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The differential-phase-shift (DPS) quantum-key-distribution (QKD) protocol was proposed aiming at simple
implementation, but it can tolerate only a small disturbance in a quantum channel. The round-robin DPS (RRDPS)
protocol could be a good solution for this problem, which in fact can tolerate even up to 50% of a bit error rate.
Unfortunately, however, such a high tolerance can be achieved only when we compromise the simplicity, i.e.,
Bob’s measurement must involve a large number of random delays (|R| denotes its number), and in a practical
regime of |R| being small, the tolerance is low. In this paper, we propose a DPS protocol to achieve a higher
tolerance than the one in the original DPS protocol, in which the measurement setup is less demanding than
the one of the RRDPS protocol for the high tolerance regime. We call our protocol the small-number-random
DPS (SNRDPS) protocol, and in this protocol, we add only a small amount of randomness to the original DPS
protocol, i.e., 2 � |R| � 10. In fact, we found that the performance of the SNRDPS protocol is significantly
enhanced over the original DPS protocol only by employing a few additional delays such as |R| = 2. Also, we
found that the key generation rate of the SNRDPS protocol outperforms the RRDPS protocol without monitoring
the bit error rate when it is less than 5% and |R| � 10. Our protocol is an intermediate protocol between the
original DPS protocol and the RRDPS protocol, and it increases the variety of the DPS-type protocols with
quantified security.
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I. INTRODUCTION

Quantum key distribution (QKD) holds promise for realiz-
ing information-theoretically secure communication between
two distant parties (Alice and Bob) against any eavesdropper
(Eve). Since the first invention of the BB84 protocol [1],
many QKD protocols have been proposed [2–7]. Among
them, the differential-phase-shift (DPS) QKD [5] can be
rather simply implemented with a passive detection unit. A
field demonstration of the DPS protocol [8] has been already
conducted, and the information-theoretical security proof of
the DPS protocol has been established by Tamaki et al. [9,10].
Unfortunately, however, this proof shows that the DPS protocol
can tolerate only a small bit error rate regime (less than 4%
with a typical block length of L light pulses, say L = 32).

Recently, in order to solve this problem, a new type of pro-
tocol called the round-robin differential-phase-shift (RRDPS)
QKD protocol [11] was proposed. This is a modified protocol
from the original DPS protocol in that Bob’s measurement
has a freedom to randomly choose which pair of the incoming
pulses to be interfered. This modification brings a distinct
feature to the RRDPS protocol that the security can be
guaranteed without monitoring any disturbance between Alice
and Bob. Moreover, when the number of random delays
(we denote it by |R|) is large, the RRDPS protocol has
a strong tolerance to the bit error rate, and surprisingly it
can tolerate the bit error rate of even 50% when |R| → ∞.
Thanks to these features, the RRDPS protocol has attracted
theoretical works [12–16], and proof-of-principle experiments
have been demonstrated [12,17–19]. Unfortunately, however,
an experimental implementation of the RRDPS protocol is
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not as simple as the one of the original DPS protocol. One
of the main technological challenges for its realization is to
switch the delay at random for each block of the pulses at
Bob’s measurement. According to the number of the random
delays, some passive interferometers [12] or a variable-delay
interferometer [17] or some optical switches [18] are needed
for Bob’s measurement. Obviously, when the number of
the random delays increases, an implementation of Bob’s
measurement will be complicated. Hence, from a practical
viewpoint, it is preferable to implement the RRDPS protocol
with small |R|, for instance, |R| = 4 as demonstrated in [12].

In this paper, we consider improving the bit error tolerance
of the DPS protocol without significantly increasing the
difficulties of its implementation. For this, we consider adding
only a small amount of randomness, say 2 � |R| � 10, to
the DPS protocol. This modification can also be seen as the
modification from the RRDPS protocol in that our protocol
exploits more pulses than that of the RRDPS protocol for a
given |R|. Importantly, this modification does not increase any
experimental difficulty at Bob’s side. We call our protocol the
small-number-random DPS (SNRDPS) protocol. We present
the information-theoretical security of our protocol, in which
we have made some assumptions on the devices. In particular,
we assume perfect phase modulations (namely, Alice’s phase
modulation is exactly 0 or π ) and block-wise phase random-
ization (the state of the L pulses is a classical mixture of photon
number states). With these assumptions, we prove the security
based on the Shor-Preskill’s security proof [20]. By using the
result of the security proof, we compare the performance of the
SNRDPS protocol and the one of the original DPS protocol. As
a result, we found that the key generation rate is significantly
improved only with a few additional delays, say |R| = 2. For
instance, if the bit error rate e(b) is 2%, the key generation
rate of the SNRDPS protocol with |R| = 2 scales as O(η3/2)
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FIG. 1. Schematics of the SNRDPS protocol for L = 7 and R = {1,6,2,5}. Alice sends seven coherent pulses after she applies a random
phase shift δ or δ + π to each of the pulses with a phase modulator (PM), where δ is chosen uniformly and at random from [0,2π ). After Bob
receives the incoming seven pulses, he splits them into two blocks of seven pulses with the first beam splitter (BS1), and shifts backward by rT

to one of the blocks. Here, T denotes the interval between two adjacent pulses of the incoming block. By using the second beam splitter (BS2)
and two photon-number-resolving detectors (D0 and D1), he observes the relative phase of two pulses in the block. Note that, each bit in the
sifted key is generated from a block where Bob has detected one photon from one pair of the interfering pulses and has detected the vacuum
in all the other pulses. We call such an event detected event. For example, if r = 2 is chosen and Bob detects exactly one photon in the pair of
(3rd, 5th) interfering pulses and detects the vacuum in all of the other pulses, he obtains the relative phase between the 3rd and the 5th interfering
pulses. If the relative phase is 0(π ), he obtains the sifted bit sB = 0(1).

with a channel transmittance η in a longer distance regime
while the original DPS protocol scales as O(η2). Also, when
e(b) = 5%, the SNRDPS protocol with |R| = 2 gives a positive
key generation rate while the original DPS protocol cannot
give a positive one. Therefore, the small number of random
delays provides a significant improvement in the resulting key
generation rate compared to the one of the DPS protocol.

Moreover, we compare the key generation rates of the
SNRDPS protocol and the ones of the RRDPS protocol
without monitoring the disturbance when the same number
of the random delays |R| is employed between two protocols.
Consequently, we found that the SNRDPS protocol gives a
better key generation rate than the one of the RRDPS protocol
without monitoring the bit error rate when |R| is less than 10
and the bit error rate is small such as less than 5%.

This paper is organized as follows. First, in Sec. II we
explain the DPS-type QKD protocol including the assumptions
on Alice and Bob’s devices. Next, in Sec. III we prove the
security of the DPS-type protocol, where our security proof
is based on the Shor-Preskill’s security proof [20]. After that,
in Sec. IV we show the simulation results for the SNRDPS
protocol, and compare the key generation rates with the various
numbers of the random delays |R| = {2,4,6,8,10}. Finally, we
summarize the paper in Sec. V.

II. DPS-TYPE QKD PROTOCOL

In this section, before providing the description of the actual
protocol, we first list up the assumptions on Alice and Bob’s
devices. See Fig. 1 for the actual setup.

A. Assumptions on Alice and Bob’s devices

First, we describe the assumptions on Alice’s source. We
assume that it emits a single-mode coherent light pulse, and
Alice splits its pulse into a block of L pulses. The L pulses
are block-wise phase randomized, namely, the quantum state
of the L pulses is described as a classical mixture of photon
number states. The relative phase between the adjacent pulses
is modulated by 0 or π according to her randomly chosen bit
0 or 1, respectively.

Next, as for Bob’s device, it is equipped with two
photon-number-resolving (PNR) detectors that can discrim-
inate among 0, 1, and more than 1 photon. He first splits
L incoming pulses into two blocks of L pulses by using a
50:50 beam splitter (BS), shifts backward only one of the
L-pulse blocks by r that is chosen randomly from the set
R ⊂ {1,2, . . . ,L − 1}. Then, the first L − r pulses in the
shifted block will be interfered with the last L − r pulses in the
other block with another 50 : 50 BS, and then Bob performs
a photon measurement with the PNR detectors. Each of the
detectors corresponds to the bit value of 0 and 1, respectively
(see Fig. 1). Finally, we assume that there is no side channel.

B. DPS-type QKD

We describe the “DPS-type” QKD protocol, which is the
generalization of the DPS QKD protocol in that it employs the
arbitrary number of random delays, and therefore the DPS-
type protocol includes both the original DPS protocol and the
RRDPS protocol. The protocol of the DPS-type QKD runs as
follows.

(A1) Alice generates a random L-bit string �s ≡
(s1,s2, . . . ,sL), a random number δ ∈ [0,2π ), and then she
prepares a block of L coherent pulses in the following state:

|�〉 =
L⊗

k=1

|(−1)sk eiδα〉k , (1)

where |(−1)sk eiδα〉k represents the coherent state of the kth

pulse. She sends |�〉 to Bob through a quantum channel.
(A2) Bob splits the incoming L pulses into two L-pulse

blocks by using the 50:50 BS. He applies a delay rT to
one of the paths in the Mach-Zehnder interferometer, where
T denotes the interval between two adjacent pulses in the
block and r is chosen uniformly at random from the set
R ⊂ {1,2, . . . ,L − 1}. After that, Bob makes interference
between two L-pulse blocks by using the other 50:50 BS
and performs the photon detection with the photon number
resolving detectors. Let us call the event detected if he
detects exactly one photon in the pair of (kth, (k + r)th) (with
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1 � k � L − r) interfering pulses and detects the vacuum in
all of the other pulses (including 2r half pulses that do not
interfere with any other half pulses). If the event is not detected,
Alice and Bob skip steps (A3) and (A4).

(A3) Bob takes note of the detected bit value sB and
announces the pair of numbers (i,j ) = (k,k + r) over an
authenticated public channel.

(A4) Alice takes note of the bit value sA = sk ⊕ sk+r .
(A5) Alice and Bob repeat steps (A1)–(A4) N times, and

let NQ be the number of the detected events.
(A6) Alice and Bob randomly select a small portion ξ

of NQ detected events, and compare the bit values over an
authenticated public channel. This gives the estimate of the bit
error rate.

(A7) Alice and Bob discuss over an authenticated public
channel to perform error correction and privacy amplification
on the remaining portion to share a final key of length
GN (1 − ξ ).

Note that the DPS-type protocol includes the original DPS
and the RRDPS protocols by choosing R in step (A2) as R =
{1} and R = {1,2, . . . ,L − 1}, respectively. Also, we define
the SNRDPS protocol by setting R = ⋃t

m=1{m,L − m} with
0 < t < L/2.

III. SECURITY PROOF

In this section, we prove the security of the SNRDPS
protocol with R = ⋃t

m=1{m,L − m} for 0 < t < L/2. Our
security proof can be summarized as follows. First, in Sec. III A
we convert the actual protocol to an alternative protocol for
simplicity of the analysis, where Bob performs the alternative
measurement (we call it the dial measurement) instead of the
actual one. Note that, by switching Bob’s actual measurement
with the delays r and L − r uniformly at random, we show
that he can simulate the dial measurement characterized by the
delay r with a 50% of additional detection loss (see Lemma 1
below). Therefore, by introducing the additional loss in the
alternative measurement, the dial measurement is equivalent
to the actual measurement, and therefore we can employ
the alternative measurement in the security proof. Next, in
Sec. III B we introduce an entanglement distillation protocol as
a virtual protocol to prove the security of the protocol with the
alternative measurement. After that, we construct the POVM
elements corresponding to the bit and phase error rates in
Sec. III C, and derive a relation between the bit and phase
errors by employing some constraint on Alice’s sending state
in the virtual protocol in Sec. III D, and obtain an upper bound
on the phase error rate as the function of the bit error rate in
Sec. III E.

A. Bob’s alternative measurement

In this subsection, we introduce Bob’s alternative measure-
ment, which we will employ in the security proof. In step (A2),
Bob extracts the detected events, in which only one photon is
contained in the incoming L pulses. Here, {|k〉B}Lk=1 denotes
the set of basis vectors of the Hilbert space HB, and |k〉B
represents that the kth pulse sent is in a single-photon state. Let
{B̂(r)

k,s}k,s be the POVM for the bit value s detected at the pair
of (kth, (k + r)th) interfering pulses under the condition that

the delay r is chosen. Considering the effect of the 50:50 BS,
{B̂(r)

k,s} is written as

B̂
(r)
k,s := 1

2
P̂

( |k〉B + (−1)s |k + r〉B√
2

)
, (2)

for 1 � k � L − r . Here, we define P̂ (|φ〉) ≡ |φ〉〈φ|. From
Eq. (2), the probability of obtaining the bit value s and the
pair of interfering pulses (k,k + r) in his measurement with
the delay r is given by Tr(ρ̂B̂

(r)
k,s) for an arbitrary state ρ̂ given

that exactly one photon is contained in the L pulses.
Next, for simplicity of the security analysis, we convert

Bob’s actual measurement into the alternative one. We call
it the dial measurement, which gives the relative phase of an
arbitrary pair of (i th,j th) (with i < j ) interfering pulses such
that j − i = r or L − r for given r [see Fig. 2(a)]. This mea-
surement has more symmetry than the actual measurement,
which makes our analysis much simpler, and importantly it is
equivalent to the actual measurement except for 50% of losses
as we explain in Lemma 1 below. The POVM {Ê(r)

k,s}k,s of the
dial measurement with the delay r is defined by

Ê
(r)
k,s := 1

2
P̂

( |k〉B + (−1)s |k +L r〉B√
2

)
, (3)

for 1 � k � L. Here, +L denotes the summation in modulo L,
namely, for integers (p,q) with 1 � p � L and 1 � q � L,

p +L q =
{
p + q if p + q � L,

p + q − L if p + q � L + 1.
(4)

If Bob performs the dial measurement with the delay r ,
the probability of obtaining the bit value s and the pair of
interfering pulses (k,k +L r) is given by Tr(ρ̂Ê

(r)
k,s). Note that

the following relation holds for Ê
(r)
k,s :

Ê
(L−r)
k+Lr,s = Ê

(r)
k,s . (5)

Next, we introduce the following lemma [11] that relates the
dial and actual measurements. See Appendix A for its proof.

Lemma 1. We define two conditional probabilities
Pr[s ∧ (i,j )|r ′]dial and Pr[s ∧ (i,j )|r ∈ {r ′,L − r ′}]actual.
Pr[s ∧ (i,j )|r ′]dial represents the probability that Bob obtains
the bit value s from (i th,j th) (with i < j ) interfering pulses
given that he performs the dial measurement with the delay
r = r ′ ∈ R. Pr[s ∧ (i,j )|r ∈ {r ′,L − r ′}]actual represents the
probability that Bob obtains s from (i th,j th) interfering pulses
given that he performs the actual measurement with the delays
r = r ′ or r = L − r ′ chosen uniformly at random. Then, for
an arbitrary fixed r ′ ∈ R and for any input state ρ̂,

Pr[s ∧ (i,j )|r ′]dial = 2Pr[s ∧ (i,j )|r ∈ {r ′,L − r ′}]actual (6)

holds.
Lemma 1 means that the dial measurement with the delay

r ′ after performing a half transmittance filter has the same
probability distribution of s and (i,j ) as the one of the
actual measurement when Bob switches delays r ′ and L − r ′
uniformly at random [see Fig. 2(b)]. In other words, Eve cannot
distinguish which of the measurements was actually employed
from the classical information announced by Bob. Thanks
to Eq. (6), we are allowed to use the dial measurement for
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(a) Bob’s alternative (dial) measurement (b) Bob’s actual measurement

FIG. 2. Schematics of (a) Bob’s “dial measurement” with L = 5 and the delay r ′ = 2, and (b) the corresponding actual measurement.
In the dial measurement, there are five patterns of successful detection events. Concretely, he obtains the relative phase between one of the
following five pairs of interfering pulses: (1st, 3rd), (2nd, 4th), (3rd, 5th) represented by the regime surrounded by the solid line (1st, 4th), or (2nd,
5th) represented by the regime surrounded by the dashed line. In the actual measurement, by using a specific delay r ′ or L − r ′, he can obtain a
part of the information that he could obtain in his dial measurement with the delay r ′. For example, if he employs the delay r ′(=2) in (b), he
can obtain the relative phase between either (1st, 3rd), (2nd, 4th) or (3rd, 5th) interfering pulses in (a). These events correspond to those in the
regime surrounded by the solid line in (b). Also, if he employs the delay L − r ′(=3) in (b), he can obtain the relative phase between either (1st,
4th) or (2nd, 5th) interfering pulses in (a). These events correspond to those in the regime surrounded by the dashed line in (b). Therefore, if he
switches the delay r ′ or L − r ′ uniformly at random in his actual measurement, he can simulate the dial measurement with the delay r ′, while
the detection efficiency of his actual measurement is half that of his dial measurement (see Lemma 1 below).

proving the security of the actual protocol. We call the protocol
where Bob performs the dial measurement instead of the actual
one the alternative protocol. The alternative protocol runs the
same as the actual protocol except for steps (A2) and (A3),
which are replaced with the following steps (A2’) and (A3’),
respectively.

(A2) Bob receives the incoming L pulses and splits them
into two L-pulse blocks by using the 50:50 BS. He selects a
delay r uniformly at random from the set R ⊂ {1,2, . . . ,L −
1}. After that, Bob performs the dial measurement. Let us call
the event detected if he detects exactly one photon in the pair
of interfering pulses (kth,(k +L r)th) (with 1 � k � L), and
detects the vacuum in all the other pairs of interfering pulses.
If the event is not detected, Alice and Bob skip steps (A3’)
and (A4).

(A3) Bob takes note of the detected bit value
and announces the pair of numbers (i,j ) = (min{k,k +L

r}, max{k,k +L r}) over an authenticated public channel.

B. Virtual protocol

In this subsection, we introduce the entanglement distilla-
tion protocol to prove the security of the alternative protocol.
Our analysis is based on the Shor-Preskill’s security proof [20],
where we follow similar arguments of the security proof
of the original DPS protocol [9]. To show Alice and Bob
virtually extract a maximally entangled state, we need to
introduce ancilla systems on Alice’s side and decompose Bob’s
measurement, which we explain below.

First, we explain Alice’s sending state in the virtual
protocol. Suppose Alice has a quantum register of the L-qubit
system and let HA = ⊗L

k=1 HA,k be the Hilbert space of these
systems. Then, Alice’s state preparation is equivalent to the
preparation of the following state over the quantum register

system and L pulses as

|
δ〉 := 2−L/2
∑

�s

L⊗
k=1

(Ĥ |sk〉A,k) |(−1)sk eiδα〉k , (7)

where Ĥ ≡ 1√
2

∑
s,s ′=0,1(−1)ss

′ |s〉〈s ′| denotes the Hadamard
operator. Note that δ ∈ [0,2π ) is chosen uniformly at random
for each preparation of the state |
δ〉. As shown in step (A4),
the information that Alice needs to obtain is si ⊕ sj . To
obtain this information, she applies the following quantum
circuit (see Fig. 3) to the qubits i and j upon receiving from
Bob, and measures the qubit Aq in the computational basis
{|0〉Aq , |1〉Aq}. The set of measurement operators that Alice

ZI

ZM0
1

HAq

jjsH ,A

iisH ,A

FIG. 3. The quantum circuit representing Alice’s procedure in the
virtual protocol. The inputs are the i th and j th qubits, where the pair of
integers (i,j ) (with i < j ) is announced by Bob. She applies a C-NOT

gate (defined on the Z basis {|0〉A , |1〉A}) to these qubits, and the i th

qubit is subjected to a Hadamard gate (denoted by H ) while the j th

qubit is measured on the Z basis (denoted by MZ). If the outcome
of the Z measurement is 0, she applies a phase flip gate to the i th

qubit with probability 1/2, which is denoted by I/Z. Otherwise, she
applies the identity operation to the i th qubit. After that, we name the
quantum system of the i th qubit Aq.
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performs can be represented by

M̂
(i,j )
1 =Ĥ |0〉Aq (A,i 〈0| A,j 〈1|) + Ĥ |1〉Aq (A,i 〈1| A,j 〈0|),

M̂
(i,j )
2 = 1√

2
|0〉Aq (A,i 〈0| A,j 〈0| + A,i 〈1| A,j 〈1|),

M̂
(i,j )
3 = 1√

2
|1〉Aq (A,i 〈0| A,j 〈0| − A,i 〈1| A,j 〈1|). (8)

Note that Alice’s state preparation of |
δ〉 with a random
and uniform δ followed by the measurement {M (i,j )

m }m=1,2,3

is equivalent to the step (A1). Moreover, in the virtual
protocol, instead of |
δ〉, Alice prepares the following state
for simplicity of analysis.

|
〉 := 2−L/2
∑

�s

∞∑
ν=0

|ν〉C π̂ν

L⊗
k=1

(Ĥ |sk〉A,k) |(−1)skα〉k . (9)

Here, C is the system that stores the number of photons
contained in the L pulses whose Hilbert space is spanned
by an orthogonal basis {|ν〉C}∞ν=0. Also, π̂ν is the projection
onto the subspace that the total photon number in the L pulses
is ν. From Eve’s perspective, accessible quantum information
of Eqs. (7) and (9) are the same since the following equation
holds.

1

2π

∫ 2π

0
dδ|
δ〉〈
δ| = TrC|
〉〈
|. (10)

Next, we explain Bob’s measurement procedure in the
virtual protocol. In principle, he is able to determine whether
the event is detected or not before he determines the pair
of interfering pulses and the bit value by performing the
quantum nondemolition (QND) measurement of the total
photon number in the incoming L pulses. The event is called
detected if and only if the measurement outcome of the QND
measurement is exactly one photon in the block of L pulses.
In the detected events, the dial measurement is decomposed
into two measurements, namely, the POVM in Eq. (3) is
decomposed into

Ê
(r)
k,s = F̂

(r)†
k P̂ (|s〉Bq)F̂ (r)

k . (11)

Here, the set of measurement operators F̂
(r)
k : HB → HBq

represents a filtering operation that gives the outcome k and
leaves a qubit system HBq, which is defined by

F̂
(r)
k :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
2
Ĥ |1〉Bq B 〈k| + 1√

2
Ĥ |0〉Bq B 〈k + r|

if 1 � k � L − r,

1√
2
Ĥ |1〉Bq B 〈k + r − L| + 1√

2
Ĥ |0〉Bq B 〈k|

if L − r + 1 � k � L.

(12)

By using Alice’s quantum circuit represented by Fig. 3 and
Bob’s filtering operation described by {F̂ (r)

k }k , we introduce
the following entanglement distillation protocol (EDP).

(V1) Alice prepares |
〉 and sends a block of L pulses to
Bob through a quantum channel.

(V2) Bob receives the incoming L pulses and performs the
QND measurement of the total photon number in the L pulses.

Let us call the event detected if he detects exactly one photon
in the block of L pulses. If the event is not detected, Alice and
Bob skip steps (V3) and (V4) below.

(V3) Bob chooses r uniformly at random from the set R =⋃t
m=1{m,L − m}, and performs the filtering operation {F̂ (r)

k }.
He obtains the pair of pulses (k,k +L r) where exactly one
photon is contained, and obtains the output qubit Bq. He sends
the pair of integers (i,j ) := (min{k,k +L r}, max{k,k +L r})
to Alice over an authenticated public channel.

(V4) Alice applies the quantum circuit in Fig. 3 on her i th

and j th qubits, and outputs the qubit Aq. Also, she measures
system C and learns the total photon number ν in the block of
L pulses.

(V5) Alice and Bob repeat steps (V1)–(V4) N times. Let
NQ be the number of the detected events. At this point, Alice
and Bob share NQ pairs of qubits.

(V6) Alice and Bob randomly select a small portion
ξ of the NQ detected events, measure the qubits in the
computational basis {|0〉 , |1〉}, and compare the bit values over
the public channel. This gives the estimate of the bit error rate
e(b) and hence the number e(b)NQ(1 − ξ ) of bit errors in the
remaining portion.

(V7) Alice and Bob discuss over the public channel to
perform entanglement distillation on the remaining pairs of
qubits. Finally, they measure all the remaining pairs of qubits
on the computational basis to obtain a final key of length
GN (1 − ξ ).

In this protocol, the key generation rate per sending pulse
is written as [21]

G = [Q(1 − h(e(b))) − h(ph)]/L, (13)

where h(x) = −x log2 x − (1 − x) log2(1 − x), and h(ph) ex-
presses the number of privacy amplification. The explicit
formula of h(ph) is described by

h(ph) =
∞∑

ν=0

Q(ν)h(e(ph,ν)), (14)

where Q(ν) denotes the function of detected events when Alice
emits ν photons satisfying

∑∞
ν=0 Q(ν) = Q, and e(ph,ν) denotes

the phase error rate when Alice emits ν photons. Note that the
equivalence between steps (A7) and (V7) is guaranteed by the
discussion in [20]. Since the phase error rate e(ph,ν) cannot be
obtained directly in the actual protocol, we need to estimate
e(ph,ν) with some statistics such as the disturbance information
during Alice and Bob’s quantum communication.

C. POVM elements for the bit and phase errors

In this subsection, we construct POVMs for the bit and
phase errors to estimate the upper bound on the phase error
rate. To derive the relation between the bit and the phase error
rates, we consider a measurement on Alice and Bob’s quantum
registers A and B just after the event is detected at step (V2),
and regard an outcome as the occurrence of a bit error or a
phase error. In this subsection, we explain only the definition
and the resulting forms of POVMs for the bit and phase errors.
The detailed derivations are referred to Appendix B.
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The POVM element corresponding to the bit error in the
pair of pulses (i,j ) for i < j is defined as

ê
(b)
i,j :=

∑
si ,sj ∈{0,1}

P̂ (Ĥ |si〉A,i)P̂ (Ĥ |sj 〉A,j
)

⊗ 1

|R|
∑
r∈R

[
Ê

(r)
i,si⊕sj ⊕1δj,i+r + Ê

(r)
j,si⊕sj ⊕1δi,j+r−L

]

= 2

|R|
∑

si ,sj ∈{0,1}
P̂ (Ĥ |si〉A,i)P̂ (Ĥ |sj 〉A,j

) ⊗ Ê
(j−i)
i,si⊕sj ⊕1.

(15)

Here, |R| denotes the cardinality of the set R, and we use
Eq. (5) in the last equality. Note that we omit identity operators
on the subsystems. Next, the POVM element for a phase error
is defined by the instances where Alice and Bob measure
their qubits with the Hadamard basis {Ĥ |0〉 ,Ĥ |1〉} and their
outcomes disagree. The POVM element corresponding to the
occurrence of the phase error in the pair of pulses (i,j ) for
i < j is given by

ê
(ph)
i,j :=

1∑
s=0

3∑
k=1

M̂
(i,j )†
k P̂ (Ĥ |s〉Aq)M̂ (i,j )

k

⊗ 1

|R|
∑
r∈R

[
F̂

(r)†
i P̂ (Ĥ |s̄〉B)F̂ (r)

i δj,i+r

+ F̂
(r)†
j P̂ (Ĥ |s̄〉B)F̂ (r)

j δi,j+r−L

]
= 1

|R| [P̂ (|0〉A,i |1〉A,j ) ⊗ P̂ (|i〉B)

+ P̂ (|1〉A,i |0〉A,j ) ⊗ P̂ (|j 〉B)]

+ 1

2|R|
1∑

t=0

P̂ (|t〉A,i |t〉A,j ) ⊗ [P̂ (|i〉B) + P̂ (|j 〉B)],

(16)

where s̄ = s ⊕ 1. For simplicity of analysis, we introduce a
unitary operator Û acting on HA ⊗ HB defined by

Û

L⊗
k′=1

(Ĥ |sk′ 〉A,k′) |k〉B = (−1)sk

L⊗
k′=1

(Ĥ |sk′ 〉A,k′) |k〉B . (17)

By using Û and Eq. (15), it is straightforward to show that

Û ê
(b)
i,j Û

† = 2

|R| 1̂A ⊗ Ê
(j−i)
i,1 = 1̂A ⊗ 1

2|R| P̂ (|i〉B − |j 〉B).

(18)

Since Û also satisfies

Û P̂ (|s〉A,k)P̂ (|k′〉B)Û † = P̂ (|s ⊕ δk,k′ 〉A,k)P̂ (|k′〉B), (19)

we have

Û ê
(ph)
i,j Û † = 1

2|R| [P̂ (|1〉A,i) + P̂ (|1〉A,j )]

⊗ [P̂ (|i〉B) + P̂ (|j 〉B)]. (20)

For the state ρ̂ of a detected event, the probability of having
a bit error in the extracted qubit pair Aq and Bq is expressed

by Tr(ρ̂ê(b)), while a phase error is given by Tr(ρ̂ê(ph)), where
ê(b) and ê(ph) are, respectively, given by

ê(b) =
∑

(i,j ):j−i∈R
ê

(b)
i,j , ê(ph) =

∑
(i,j ):j−i∈R

ê
(ph)
i,j . (21)

By applying Û to ê(b) in Eq. (21) and using Eq. (18), we have

Û ê(b)Û † = 1̂A ⊗ �̂(b), (22)

where the matrix elements of �̂(b) are

B 〈m| �̂(b) |n〉B =

⎧⎪⎨
⎪⎩

1
2 if m = n,

− 1
2|R| if |m − n| ∈ R,

0 otherwise.

(23)

By applying Û to ê(ph), using Eq. (20) and P̂ (|k〉A,m) =∑
�a P̂ (|�a〉A)δam,k with �a = a1a2 . . . aL and |�a〉A = |a1〉A,1

|a2〉A,2 . . . |aL〉A,L, Û ê(ph)Û † results in the following form.

Û ê(ph)Û † =
∑

�a
P̂ (|�a〉A)

⊗
L∑

m=1

P̂ (|m〉B)

⎛
⎝1

2
δam,1 + 1

2|R|
∑

n:|m−n|∈R
δan,1

⎞
⎠

=:
∑

�a
P̂ (|�a〉A) ⊗ �̂

(ph)
�a . (24)

D. Relations between the bit and the phase error rates

In this subsection, we derive the upper bound on h(ph) in
Eq. (13) by using the bit error rate. For this, we first derive
the range where Alice’s sending state can be contained. In the
virtual protocol, if the initial state |
〉 satisfies 〈
| |�a〉A |ν〉C =
0 for a state |�a〉A |ν〉C, the density operator ρ̂ of Aq and Bq
originating from |
〉 also satisfies ρ̂ |�a〉A |ν〉C = 0. Moreover,
we have the following relations between �a and ν such that
〈
| |�a〉A |ν〉C = 0 is satisfied [9],

A 〈�a|C 〈ν| |
〉 = 0 if |�a| > ν, (25)

A 〈�a|C 〈ν| |
〉 = 0 if (−1)|�a| �= (−1)ν, (26)

where |�a| denotes the number of 1’s in the bit string �a. By
using Eqs. (25) and (26), ρ̂ after Alice obtains ν by measuring
the system C is contained in the range of a projection operator
P̂ (ν), which is defined by

P̂ (ν) :=
∑

�a:|�a|=ν,ν−2,ν−4,...

L∑
i=1

P̂ (|�a〉A ⊗ |i〉B). (27)

Next, to derive the relation between the bit and phase error
rates, we consider the quantity 
(ν)(λ) defined as the largest
eigenvalue of the operator,

P̂ (ν)(ê(ph) − λê(b))P̂ (ν), (28)

in the range of P̂ (ν) with λ � 0. By using 
(ν)(λ), the phase
error rate e(ph,ν) when Alice emits ν photons is bounded by the
bit error rate e(b,ν) when Alice emits ν photons as [9]

e(ph,ν) � λe(b,ν) + 
(ν)(λ). (29)
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Since Eq. (29) for various λ � 0 determines a convex achiev-
able region of (e(b,ν),e(ph,ν)) and h(x) is monotonically increas-
ing, we obtain the convex achievable region of (e(b,ν),h(e(ph,ν)))
specified by

h(e(ph,ν)) � γ e(b,ν) + 

(ν)
h (γ ) (30)

for various γ � 0. Here, 

(ν)
h (γ ) is the quantity depending on

γ and 
(ν)(λ).
In order to derive an upper bound on the leaked information

h(ph) in Eq. (14), we consider the optimization of Q(ν) such that
Eve’s information is maximal. Since NQ(ν) is the number of
qubits extracted in step (V5) from the detected events when
Alice emits ν photons, Q(ν) needs to satisfy the following
physical requirement regarding the number of total events
when Alice emits ν photons,

NQ(ν) � Npν, (31)

where pν denotes the Poisson distribution with mean Lα2,

pν := e−Lα2 (Lα2)ν

ν!
. (32)

Let q(ν) be a fraction of detected events when Alice emits ν

photons among all the detection,

q(ν) = Q(ν)

Q
= Q(ν)∑∞

ν=0 Q(ν)
. (33)

Here, q(ν) is chosen by Eve under the constraint of Eq. (31). As
long as 
(0)(λ) � 
(1)(λ) � 
(2)(λ) � . . . holds for all λ � 0,
Eve can maximize the amount of leaked information by using
the events with a larger value of ν. Therefore, the optimal
strategy for Eve is the following choice:

q(ν) =

⎧⎪⎨
⎪⎩

Q−1pν if ν � ν0 + 1,

1 − Q−1
(
1 −∑ν0

ν ′=0 pν ′
)

if ν = ν0,

0 if ν � ν0 − 1,

(34)

where ν0 is the integer satisfying

1 −
ν0∑

ν ′=0

pν ′ < Q � 1 −
ν0−1∑
ν ′=0

pν ′ . (35)

By using {q(ν)}ν and Eq. (30), the upper bound on h(ph) in
Eq. (14) is written as

h(ph) =
∞∑

ν=0

q(ν)h(e(ph,ν)) � min
γ�0

{
γ e(b) +

∞∑
ν=0

q(ν)

(ν)
h (γ )

}
,

(36)

where e(b) = ∑
ν q(ν)e(b,ν) is the bit error rate in the actual

protocol. The task left to obtain the upper bound on h(ph)

is to evaluate the quantities 
(ν)(λ) for ν ∈ [0,∞). In our
analysis, we consider the upper bounds on 
(ν)(λ) for ν = 1,2,
and for ν � 3 we make a pessimistic assumption that all the
information is leaked to Eve, that is, 
(ν)(λ) ≡ 1. With this

consideration, Eq. (36) is upper bounded by

h(ph) � min
γ�0

{
γ e(b) +

2∑
ν=0

q(ν)

(ν)
h (γ ) + q(ν�3)

}
, (37)

with q(ν�3) := ∑∞
ν=3 q(ν).

E. Evaluation of �(ν)(λ)

To evaluate 
(ν)(λ), we apply the unitary operation Û in
Eq. (17) to Eq. (28), and we obtain [9]

Û P̂ (ν)Û †(Û ê(ph)Û † − λÛ ê(b)Û †)Û P̂ (ν)Û †

=
∑

�a:|�a|=ν−1,ν−3,...

P̂ (|�a〉A) ⊗ (
�̂

(ph)
�a − λ�̂(b)

)

+
∑

�a:|�a|=ν+1

P̂ (|�a〉A) ⊗ P̂�a
(
�̂

(ph)
�a − λ�̂(b)

)
P̂�a. (38)

Here, we use the following equation:

Û P̂ (ν)Û † =
∑

�a:|�a|=ν−1,ν−3,...

P̂ (|�a〉A) ⊗ 1̂B

+
∑

�a:|�a|=ν+1

P̂ (|�a〉A) ⊗ P̂�a, (39)

where

P̂�a :=
L∑

i=1

δai ,1P̂ (|i〉B). (40)

Since �̂
(ph)
�a � �̂

(ph)
�a′ for (�a,�a′) such that ai � a′

i for all i,
we can neglect the operators with �a satisfying |�a| � ν − 3.
Therefore, we have only to consider 


(ν)
− (λ) defined as the

largest eigenvalue of the operators,

{
�̂

(ph)
�a − λ�̂(b) | |�a| = ν − 1

}
, (41)

and 

(ν)
+ (λ) defined as the largest eigenvalue of the operators,

{
P̂�a
(
�̂

(ph)
�a − λ�̂(b)

)
P̂�a | |�a| = ν + 1

}
. (42)

Let e
(ph,ν)
± be the upper bound on the phase error rate when we

employ 

(ν)
± (λ), respectively. e

(ph,ν)
± is given by

e
(ph,ν)
± = min

λ�0
{λe(b,ν) + 


(ν)
± (λ)}. (43)

Regarding 

(ν)
+ (λ), we have an analytical formula that is given

in the following lemma (see Appendix C for its proof).
Lemma 2. If ν � |R|/2,



(ν)
+ (λ) = 1 − λ

2
+ ν

1 + λ

2|R| (44)

holds for arbitrary λ � 0.

042301-7



HATAKEYAMA, MIZUTANI, KATO, IMOTO, AND TAMAKI PHYSICAL REVIEW A 95, 042301 (2017)

By applying Lemma 2 to Eq. (43), we obtain the analytical solution for the upper bound on e
(ph,ν)
+ .

e
(ph,ν)
+ � min

λ�0

{
λe(b,ν) + 1 − λ

2
+ ν

1 + λ

2|R|
}

= |R| + ν

2|R| + min
λ�0

{
λ

(
e(b,ν) − |R| − ν

2|R|
)}⎧⎪⎪⎨

⎪⎪⎩
� 0 if e(b,ν) <

|R|−ν

2|R| = 1
2 − ν

2|R| ,

= |R|+ν

2|R| = 1
2 + ν

2|R|
if e(b,ν) � |R|−ν

2|R| = 1
2 − ν

2|R| ,

(45)

where Eq. (45) is independent of the length L of one block.
Note that if ν > |R|/2, Lemma 2 cannot be applied, however,



(ν)
+ (λ) for this case is also easily derived by following the

same discussion of the derivation of Eq. (44) (the discussion
in Appendix C covers this situation, for example, |R| = ν =
2). On the other hand, to derive the upper bound 


(ν)
− (λ) in

Eq. (41), we need to solve the largest eigenvalue of �̂
(ph)
�a −

λ�̂(b), which is written as

�̂
(ph)
�a − λ�̂(b)

=
L∑

m=1

P̂ (|m〉B)

⎛
⎝1

2
δam,1 + 1

2|R|
∑

n:|m−n|∈R
δan,1

⎞
⎠

− λ

⎛
⎝1

2
1̂B − 1

2|R|
∑

(m,n):|m−n|∈R
|m〉B B 〈n|

⎞
⎠

=
L∑

m=1

P̂ (|m〉B)

⎛
⎝δam,1 − λ

2
+ 1

2|R|
∑

n:|m−n|∈R
δan,1

⎞
⎠

+ λ

2|R|
∑

(m,n):|m−n|∈R
|m〉B B 〈n| . (46)

To discuss the eigenvalues of Eq. (46), we recall the fact that
the translation operation V̂�a,�a′ defined for (�a,�a′) such that
ak = a′

k+Lκ is satisfied for any k ∈ {1, . . . ,L} with specific
κ ∈ {1, . . . ,L},

V̂�a,�a′ :=
L∑

m=1

|m +L κ〉B B 〈m| (47)

does not change the eigenvalues. Hence, the eigenvalues of
Eq. (46) with �a and �a′ are the same if there exists κ (1 � κ �
L) such that ak = a′

k+Lκ is satisfied for any k ∈ {1, . . . ,L}. By
using this, for ν = 2, it is enough to consider the case �a =

(

|R|/2︷ ︸︸ ︷
0 . . . 0 10 . . . 0), where the matrix representation of Eq. (46)

is written as

1

2|R|diag{
|R|/2︷ ︸︸ ︷

1, . . . ,1 ,|R|,
|R|/2︷ ︸︸ ︷

1, . . . ,1 ,0 . . . 0}L

− λ

2
IL + λ

2|R|A
(|R|/2)
L . (48)

Here, A(k)
n is an n × n matrix satisfying

(
A(k)

n

)
l,m

=

⎧⎪⎨
⎪⎩

1 if 1 � |l − m| � k,

1 if n − k � |l − m| � n − 1,

0 otherwise.

(49)

In order to obtain the largest eigenvalue of Eq. (48) for large
L, we take a numerical approach. For ν = 1, however, the
upper bound on 


(ν)
− (λ) can be easily derived, and we obtain

the following theorem for the upper bound on e(ph,1) (see
Appendix D for its proof).

Theorem 1. For 0 � e(b,1) � |R|−1
2|R| ,

e(ph,1) � |R| + 1

|R| − 1
e(b,1) (50)

holds. Also, for e(b,1) � |R|−1
2|R| , we have

e(ph,1) � 1

2
+ 1

2|R| . (51)

For ν > 1, the upper bound on e(ph,ν) is derived as the
maximum value of the convex combination of the one on
e

(ph,ν)
+ and e

(ph,ν)
− as

e(ph,ν) � max
p : 0 � p � 1

px+ + (1 − p)x− = e(b,ν)

{pf
(ν)
+ (x+) + (1 − p)f (ν)

− (x−)},

(52)

where f
(ν)
± (x) is defined by

f
(ν)
± (x) = min

λ±�0
{λ±x + 


(ν)
± (λ±)}. (53)

In Figs. 4(a) and 4(b), we plot the estimated upper bound on
the phase error rate e(ph,ν) as a function of e(b,ν) with the number
of delays |R| ∈ {2,4,6,8,10} for ν ∈ {1,2}. From these figures,
even if the number of the random delays is small (say |R| = 2),
we can observe a significant improvement over the original
DPS protocol. Moreover, when we compare the resulting phase
error rate of the SNRDPS protocol (solid lines) with the one
of the RRDPS protocol (dashed lines) with the small random
delays, the phase error rate of the SNRDPS protocol is smaller
if the bit error rate is small. Here, we assume the phase error
rate of the RRDPS protocol as e(ph) = ν/|R| [11].

IV. KEY GENERATION RATES

In this section, we present our main results, namely, the
key generation rate of the SNRDPS protocol is significantly
enhanced over the one of the original DPS protocol only by
employing a few additional delays such as |R| = 2. In Fig. 5,
we compare the key generation rate G per pulse in Eq. (13)
for three protocols: (i) the original DPS protocol [9], (ii)
the RRDPS protocol [11] without monitoring the disturbance
when Bob employs the number of random delays |R|, and
(iii) the SNRDPS protocol when Bob employs the number
of random delays |R|. From Fig. 5(a), we can see that the
key generation rate of the SNRDPS protocol with |R| = 2
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FIG. 4. The upper bound on the phase error rate e(ph,ν) as
a function of the bit error rate e(b,ν) in the case of (a) ν = 1
and (b) ν = 2, respectively. From bottom to top, the solid lines
correspond to the case of the SNRDPS protocol with (L,|R|) =
(32,10),(32,8),(32,6),(32,4), and (32,2), respectively. The black
solid line on the topmost of both figures corresponds to the case for
the original DPS protocol [9] with L = 32. Also, from bottom to top,
the dashed lines correspond to the case of the RRDPS protocol [11]
with (L,|R|) = (11,10),(9,8),(7,6), and (5,4), respectively.

outperforms the original DPS protocol when the fiber length
is more than about 40 km and the bit error rate e(b) is
2%. Also, the SNRDPS protocol always outperforms the
original DPS protocol when |R| � 4 and e(b) = 2%. Moreover,
from Fig. 5(b), the SNRDPS protocol provides a positive
key generation rate even though the original DPS protocol
cannot generate the secret key. Also, in both figures, by
comparing two lines with the same colors, we confirm that
the SNRDPS protocol outperforms the RRDPS protocol with
the same |R| up to |R| = 10. This means that, if the amount
of randomness is small as 2 � |R| � 10 and e(b) � 5%, the
key generation rate of the SNRDPS protocol outperforms the
one of the RRDPS protocol when both protocols employ
the same number of random delays |R| and Alice and Bob
do not monitor the bit error rate in the RRDPS protocol.

Next, we discuss the transmittance dependency of the key
generation rates for the SNRDPS protocol. For this, we assume
a fiber-based QKD system, and the detection efficiency Q is

e(b) = 2 %
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FIG. 5. The key generation rate G in logarithmic scale vs fiber
length. We assume Bob’s detection efficiency of 10%, the channel
transmittance of 0.2 dB/km, and the bit error rate e(b) = 2% in
(a) and e(b) = 5% in (b), respectively. In this simulation, we have
optimized the mean photon number μ = |α|2. From top to bottom,
the solid lines are for the SNRDPS protocols with (L,|R|) =
(32,10),(32,8),(32,6),(32,4), and (32,2), respectively. The key gen-
eration rate of the original DPS protocol [9] with L = 32 is plotted
in the bottommost solid line in (a). In the original DPS protocol,
the secret key cannot be extracted when e(b) = 5%. Also, from top
to bottom, the dashed lines express the resulting key generation
rates for the RRDPS protocol with (L,|R|) = (11,10),(9,8),(7,6),
and (5,4), respectively. Note that the dashed lines corresponding to
(L,|R|) = (5,4) disappeared from (b) since the rate is zero.

assumed to be Q = Lμη

2 e−Lμη. Here, μ := |α|2 denotes the
mean photon number per sending pulse, and η = η(l) denotes
channel transmittance with the fiber length l as η(l) := η0 ×
10− 0.2l

10 with η0 denoting Bob’s detection efficiency. If μ is
small (μ < 1), Q and pν are approximated to Q ∼ O(μη)
and pν ∼ O(μν), respectively. Suppose that Alice and Bob
generate the secret key from the ν-photon emissions. In this
case, by considering Eve’s attack, the total detection efficiency
Q ∼ O(μη) minus the probability of emitting more than ν + 1
photons (approximated to μν+1) has to be positive, resulting
in O(μν+1) � O(μη). From this, we obtain the dependency
of μ over the transmittance as

μ ∼ O(η1/ν), (54)
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and hence the key generation rate G behaves as

G ∼ Q ∼ O(η(ν+1)/ν). (55)

In Fig. 5(a), all the lines of the SNRDPS protocol except
for the one with (L,|R|) = (32,2) and the one of the RRDPS
protocol with |R| = 10 result in the transmittance dependency
as G ∼ O(η3/2), which means that the secret key is extracted
from the two-photon emission events in addition to the single-
photon emission events. On the other hand, the line of the
original DPS protocol and the ones of the RRDPS protocol
with |R| = 4,6 result in the transmittance dependency as
G ∼ O(η2) since the upper bound on the phase error rate
of the two-photon emission events is too high to extract the
secret key. Moreover, the SNRDPS protocol with (L,|R|) =
(32,2) and the RRDPS protocol with |R| = 8 provide the key
generation rate of the form G ∼ O(η2) for shorter distance
and G ∼ O(η3/2) for longer distance. The implication of this
is that when the loss increases, the two-photon contribution
becomes larger, and moreover the bit error rate of 2% is
still small enough to generate the key from the two-photon
emission event. Also, in Fig. 5(b), all the lines of the SNRDPS
protocol except the one with (L,|R|) = (32,4) and (32,2)
result in the transmittance dependency as G ∼ O(η2) for
shorter distance and G ∼ O(η3/2) for longer distance, while
all the remaining lines result in the transmittance dependency
as G ∼ O(η2). Even when the bit error rate is 5%, the
properties of transmittance dependency of the key generation
rates including the change of the scaling from the short and the
long distance regimes can be explained with the same reason
as the ones in Fig. 5(a).

Finally, Figs. 6(a) and 6(b) show the optimal mean photon
number Lμ to realize the key generation rates in Figs. 5(a)
and 5(b), respectively. For all the protocols, it can be found
that the optimal mean photon number scales as O(η1/ν) for the
ν-photon emission event, which is the same scaling as Eq. (54).
Also, the discontinuous point of the lines in Figs. 6(a) and 6(b),
which represents the boundary of the presence or absence of
the two-photon contribution, corresponds to the changing point
of the scaling of the key generation rates in Figs. 5(a) and 5(b),
respectively.

V. CONCLUSION

In conclusion, in this paper, we have proposed a DPS-type
QKD protocol with small random delays at Bob’s measure-
ment and analyzed its information-theoretical security. For
this protocol, we have estimated an upper bound on the
phase error rate for Alice’s single and two-photon emission
events by using the bit error rate information. In addition,
we have simulated and compared the key generation rates
for the SNRDPS protocol with |R| ∈ {2,4,6,8,10}, the one
for the original DPS protocol, and the ones for the RRDPS
protocol with |R| ∈ {4,6,8,10}. As a result, we found that
the performance of the SNRDPS protocol is significantly
enhanced from the original DPS protocol even when Bob
employs only a few numbers of delays such as |R| = 2.
Moreover, we found that if |R| � 10, the key generation rate
of the SNRDPS protocol based on our analysis outperforms
the RRDPS protocol without monitoring the disturbance [11]
when the same number of random delays is employed.
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FIG. 6. The optimal light intensity Lμ to achieve the key
generation rate in Fig. 5 in logarithmic scale vs fiber length when
the bit error rate e(b) = 2% in (a) and e(b) = 5% in (b). From
top to bottom, the solid lines are for the cases of the SNRDPS
protocol with (L,|R|) = (32,10),(32,8),(32,6),(32,4), and (32,2),
respectively. The light intensity of the original DPS protocol [9] with
L = 32 is plotted in the bottom solid line in (a). In the original
DPS protocol, the optimal light intensity cannot be found when
e(b) = 5%. Also, from top to bottom, the dashed lines express the
cases for the RRDPS protocol with (L,|R|) = (11,10),(9,8),(7,6),
and (5,4), respectively. Note that the dashed lines corresponding to
(L,|R|) = (5,4) disappeared in (b) since the optimal light intensity
cannot be found.

The SNRDPS protocol is an intermediate protocol between
the original DPS and the RRDPS protocols in terms of the
practicality and bit error tolerance, and this protocol increases
the variety of future implementation for the DPS-type QKD
protocol.
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APPENDIX A: PROOF OF LEMMA 1

Here, we prove Lemma 1 in the main text. First, we have
that Ê

(r)
k,s satisfies the following relation,

Ê
(r)
k,s =

{
B̂

(r)
k,s if 1 � k � L − r,

B̂
(L−r)
k−L+r,s if L − r + 1 � k � L.

(A1)

This is so because Ê
(r)
k,s is written as

Ê
(r)
k,s = 1

2
P̂

( |k〉B + (−1)s |k + r〉B√
2

)
= B̂

(r)
k,s (A2)

for 1 � k � L − r and

Ê
(r)
k,s = 1

2
P̂

( |k〉B + (−1)s |k − L + r〉B√
2

)

= 1

2
P̂

(
(−1)s |k − L + r + (L − r)〉B + |k − L + r〉B√

2

)
= B̂

(L−r)
k−L+r,s (A3)

for L − r + 1 � k � L. By using Eq. (A1) and regarding
B̂

(r)
k,s = 0 if k � 0 or L − r + 1 � k, we have the following

equation:

Ê
(r)
k,s = B̂

(r)
k,s + B̂

(L−r)
k−L+r,s . (A4)

If we fix the delay of the dial measurement as r ′, the probability
that Bob obtains the bit value s and announces the pair of
integers (i,j ) (with i < j ) is given by

Pr[s ∧ (i,j )|r ′]dial = Tr
(
ρ̂Ê

(r ′)
i,s

)
δj−i,r ′

+ Tr
(
ρ̂Ê

(r ′)
j,s

)
δj−i,L−r ′ . (A5)

To simulate the dial measurement with the delay r ′ by using
Bob’s actual measurement, he randomly switches the delays of
the actual measurement r ′ and L − r ′. The probability that Bob
obtains the outcome s and announces (i,j ) when he performs
the actual measurement is written as

Tr
(
ρ̂B̂

(r ′)
i,s

)
δj−i,r ′ (A6)

if the delay is r ′ and

Tr
(
ρ̂B̂

(L−r ′)
i,s

)
δj−i,L−r ′ (A7)

if the delay is L − r ′. Let us define Pr[s ∧ (i,j )|r ∈ {r ′,L −
r ′}]actual as the probability that Bob obtains s and an-
nounces (i,j ) when he performs the actual measurement
with the delay r = r ′ or r = L − r ′ uniformly at random.
Pr[s ∧ (i,j )|r ∈ {r ′,L − r ′}]actual is written as

Pr[s ∧ (i,j )|r ∈ {r ′,L − r ′}]actual

= 1
2 Tr

(
ρ̂B̂

(r ′)
i,s

)
δj−i,r ′ + 1

2 Tr
(
ρ̂B̂

(L−r ′)
i,s

)
δj−i,L−r ′

= 1
2 Tr

(
ρ̂B̂

(r ′)
i,s

)
δj−i,r ′ + 1

2 Tr
(
ρ̂B̂

(L−r ′)
j−L+r ′,s

)
δj−i,L−r ′

= 1
2 Tr

(
ρ̂
[
Ê

(r ′)
i,s − B̂

(L−r ′)
i−L+r ′,s

])
δj−i,r ′

+ 1
2 Tr

(
ρ̂
[
Ê

(r ′)
j,s − B̂

(r ′)
j,s

])
δj−i,L−r ′

= 1
2

[
Tr
(
ρ̂Ê

(r ′)
i,s

)
δj−i,r ′ + Tr

(
ρ̂Ê

(r ′)
j,s

)
δj−i,L−r ′

]
− 1

2 Tr
(
ρ̂
[
B̂

(L−r ′)
i−L+r ′,sδj−i,r ′ + B̂

(r ′)
j,s δj−i,L−r ′

])
= 1

2 Pr[s ∧ (i,j )|r ′]dial, (A8)

where we have used Eqs. (A4) and (A5) in the third and fifth
equalities, respectively. Also, we have used

B̂
(L−r ′)
i−L+r ′,sδj−i,r ′ + B̂

(r ′)
j,s δj−i,L−r ′

= B̂
(L−r ′)
i−L+r ′,sδi−L+r ′,j−L + B̂

(r ′)
j,s δj,L−r ′+i

= B̂
(L−r ′)
j−L,s δi−L+r ′,j−L + B̂

(r ′)
L−r ′+i,sδj,L−r ′+i = 0 (A9)

in the fifth equality, which is satisfied since B̂
(r)
k,s = 0 for k � 0

or L − r + 1 � k, and (i,j ) satisfies 1 � i < j � L.

APPENDIX B: DETAIL OF CALCULATION
OF BIT AND PHASE ERROR POVMs

Here, we detail the calculation of the equations of bit and
phase error POVMs. First, Eq. (16) is derived as follows.

ê
(ph)
i,j :=

1∑
s=0

3∑
k=1

M̂
(i,j )†
k P̂ (Ĥ |s〉Aq)M̂ (i,j )

k ⊗ 1

|R|
∑
r∈R

[
F̂

(r)†
i P̂ (Ĥ |s̄〉B)F̂ (r)

i δj,i+r + F̂
(r)†
j P̂ (Ĥ |s̄〉B)F̂ (r)

j δi,j+r−L

]

= 1

|R|
1∑

s=0

3∑
k=1

M̂
(i,j )†
k P̂ (Ĥ |s〉Aq)M̂ (i,j )

k ⊗ [
F̂

(j−i)†
i P̂ (Ĥ |s̄〉B)F̂ (j−i)

i + F̂
(L−(j−i))†
j P̂ (Ĥ |s̄〉B)F̂ (L−(j−i))

j

]

= 2

|R|
1∑

s=0

3∑
k=1

M̂
(i,j )†
k P̂ (Ĥ |s〉Aq)M̂ (i,j )

k ⊗ F̂†
i,j P̂ (Ĥ |s̄〉B)F̂i,j

= 1

|R|
1∑

s=0

[
P̂ (|s〉A,i |s̄〉A,j ) + 1

2

1∑
t=0

P̂ (|t〉A,i |t〉A,j )

]
⊗ P̂ (δs̄,1 |i〉B + δs̄,0 |j 〉B)

= 1

|R| [P̂ (|0〉A,i |1〉A,j ) ⊗ P̂ (|i〉B) + P̂ (|1〉A,i |0〉A,j ) ⊗ P̂ (|j 〉B)] + 1

2|R|
1∑

t=0

P̂ (|t〉A,i |t〉A,j ) ⊗ [P̂ (|i〉B) + P̂ (|j 〉B)]. (B1)

Here, we define s̄ := s ⊕ 1 and F̂i,j := 1√
2
Ĥ |1〉Bq B 〈i| + 1√

2
Ĥ |0〉Bq B 〈j |.
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Next, we detail the derivation of Eq. (22) as follows. �̂(b) in Eq. (22) is written as

�̂(b) := 1

2|R|
∑

(i,j ):j−i∈R
P̂ (|i〉B − |j 〉B) = 1

2|R|
∑

(i,j ):j−i∈R
[P̂ (|i〉B) + P̂ (|j 〉B) − (|i〉B B 〈j | + |j 〉B B 〈i|)]

= 1

2|R|
∑

(m,n):|m−n|∈R
[P̂ (|m〉B) − |m〉B B 〈n|] = 1

2
1̂B − 1

2|R|
∑

(m,n):|m−n|∈R
|m〉B B 〈n| , (B2)

which concludes Eq. (23).
Finally, we detail transformation in Eq. (24) as follows.

Û ê(ph)Û † = 1

2|R|
∑

(i,j ):j−i∈R
[P̂ (|1〉A,i)+P̂ (|1〉A,j )] ⊗ [P̂ (|i〉B)+P̂ (|j 〉B)]= 1

2|R|
∑

(m,n):|m−n|∈R
[P̂ (|1〉A,m)+P̂ (|1〉A,n)] ⊗ P̂ (|m〉B)

= 1

2|R|
∑

(m,n):|m−n|∈R

∑
�a

P̂ (|�a〉A)(δam,1 + δan,1) ⊗ P̂ (|m〉B) =
∑

�a
P̂ (|�a〉A) ⊗ 1

2|R|
L∑

m=1

∑
n:|m−n|∈R

(δam,1 + δan,1)P̂ (|m〉B)

=
∑

�a
P̂ (|�a〉A) ⊗

L∑
m=1

P̂ (|m〉B)

⎛
⎝1

2
δam,1 + 1

2|R|
∑

n:|m−n|∈R
δan,1

⎞
⎠ =:

∑
�a

P̂ (|�a〉A) ⊗ �̂
(ph)
�a . (B3)

APPENDIX C: PROOF OF LEMMA 2

Here, we prove Lemma 2 in the main text. We consider the maximization of the largest eigenvalue of P̂�a(�̂(ph)
�a − λ�̂(b))P̂�a in

Eq. (42) over �a with |�a| = ν + 1. By using Eq. (46), P̂�a(�̂(ph)
�a − λ�̂(b))P̂�a is written as

P̂�a
(
�̂

(ph)
�a − λ�̂(b)

)
P̂�a =

L∑
m=1

P̂ (|m〉B)δam,1

⎛
⎝δam,1 − λ

2
+ 1

2|R|
∑

n:|m−n|∈R
δan,1

⎞
⎠+ λ

2|R|
∑

(m,n):|m−n|∈R
|m〉B B 〈n| δam,1δan,1

=
∑

m:am=1

⎡
⎣P̂ (|m〉B)

⎛
⎝1 − λ

2
+ 1

2|R|
∑

n:|m−n|∈R
δan,1

⎞
⎠+ λ

2|R|
∑

n:|m−n|∈R
|m〉B B 〈n| δan,1

⎤
⎦

=
∑

m:am=1

⎧⎨
⎩1 − λ

2
P̂ (|m〉B) +

∑
n:|m−n|∈R∧an=1

[
1

2|R| P̂ (|m〉B) + λ

2|R| |m〉B B 〈n|
]⎫⎬
⎭

=
∑

m:am=1

1 − λ

2
P̂ (|m〉B) +

∑
(m,n) :

|m − n| ∈ R ∧ (am,an) = (1,1)

[
1

2|R| P̂ (|m〉B) + λ

2|R| |m〉B B 〈n|
]
. (C1)

Since R = ⋃t
m=1{m,L − m}, the coefficient of P̂ (|m〉B) for m

such that am = 1 in Eq. (C1) is written as

1 − λ

2
+ 1

2|R|#

{
n

∣∣∣∣n ∈ {1, . . . ,L}
∧|m − n| ∈ R ∧ an = 1

}

= 1 − λ

2
+ 1

2|R|
L∑

n=1

δan,1

t∑
l=1

(
δn,m+Ll + δn,m−Ll

)
.

(C2)

Here, #{n | A(n)} denotes the number of n satisfying the
condition A(n), and −L denotes subtraction modulo L, namely,
for integers (p,q) with 1 � p � L and 1 � q � L,

p −L q =
{
p − q if p � q + 1,

p − q + L if p � q.
(C3)

Also, the coefficient of |m〉B B 〈n| for m,n such that (am,an) =
(1,1) in Eq. (C1) is written as

λ
2|R| if n = m ±L l(1 � l � t),
0 otherwise.

(C4)

Next, we cassify �a in terms of the resulting eigenvalues of
Eq. (C1). In so doing, note that the translation operation
(as this is a unitary operator) defined by Eq. (47) does not
change the eigenvalues of Eq. (C1). Hence, the eigenvalues
of Eq. (C1) with �a and �a′ are the same if there exists κ

(1 � κ � L) such that ak = a′
k+Lκ is satisfied for any k ∈

{1, . . . ,L} and hence it suffices to consider �a ∈ [�a] = {�a′ |
∃κ ∈ {1, . . . ,L} s.t. a′

k+Lκ = ak for ∀k ∈ {1, . . . ,L}} to derive
the eigenvalues of Eq. (C1). In order to characterize �a, we
introduce an |�a|(= ν + 1)-length vector �p = (p1p2 . . . pν+1)
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that satisfies

apj
= 1 for ∀j ∈ {1, . . . ,ν + 1}, (C5)

1 � p1 < p2 < · · · < pν+1 � L. (C6)

By using �p, we can convert the problem of deriving the largest
eigenvalue of Eq. (C1) to the maximization problem of the
largest eigenvalue of the following matrix.

1 − λ

2
Iν+1 + 1

2|R|Bν+1(λ). (C7)

Here, Iν+1 denotes the (ν + 1) × (ν + 1) identity matrix and
Bν+1(λ) denotes the (ν + 1) × (ν + 1) matrix whose diagonal
element (Bν+1(λ))m,m is given by
(Bν+1(λ))m,m = #{k | k ∈ {1, . . . ,ν + 1} ∧ |pm − pk| ∈ R}

=
ν+1∑
k=1

t∑
l=1

(
δpk,pm+Ll + δpk,pm−Ll

)

=
t∑

l=1

ν+1∑
k=1

(
δpk,pm+Ll + δpk,pm−Ll

)

=
t∑

l=1

ν+1∑
k=1:k �=m

(
δpk,pm+Ll + δpk,pm−Ll

)
, (C8)

and its off-diagonal element (Bν+1(λ))m,n (m �= n) is given by

(Bν+1(λ))m,n =
{
λ if pn = pm ±L l(1 � l � t),
0 otherwise. (C9)

Among [�a], we need to find �a that achieves the largest
eigenvalue of Eq. (C7). For this, we use the following fact.

Fact 1. For any real matrix with non-negative off-diagonal
elements, the largest eigenvalue is maximized when all the
matrix elements are maximized.

Proof. We consider two n × n real matrices A = (Ai,j )i,j
and Ã = (Ãi,j )i,j such that Ai,j � Ãi,j holds for any i,j ∈
{1, . . . n} and Ai,j ,Ãi,j � 0 holds if i �= j . Suppose that
|ψ〉 = (x1x2 . . . xn)T and |ψ̃〉 = (x̃1x̃2 . . . x̃n)T are normalized
eigenvectors of A and Ã that give the largest eigenvalue of A

and Ã, respectively. Since both A and Ã are real and all the
off-diagonal elements of A and Ã are non-negative, we can
choose |ψ〉 and |ψ̃〉 such that all the elements of |ψ〉 and |ψ̃〉
are real and non-negative. By using |ψ〉 and |ψ̃〉, the largest
eigenvalue of A and Ã are, respectively, given by

〈A〉max := 〈ψ | A |ψ〉 =
∑
i,j

Ai,j xixj , (C10)

〈Ã〉max := 〈ψ̃ | Ã |ψ̃〉 =
∑
i,j

Ãi,j x̃i x̃j . (C11)

Since Ai,j � Ãi,j holds for any i,j ∈ {1, . . . n} and |ψ〉 gives
the largest eigenvalue of A, we have

〈Ã〉max =
∑
i,j

Ãi,j x̃i x̃j �
∑
i,j

Ai,j x̃i x̃j = 〈ψ̃ | A |ψ̃〉

� 〈ψ | A |ψ〉 = 〈A〉max , (C12)

which ends the proof.
By using Fact 1, the largest eigenvalue of Eq. (C7) is

obtained when pj + 1 = pj+1 for all j ∈ {1, . . . ,ν}, namely,

�a = (0 . . . 0

ν+1︷ ︸︸ ︷
1 . . . 1 0 . . . 0) in Eq. (C1). For example, if ν = 2

and |R| = 2, Eq. (C7) with �a = (0 . . . 01110 . . . 0) is rewritten
as ⎡

⎢⎢⎣
1−λ

2 + 1
4

λ
4 0

λ
4

1−λ
2 + 1

2
λ
4

0 λ
4

1−λ
2 + 1

4

⎤
⎥⎥⎦, (C13)

and this results in the largest eigenvalue of Eq. (C1), which
corresponds to 


(2)
+ (λ) for R = {1,L}. Moreover, if ν � t(=

|R|/2), Eq. (C7) with �a = (0 . . . 0

ν+1︷ ︸︸ ︷
1 . . . 1 0 . . . 0) is rewritten

as

1 − λ

2
Iν+1 + 1

2|R|Bν+1(λ), (C14)

where Bν+1(λ) denotes the (ν + 1) × (ν + 1) matrix whose
elements are given by

(Bν+1(λ))m,n =
{
ν if m = n,

λ otherwise. (C15)

Equation (C14) has only two eigenvalues: (1 − λ)/2 + (ν −
λ)/(2|R|) and (1 − λ)/2 + ν(1 + λ)/(2|R|). Since λ � 0, we
have



(ν)
+ (λ) = 1 − λ

2
+ ν

1 + λ

2|R| , (C16)

which concludes Eq. (44).

APPENDIX D: PROOF OF THEOREM 1

Here, we prove Theorem 1 in the main text. In order
to maximize e

(ph,1)
− , we derive an upper bound on 


(1)
− (λ).

For this, we consider the largest eigenvalue of �̂
(ph)
�a −

λ�̂(b) for |�a| = ν − 1 = 0, namely, �a = (00 . . . 0) =: �0. Since
�̂

(ph)
�0 = 0, 


(1)
− (λ) is given by the largest eigenvalue of

−λ�̂(b), which is nonpositive. Hence, e
(ph,1)
− is upper bounded

by e
(ph,1)
− = minλ�0{λe(b,1) + 


(1)
− (λ)} � minλ�0{λe(b,1)} = 0.

For e
(b,1)
+ , from Eq. (45), we obtain

e
(ph,1)
+ � 1

2
+ 1

2|R| , (D1)

for e(b,1) � |R|−1
2|R| . Also, for 0 � e(b,1) � |R|−1

2|R| , e(ph,1) is upper
bounded by

e(ph,1) � 2|R|
|R| − 1

e(b,1)

(
1

2
+ 1

2|R|
)

= |R| + 1

|R| − 1
e(b,1), (D2)

by choosing p in Eq. (52) as p = 2|R|
|R|−1e(b,1). Therefore, by

combining Eqs. (D1) and (D2), we conclude Eq. (50).
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