately that
they satisfy condition (1) of Lemma 1 with a = 2ε. Next, we
assign them weights {pj } = { 1−q

2 ,
q

2 ,
1−q

2 ,
q

2 }, where 0 � q � 1
will be fixed later. The linear combination is∑

j

pjV
†Uj = [(1 − q)α1 + qβ1]1

+ i[(1 − q)αZ + qβZ]Z. (30)

Subtracting the identity and taking the operator-norm squared,

||
∑

j

pjV
†Uj − 1||2 = [(1 − q)α1 + qβ1 − 1]2 (31)

+ [(1 − q)αZ + qβZ]2.

We now fix q to eliminate the second term. Considering the
variables {αZ , βZ}, one is positive (an overrotation) and the
other negative (an underrotation), so zero sits within the convex
hull of these variables and suitable q can be found. Specifically,

q = αZ

αZ − βZ

(32)

satisfies 0 � q � 1. With the second term canceled and taking
square roots we have

||
∑

j

pjV
†Uj − 1|| = |q(β1 − α1) + (1 − α1)|. (33)

By the triangle inequality and |q| � 1 we have

||
∑

j

pjV
†Uj − 1|| � |β1 − α1| + |α1 − 1|. (34)

Inserting 1 − 1 = 0 so that β1 − α1 = (β1 − 1) + (1 − α1),
and again using the triangle inequality, we arrive at

||
∑

j

pjV
†Uj − 1|| � |β1 − 1| + 2|α1 − 1|. (35)

From ||V †U1 − 1|| � ε we can infer that

||(α1 − 1)1 + iαXX + iαY Y + iαZZ||2 � ε2. (36)
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Evaluating the left-hand side, we obtain

(α1 − 1)2 + α2
X + α2

Y + α2
Z � ε2. (37)

Unitarity of V †U1 entails that α2
1 + α2

X + α2
Y + α2

Z = 1, and
after some simplification, we find

(α1 − 1)2 + α2
X + α2

Y + α2
Z = (α1 − 1)2 + (

1 − α2
1

)
,

= 2(1 − α1) � ε2. (38)

from which we infer |1 − α1| � ε2/2. Similarly, from
||V †U2 − 1|| � 2ε we can infer |1 − β1| � 2ε2. Substituting
into Eq. (35), we have

||
∑

j

pjV
†Uj − 1|| � 3ε2. (39)

Therefore, we have demonstrated both the necessary condi-
tions of Lemma 1 with a = 2ε and b = 3ε2. Applying the
lemma, our channel satisfies

d�(E,V) � 1
2 (a2 + 2b) � 5ε5. (40)

A factor smaller than 5 is likely to be provable.

VI. CONCLUSIONS

We have seen that worst-case resource costs of fault-tolerant
quantum computing can be reduced by switching to a random-
ized approach to gate synthesis. It may seem counterintuitive
that a randomization process can be advantageous. However,
convexity of the diamond distance naturally entails that mixing
over channels of similar noise levels can only reduce the noise.

We presented a convex hull finding algorithm for finding the
suitable mixing ratios. While this algorithm is exponentially
fast, it is plausible that a constant time algorithm exists. We
suspect that a variant of Delaunay triangulation could be used
to quickly identify a suitable simplex. However, our literature
search on Delaunay triangulation has found results only on
Euclidean space and we have yet to ascertain if such tools
carry over to the operator norm topology.

This work has considered only mixing over unitary chan-
nels, which prompts the question whether more general
quantum channels might be useful. Probabilistic quantum
circuits with fallback [8] is an approach to gate synthesis that
is not entirely unitary, though it makes use of an ancillary
qubit and works very differently than the approach presented
here. As remarked earlier, mixing can be useful in preparation
of different magic states [16]. We ponder whether all these
approaches can be understood within a single framework of
quantum channel synthesis.
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APPENDIX A: CONVEX HULL PROOF

This section will prove Lemma 2. We start by showing
another general result that we use in several places. Let M be a
Hermitian operator with eigenvalues λk , so that, by definition,
|λk| � ||M|| for all k. We consider the operator

eiM − (1 + iM) =
∞∑

n=2

1

n!
(iM)n. (A1)

This can be diagonalized in the eigenbasis of M and has
eigenvalues fM (λk) := eiλk − 1 − iλk . Therefore, we have

||eiM − (1 + iM)|| = maxk|fM (λk)|. (A2)

On the interval |x| � π , one can verify that |eix − 1 − ix| �
1
2x2, and so provided ||M|| � π we have

||eiM − (1 + iM)|| � 1

2
||M||2. (A3)

Now turning specifically to Lemma 2, we have

||eiHj − 1|| = ||
∞∑

n=1

1

n!
(iHj )n|| (A4)

� ||Hj || + ||
∞∑

n=2

1

n!
(iHj )n||. (A5)

Since we always choose the principle Hj , we have ||Hj || � π

and we can use Eq. (A3) to find

||eiHj − 1|| � ||Hj || + 1

2
||Hj ||2 � c + 1

2
c2. (A6)

Recall that in Lemma 2 we defined c so that ||Hj || � c for all
Hj , which explains the second inequality. Therefore, ||eiHj || �
c + c2

2 . This shows property (1) of Lemma 2. Next we consider
the convex sum of unitaries,

∑
j

pj e
iHj = 1 +

⎛
⎝∑

j

ipjHj

⎞
⎠ +

∑
j

pj

∞∑
n=2

(iHj )n

n!
,

(A7)

which is split into zeroth-, first-, and higher-order terms. By
assumption, the linear terms vanish. Therefore,

||
∑

j

pj e
iHj − 1|| = ||

∑
j

pj

∞∑
n=2

(iHj )n

n!
||,

�
∑

j

pj ||
∞∑

n=2

(iHj )n

n!
||

�
∑

j

pj

c2

2
= c2

2
. (A8)

Going from the second to the third line, we have again used
Eq. (A3). This proves Lemma 2.

APPENDIX B: BOUNDING ||Hn||
We wish to upper bound ||Hn|| in terms of ε, the precision

to which gate synthesis is assessed. The operator Hn is chosen
so that eiHn provides a certain unitary, Un, and the eigenvalues
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are chosen within the interval [−π,π ). Furthermore, on this
interval one has that all eigenvalues θ satisfy |θ | � |eiθ − 1| +
1
2 |eiθ − 1|2. It follows that

||Hn|| � ||eiHn − 1|| + 1
2 ||eiHn − 1||2. (B1)

Next, we note that for each n > 1 we have

||eiHn − 1|| = ||Un − V ||
� ||Un − Wn|| + ||Wn − V ||
� ε + ||eiτn − 1||

� ε + ||τn|| + ||τn||2
2

� 3ε + 2ε2. (B2)

The n = 1 case is similar but without the ||Wn − V || contri-
bution. Combining this with Eq. (B1), we have

||Hn|| � (3ε + 2ε2) + 1
2 (3ε + 2ε2)2. (B3)

Assuming ε < 0.01, this can be simplified to

||Hn|| � 3ε + 7ε2, (B4)

as reported in the main text. This gives the value of c for
Lemma 2.

APPENDIX C: CONVERGENCE PROOF

Next we show that each Un is new by showing the
strictly monotonic decrease of ||μn||. Furthermore, we show
exponential decrease of ||μn|| with n. We begin by translating
the closeness of Un to Wn into the space of Hermitian operators.
We define

�n := Hn − τn (C1)

and later will find an upper bound on ||�n||. First we use these
operators to construct a point in the new convex hull. Mixing
Hn and μn gives a point in the convex hull, which must have
norm no larger than ||μn+1||, so that

||μn+1|| � ||λHn + (1 − λ)μn|| (C2)

= ||μn

[
1 − λ

(
1 + 2

ε

||μn||
)]

+ λ�n||.

If we consider when

λ =
(

1 + 2
ε

||μn||
)−1

= ||μn||
||μn|| + 2ε

, (C3)

then it is easy to see 0 < λ < 1 and that the square bracket
vanishes so that

||μn+1|| � λ||�n|| = ||μn||
||μn|| + 2ε

||�n||. (C4)

This iteration begins with μ2 = H1. Further progress requires
an upper bound on ||�n||, which we now take a lengthy detour
to find.

Adding several terms of the form 0 = (x − x) to �n, we
have

�n = (−i1 + Hn + ieiHn ) + (iV †Wn − ieiHn )

+ (−iV †Wn + i1 − τn

)
. (C5)

Taking the norm and applying triangle inequality, we get

||�n|| �||1 + iHn − eiHn || + ||V †Wn − eiHn || (C6)

+ ||1 + iτn − V †Wn||
=||1 + iHn − eiHn || + ||Wn − Un||

+ ||1 + iτn − eτn ||. (C7)

For the middle term we know ||Wn − Un|| � ε, and for the
first and last terms we again use Eq. (A3), so that

||�n|| � 1
2 ||Hn||2 + ε + 1

2 ||τn||2

� 1
2 (3ε + 7ε2)2 + ε + 1

2 (2ε)2. (C8)

We can again use ε � 0.01 to bound higher-order terms to
obtain

||�n|| � ε + 7ε2. (C9)

Plugging this into Eq. (C4), we have

||μn+1|| � ||μn|| ε + 7ε2

||μn|| + 2ε
(C10)

< ||μn|| 1
2 (1 + 7ε),

where we have used that 0 < ||μn||. Iterating this argument n

times, we find exponential behavior,

||μn+1|| < ||μ2||e−w(n−1), (C11)

where w = ln(2) − ln(1 + 7ε). Using our earlier assumption
that 0 < ε < 0.01 guarantees that 0.693 15 > w > 0.625 48.
In most instances convergence will be much faster than ensured
by this proof, often jumping to ||μn+1|| = 0 within only a
few iterations. Last, we note that μ2 = H1 and that ||H1|| �
||V − U1|| + 1

2 ||V − U1||2 � ε + 1
2ε2, which gives

||μn|| < ε

(
1 + 1

2
ε

)
e−w(n−2) (C12)

= ε

[(
1 + 1

2
ε

)
e2w

]
e−wn.

Since e−w > 1/2, we have ew < 4. Combined with ε < 0.01
we know the square bracket cannot exceed 6, which leads to
Eq. (25).
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