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We investigate the quantum Zeno and anti-Zeno effects in quantum dissipative systems by employing a
hierarchical equations of motion approach which is beyond the usual Markovian approximation, the rotating
wave approximation, and the perturbative approximation. The quantum Zeno and anti-Zeno dynamics of a biased
qubit-boson model and a biased qutrit-boson model are provided as illustrative examples. It is found that (i) there
exists multiple Zeno–anti-Zeno crossover phenomena, (ii) the non-Markovian characteristic of the bath may be
favorable for the accessibility of the Zeno dynamics, and (iii) high bath temperature may add the difficulty in
observing the quantum Zeno effect in quantum dissipative systems.
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I. INTRODUCTION

The quantum Zeno effect (QZE) describes a quantum
phenomenon that the decay of an unstable quantum system
can be frozen or suitably confined by repeated frequent
measurements [1]. On the other hand, the reverse effect, i.e.,
the acceleration of the decay process of the unstable quantum
system induced by repeated frequent measurements, has also
been pointed out and is known as the quantum anti-Zeno effect
(QAZE) [2]. The QZE has been experimentally observed in
many real physical systems, such as the trapped ion [3], the
superconducting Josephson junction [4], the ultracold atomic
Bose-Einstein condensate [5], and the nuclear spin system [6].

On the other hand, due to the unavoidable coupling with the
surrounding bath, the microscopic quantum system severely
undergoes decoherence which is the main difficulty in fulfilling
reliable quantum computation and quantum communication
tasks [7,8]. In this sense, to gain a global view and more
physical insights into the QZE and the QAZE, the effect
of the surrounding bath should be taken into considera-
tion. Almost all the existing studies of the QZE and the
QAZE in quantum dissipative systems have restricted their
attentions to some exactly solvable models, such as the
pure dephasing model [9,10] and the unbiased qubit-boson
model with rotating-wave approximation [10,11], which is also
called the damped Jaynes-Cummings model. For the unbiased
qubit-boson model beyond the rotating-wave approximation
[12], most of the treatments are based on the generalized
Silbey-Harris transformation [12,13] which is valid only in
the weak system-bath coupling regime. Very few studies focus
on the more general quantum dissipative systems, such as the
biased qubit-boson model [14–16] where both the dephasing
mechanism and quantum relaxation are considered in this
model. Many previous articles have shown that the existence of
an external bias field can remarkably change the decoherence
behavior of the qubit-boson model [14,15]. Thus we expect
that the QZE and the QAZE of a biased qubit-boson model is
quite different from that of the unbiased case. Unfortunately,
the reduced dynamics of the biased qubit-boson model cannot
be exactly obtained; in this paper, we employ a numerical
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hierarchical equations of motion (HEOM) method [17–20] to
study the QZE and the QAZE in quantum dissipative systems.

The HEOM is a set of time-local differential equations for
the reduced density matrix of the quantum subsystem, which
was originally proposed by Tanimura and his co-workers
[17,18]. This numerical treatment includes all the orders of the
system-bath interactions and is beyond the usual Markovian
approximation, the rotating-wave approximation, and the per-
turbative approximation. In recent years, the HEOM approach
was successfully used to study the reduced dynamics in many
chemical and biophysical systems, such as optical line shapes
of molecular aggregates and electron energy transfer dynamics
in the Fenna-Matthews-Olson complex [17]. Furthermore,
the HEOM method is also employed to investigate some
important problems in the field of the quantum information
science, such as the dynamics of entanglement or quantum
discord in quantum dissipative systems [20], as well as the
dynamical behaviors of the spin squeezing and the quantum
Fisher information under certain non-Markovian decoherence
channels [19,21].

During the past years, there has been an increasing interest
to study the memory effect of the bath in quantum dissipative
systems [22–25]; this memory effect, which is also known
as the non-Markovianity, is a very important characteristic of
the quantum dissipative dynamics and has many applications
in realistic physical systems [25]. Since the non-Markovian
bath retains the memory and has some feedback action on
the quantum subsystem, the reduced dynamics of the quantum
subsystem could be considerably changed. It would be of great
interest in an investigation of the QZE and the QAZE in a
non-Markovian bath. Moreover, we are not only interested
in the QZE or the QAZE in the non-Markovian bath, but
also in the modifications of the QZE (or the QAZE) induced
by the non-Markovianity. What is the link between the non-
Markovianity and the QZE (the QAZE)? Or more specifically,
what is the influence of the non-Markovianity on the QZE or
the QAZE in quantum dissipative systems? In this paper, we
try to address this question by studying the QZE and the QAZE
of a biased qubit (and a qutrit) coupled to a zero temperature
non-Markovian bosonic bath.

On the other hand, for practical quantum devices, the
influences of bath temperature on the decoherence cannot
be disregarded. One commonly believed concept is that the
bath temperature can speed up the destruction of quantum
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coherence. However, some studies have shown that the bath
temperature is able to reduce the decoherence in some quantum
dissipative systems [26,27]. This result is contrary to the
common recognition that a higher bath temperature always
induces a more severe decoherence and suggests that the bath
temperature plays a very intricate role in quantum dissipative
systems. An interesting question arises here: what is the
influences of the bath temperature on the QZE or the QAZE in
quantum dissipative systems? To address the above concern,
we also generalize our study to the finite temperature situation.

This paper is organized as follows. In Sec. II, we briefly
outline some basic concepts as well as the general formalism
of the QZE and the QAZE in a general quantum dissipative
system. In Sec. III, we study the QZE and the QAZE in some
general spin-boson models at both zero and finite temperatures
by the numerical HEOM approach. Some concerned discus-
sions and the main conclusions of this paper are drawn in
Sec. IV.

II. QZE AND QAZE IN A GENERAL QUANTUM
DISSIPATIVE SYSTEM

In this section, we would like to make a brief summary
of the main features of the QZE and the QAZE in quantum
dissipative systems. The general Hamiltonian of a quantum
dissipative system can be described by

Ĥ = Ĥs + Ĥb + Ĥsb, (1)

where Ĥs is the Hamiltonian of the quantum subsystem, Ĥb

denotes the Hamiltonian of the surrounding bath, and Ĥsb

stands for the system-bath interaction Hamiltonian. In our
work, we regard the quantum subsystem Ĥs as the object to
be measured. Throughout, we work in the dimensionless units
and h̄ = kB = 1. Assuming the initial state of the quantum
subsystem is �̂s(0) = |ψ(0)〉〈ψ(0)| and the bath is prepared in a
thermal equilibrium state �̂b = exp(−βĤb)/Trb[exp(−βĤb)],
where β ≡ T −1 is the inverse temperature, then the reduced
density matrix of the quantum subsystem at time t is given by
�̂s(t) = Trb[exp(−iĤ t)�̂s(0) ⊗ �̂b exp(iĤ t)].

Suppose that the quantum subsystem is probed N times by
the projective measurements M̂ = |ψ(0)〉〈ψ(0)| with equal
time intervals τ = t/N during its time evolution; the survival
probability after the measurements is given by

P (t) = P (τ )N

= [〈ψ(0)| exp(iĤsτ )�̂s(τ ) exp(−iĤsτ )|ψ(0)〉]N, (2)

where we have applied a time-dependent rotation exp(iĤsτ )
to remove the evolution induced by Ĥs itself; this treatment is
extensively adopted in many previous studies [9,28] and would
be very helpful for us to study the QZE and QAZE induced by
the dissipative bath. In our theoretical formalism, we assume
that the state of the bath is not disturbed by the measurements,
namely, the bath is always in the thermal equilibrium state
after each measurement on the quantum subsystem. We also
would like to mention that it might be interesting to explore the
quantum Zeno and anti-Zeno effects of a quantum subsystem
embedded in a nonequilibrium environment. The study in this
field is beyond the the scope of our paper and needs further
investigation.

For the sake of convenience, one can introduce the effective
decay rate which is defined by

�(τ ) ≡ − 1

τ
ln[P (τ )]. (3)

Then the survival probability after the measurements can be
rewritten as P (t) = exp[−�(τ )t]. The effective decay rate
�(τ ) is the crucial physical quantity to study the QZE and
the QAZE in quantum dissipative systems [1,2,9,10,12,14,28].
In many previous studies, the ratio of �(τ )/�0 is used to
identify the occurrence of the QZE and the QAZE, where �0

is the natural decay rate of the quantum subsystem obtained
by the Fermi golden rule [1,2,12]. In this paper, we adopt
an alternative way to characterize the QZE and the QAZE
[9,10,28,29]: the QZE takes place when the effective decay
rate �(τ ) decreases as τ becomes smaller, while the QAZE
occurs when the effective decay rate �(τ ) increases as τ

becomes smaller. The local maximum or minimum of �(τ )
is the transition point between the QZE regime and the QAZE
regime. This definition of QZE and QAZE has a clear physical
picture: if the rapidly repeated measurements decrease the
value of effective decay rate, the relaxation process of the
measured system is suppressed, which leads to the QZE; on
the other hand, if the rapidly repeated measurements increase
the value of effective decay rate, the relaxation process of the
measured system is accelerated, which leads to the QAZE.
When �(τ ) = 0, neither the QZE nor the QAZE occurs. The
classification of the QZE and the QAZE by the behaviors of
�(τ ) is very suitable for the case where the natural decay rate
is unknown [9,10,28,29].

The other important physical quantity to describe the QZE
is the quantum Zeno time. One of the most widely used
definitions of the quantum Zeno time is given by [1,12]

τZ ≡
[

d

dτ
�(τ )

]− 1
2

τ→0

. (4)

With the help of this definition, the survival probability can
be approximately expressed as P (t) = 1 − t2/τ 2

Z in the short-
time regime. One can find that a larger value of τZ makes the
QZE easier to realize [10,30].

III. RESULTS

The dissipation-induced decoherence in a quantum mi-
croscopic system can be effectively modeled by the spin-
boson model, which describes the interaction between a spin
subsystem and a bosonic bath. The spin-boson model has
attracted considerable attention in past decades because it
provides a very simple model to simulate many physical and
biological processes. The reduced system dynamics of the
spin-boson model has been studied by various analytical and
numerical methods, for example, the generalized Silbey-Harris
transformation approach [12–14], the time-dependent density-
matrix renormalization-group method [31], the Dirac-Frenkel
time-dependent variation with Davydov ansatz [32], and the
HEOM formalism [17–20].

In this paper, we consider a general spin-boson model which
is described by the following Hamiltonian:

Ĥ = Ĥs +
∑

k

ωkâ
†
kâk + f (ŝ) ⊗

∑
k

gk(a†
k + ak), (5)
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where f (ŝ) denotes the quantum subsystem’s operator coupled
to the bath, ωk is the frequency of the kth boson mode, gk

labels the coupling strength between the spin and the kth
boson mode, and âk and â

†
k are the annihilation and creation

operators of the kth boson mode, respectively. We use the
HEOM method to investigate the QZE and the QAZE in
this general spin-boson model. The explicit expressions of
the hierarchical equations at both zero and finite temperatures
are given in the Appendix. In this section, the QZE and QAZE
of a biased qubit-boson model and a biased qutrit-boson model
are provided as illustrative examples. In order to demonstrate
the accuracy of our numerical results, we also compare our
numerical results with the exactly analytical results in the
pure dephasing cases and the perturbative results proposed
in Ref. [28].

A. Biased qubit-boson model

In this subsection, we study the QZE and the QAZE in
a biased qubit-boson model, the Hamiltonian of which is
described by Eq. (5) with Ĥs = ε

2 σ̂z − 

2 σ̂x and f (ŝ) = σ̂z.

The QZE and the QAZE in an unbiased qubit-boson model
(ε = 0) have been studied in many previous articles [12]. There
are several reasons why we need to consider the effect of a
finite external bias field in our study. First, the existence of the
finite external bias field enriches the type of the decoherence
mechanism; both quantum dephasing (
 = 0 and ε �= 0) and
quantum relaxation ([Ĥs,f (ŝ)] �= 0) cases are included in the
same model. Second, some studies showed that the finite
external bias field is able to enhance the quantum coherence
[14,15]; this effect of the nonzero external bias field may
be helpful to realize the QZE or the QAZE in experiments,
because the observation of the QZE or the QAZE requires a
relatively long quantum relaxation or decoherence time [9].

In this subsection, we assume the bath is initially prepared
in its Fock-vacuum state

⊗
k |0k〉 and the bath density spectral

function J (ω) ≡ ∑
k g2

k δ(ω − ωk) has the Lorentz spectrum
form

JL(ω) = 1

2π

γ0λ
2

(ω − ω0)2 + λ2
, (6)

where λ defines the spectral width of the coupling and γ0

can be approximately interpreted as the system-bath coupling
strength. The reason why we choose the Lorentz spectrum at
zero temperature case is twofold: first, for a Lorentzian bath
density spectral function JL(ω), CL(t) [see Eq. (A2) in the
Appendix] is the Ornstein-Uhlenbeck-type bath correlation
function [7,33] which is the key requirement to perform the
HEOM scheme [17–20]. Secondly, the Lorentzian spectrum
has a clear boundary between Markovian and non-Markovian
regimes [7,33]. More specifically speaking, the parameter λ

is connected to the bath correlation time τb by the relation
τb � λ−1, while the time scale τs , on which the state of the
system changes, is given by τs � γ −1

0 . In this sense, the
boundary between Markovian regimes and non-Markovian
regimes can be approximately specified by the ratio of
τb/τs = γ0/λ. When γ0/λ is very small, which means the bath
correlation time τb is much smaller than the relaxation time
of the quantum subsystem τs , the decoherence mechanics is
Markovian [7,33]. When γ0/λ is large, the memory effect of

the bath should be taken into account and the dynamics of
this open system is then non-Markovian [7,33]. In fact, one
can demonstrate that the hierarchical equations in Eq. (A3)
reduce to the usual Markovian Lindblad-type master equation
in the limit λ 	 max{γ0,ω0} [18], due to the fact that the
bath correlation function reduces to the Dirac δ function
CL(t − t ′) → const × δ(t − t ′) in this situation. This feature
of the Lorentz spectrum is very helpful for us to study the
relationship between the non-Markovianity and the QZE in
quantum dissipative systems. However, we also want to point
out that a more rigorous way to distinguish the Markovian or
non-Markovian regimes in parameter space should consider
not only the bath density spectral function J (ω) but also the
decoherence channel. In recent years, many physical quanti-
ties, such as trace distance [22], quantum Fisher information,
and quantum correlation [24], are proposed to identify the
non-Markovianity in quantum open systems. Unfortunately,
only for a few models, one can obtain an analytical expression
of the non-Markovianity. For the more general quantum open
systems, these physical quantities or schemes are too hard
to compute. It would be very interesting to establish a more
rigorous relation between these non-Markovianity measures
and the QZE in quantum dissipative systems.

For the pure dephasing case, namely 
 = 0, this model
can be exactly solved. Assuming the initial state of the qubit is
|ψ(0)〉 = 1√

2
(|e〉 + |g〉), where |e〉 (|g〉) is the excited (ground)

state of the Pauli σ̂z matrix, one can obtain the explicit
expression of the effective decay rate as follows [9]:

�(τ ) = − 1

τ
ln

[
1

2
+ 1

2
e−κ(τ )

]
, (7)

where

κ(τ ) = 4
∫

dω JL(ω)
1 − cos(ωτ )

ω2
.

In Fig. 1, we plot the effective decay rate �(τ ) obtained
by the numerical HEOM technique as well as the exactly
analytical expression. A perfect agreement is found between
the two different approaches. One can immediately observe
that the effective decay rate �(τ ) has a peak structure, which
means there is a crossover between the QZE and the QAZE
regimes. On the other hand, if the qubit is initially prepared
in |ψ(0)〉 = |e〉, one can find that the value of the effective
decay rate �(τ ) is zero which means neither the QZE nor the
QAZE occurs in this case. This phenomenon can be easily
understood because |e〉 is a dark state in this pure dephasing
model and does not evolve. These results convince us that the
numerical HEOM technique truly captures the quantum Zeno
or the anti-Zeno dynamics in quantum dissipative systems.

Next, we adopt the numerical HEOM method to compute
the effective decay rate �(τ ) in the case 
 �= 0 and compare
our numerical result with that of the perturbative approach
in Ref. [28], where only the first- and second-order terms of
the time-evolution operator are considered. This perturbative
approach proposed in Ref. [28] allows us to obtain a general
expression of the effective decay rate but only works in the
weak-coupling regime.

In Figs. 2(a), 2(b), and 2(c), we display the effective decay
rate �(τ ) obtained by the numerical HEOM method and
the perturbative approach for different system-bath coupling
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FIG. 1. Effective decay rate �(τ ) of the pure dephasing qubit-
boson model obtained by the numerical HEOM method and the
exact analytical expression for initial state |ψ(0)〉 = 1√

2
(|e〉 + |g〉)

with different parameters: λ = 10γ0 (numerical result: orange dotted
line; analytical result: purple rectangles), λ = γ0 (numerical result:
magenta dot-dashed line; analytical result: blue diamonds), and
λ = 0.1γ0 (numerical result: brown dashed line; analytical result:
green five-point stars). The yellow solid line and the red circles are
the numerical and exact analytical results of initial state |ψ(0)〉 = |e〉,
respectively. Other parameters are chosen as ε = 1, γ0 = 0.5, 
 = 0,
and ω0 = 0.

strengths, respectively. It is clear to see that these two
approaches are in good agreement when system-bath coupling
strength is weak. For the strong-coupling regime, though,
there is a small deviation between the two kinds of methods;
the results calculated by the perturbative approach can still
qualitatively follow these of the numerical HEOM method.
As one can see from Figs. 2(a), 2(b), and 2(c), �(τ ) now
in general has multiple peaks, which indicates that there are
multiple Zeno–anti-Zeno transition phenomena that occur in
this biased qubit-boson model. The existence of multiple
peaks can be significant for experiments, because now a
(local) Zeno–anti-Zeno transition may be also observed using
a relatively large measurement interval.

Now, we try to explore the relationship between the non-
Markovianity and the QZE in quantum dissipative systems.
From Fig. 1, one can find that the value of the effective decay
rate’s derivative at τ = 0, namely d

dτ
�(τ )|τ→0, increases with

the decrease of γ0/λ (throughout this paper, we fix the value
of γ0 and change the value of λ). In fact, in the short-time
regime, cos(ωτ ) � 1 − 1

2ω2τ 2, one can obtain the analytical
expression of �(τ ) in Eq. (7). Under this approximation, the
quantum Zeno time is given by τZ � (γ0λ)−1/2, where we have
set ω0 = 0 for the sake of simplicity. This result indicates that
the quantum Zeno time τZ becomes short by decreasing the
value of γ0/λ. As our previous analysis, if the value of γ0/λ is
very small, the decoherence dynamics is Markovian. Thus we
conclude that the quantum Zeno time τZ in a Markovian bath
is shorter than that of the non-Markovian bath.

The same result is also found in the biased qubit-boson
model; due to the fact that �(τ ) is very small when τ → 0, we
plot the ln[�(τ )] versus τ in Fig. 2(d). It is shown that the value
of d

dτ
ln[�(τ )]|τ→0 in a Markovian bath is larger than that of

the non-Markovian bath. Considering the fact that �(τ → 0)

FIG. 2. (a) Effective decay rate �(τ ) of the biased qubit-spin
model obtained by the numerical HEOM method and the perturbative
approach proposed in Ref. [28] for different parameters: λ = 5γ0

(numerical result: orange dotted line; perturbative theory: purple
rectangles), λ = 2γ0 (numerical result: magenta dot-dashed line;
perturbative theory: blue diamonds), and λ = 0.5γ0 (numerical result:
brown dashed line; perturbative theory: green five-point stars); other
parameters are chosen as ε = 0.85, 
 = −0.3ε, γ0 = 0.02, and
ω0 = 0 and the initial state is |ψ(0)〉 = |e〉. (b) The same as (a) but
γ0 = 0.05. (c) The same as (a) but γ0 = 0.10. (d) ln[�(τ )] obtained
by the numerical HEOM method vs τ : λ = 10γ0 (blue solid line) and
λ = 0.1γ0 (red dashed line) with γ0 = 1; other parameters are the
same as (a).

in the Markovian bath is larger than that of the non-Markovian
bath, one can demonstrate that the quantum Zeno time τZ in a
Markovian bath is shorter than that of the non-Markovian case
in this biased qubit-boson model as well. In this sense, the
non-Markovianity may prolong the quantum Zeno time. Our
results suggest that the non-Markovianity may be favorable for
the accessibility of the QZE in quantum dissipative systems.

B. Biased qutrit-boson model

In this subsection, we extend our study to a more general
quantum dissipative system, in which a biased qutrit is coupled
to a bosonic bath. The Hamiltonian of the quantum subsystem
Ĥs and the operator coupled to the bath f (ŝ) are given by
Ĥs = εĴz + 
Ĵx and f (ŝ) = 2Ĵz, respectively. Operators Ĵz

and Ĵx are defined by

Ĵz ≡
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠, Ĵx ≡ 1√

2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠.

These matrices are expressed in the basis of {|J = 1,

m = 1〉, |J = 1,m = 0〉, |J = 1,m = −1〉}, where |J,m〉 are
the eigenstates of Ĵz with Ĵz|J,m〉 = m|J,m〉. We can further
generalize our analysis to spin-J (J > 1) quantum dissipative
systems which are also relevant to the two-component Bose-
Einstein condensates [34].

For the case 
 = 0, this qutrit-boson model can be exactly
solved. The reduced density-matrix elements of the quantum
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FIG. 3. Effective decay rate �(τ ) of the pure dephasing qutrit-
boson model obtained by the numerical HEOM method and the
exact analytical expression for initial state |ψ(0)〉 = |ς,J 〉 with
different parameters: λ = 10γ0 (numerical result: orange dotted
line; analytical result: purple rectangles), λ = γ0 (numerical result:
magenta dot-dashed line; analytical result: blue diamonds), and λ =
0.1γ0 (numerical result: brown dashed line; analytical result: green
five-point stars). Other parameters are chosen as ε = 1, γ0 = 0.2,

 = 0, ω0 = 0, φ0 = 0, and θ = π/2.

subsystem are found to be [9]

�mm′(t) = �mm′(0)e−iε(m−m′)t e−iφ(t)(m2−m′2)e−κ(t)(m−m′)2
, (8)

where

φ(t) = 4
∫

dω JL(ω)
sin(ωt) − ωt

ω2

describes the phase diffusion effects induced by the bath in this
model. In order to compare with the exact analytical results in
Ref. [9], we first take the initial state of the quantum subsystem
as a standard SU(2) coherent state,

|ς,J 〉 = (1 + |ς |2)−J

J∑
m=−J

√(
2J

J + m

)
ςJ+m|J,m〉, (9)

where ς = eiφ0 tan(θ/2) with φ0 and θ being the parameters
on the Bloch sphere. One can obtain the expression of the
effective decay rate �(τ ) of this initial state as follows [9]:

�(τ ) = − 1

τ
ln

[( |ς |
1 + |ς |2

)4J ∑
m,m′

|ς |2(m+m′)
(

2J

J + m

)

×
(

2J

J + m′

)
e−iφ(τ )(m2−m′2)e−κ(τ )(m−m′)2

]
. (10)

In Fig. 3, we compare the exactly analytical results given
by Eq. (10) and the numerical results from the HEOM
approach. A prefect agreement is found. We also find that
�(τ ) has single peak in our study which is different from
that of Ref. [9]. Considering the fact that we chose the
Lorentz spectral function instead of the Ohmic spectrum in
Ref. [9], we conclude that the phenomenon of the occurrence
of the multiple Zeno–anti-Zeno crossover phenomena may
be sensitive to the characteristics of the bath density spectral
function. Next, we consider a more general case, i.e., 
 �= 0;
the value of the effective decay rate �(τ ) is numerically

FIG. 4. (a) Effective decay rate �(τ ) of the biased qutrit-spin
model obtained by the numerical HEOM method with different
spectral widths: λ = 10γ0 (purple dot-dashed line), λ = γ0 (blue
dashed line), and λ = 0.1γ0 (red solid line), other parameters are
chosen as ε = 1, 
 = 0.5ε, γ0 = 0.5, and ω0 = 0 and the initial
state is |ψ(0)〉 = |J = 1,m = 1〉. (b) The effective decay rate �(τ )
obtained by the numerical HEOM method with different tunneling
parameters: ε/
 = 1.2 (purple dot-dashed line), ε/
 = 1.0 (blue
dashed line), and ε/
 = 0.8 (red solid line); other parameters are
chosen as 
 = 1, λ = 5γ0, γ0 = 0.05, and ω0 = √

ε2 + 
2, and the
initial state is |ψ(0)〉 = |J = 1,m = 1〉.

computed by the HEOM method. We observe that �(τ ) also
has multiple peaks or multiple Zeno–anti-Zeno transitions at
intermediate measurement intervals. As you can see from
Fig. 4(b), this phenomenon can become more obvious by
adjusting the ratio of ε/
 which indicates that the multiple–
Zeno–anti-Zeno–transition phenomenon is sensitive to the
value of the external bias field.

Similar to that of the qubit-boson model case, regardless of

 = 0 or 
 �= 0, we find that the value of d

dτ
�(τ )|τ→0 in the

Markovian bath is larger than that of the non-Markovian bath.
This result also suggests that the non-Markovian effects of the
bath may prolong the quantum Zeno time and may add the
possibility to realize the QZE in quantum dissipative systems.
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C. Finite temperature case

In this subsection, we investigate the relationship between
the bath temperature and the QZE (QAZE) in quantum dissi-
pative systems. We assume that the bath is now prepared in a
thermal equilibrium state �̂b = exp(−βĤb)/Trb[exp(−βĤb)]
and the bath density spectral function J (ω) is the Ohmic
spectrum with Drude cutoff

JO(ω) = 1

π

2χωcω

ω2 + ω2
c

, (11)

where χ stands for the coupling strength between the quantum
subsystem and its surrounding bath; parameter ωc is the cutoff
frequency. The reduced dynamics of the quantum subsystem
can be numerically explored by the hierarchical equations
given by Eq. (A5) in the Appendix. In Fig. 5, we display the
effective decay rate �(τ ) versus τ at different temperatures. As
you can see from Fig. 5, the multiple Zeno–anti-Zeno crossover
phenomena are observed in the finite-temperature case as
well. We also find that the value of d

dτ
�(τ )|τ→0 becomes

larger with the increase of the bath temperature regardless
of the qubit-boson model or the qutrit-boson model. This
result suggests that the high bath temperature may enhance the
difficulty in realizing the QZE in quantum dissipative systems.

We would like to add some physical explanations about
why this phenomenon occurs. When the bath temperature is
very high, i.e., β → 0, the bath correlation function CO(t) of
Eq. (A4) in the Appendix can be approximately replaced by
the first term of the series as follows:

CO(t) �
[
χωc cot

(
βωc

2

)
− iχωc

]
e−ωct

�
(

2χ

β
− iχωc

)
e−ωct .

In this approximation, the hierarchical equation given by
Eq. (A5) in the Appendix is equivalent to the Markovian
Zusman equation [35]. This result indicates that the non-
Markovian characteristic becomes weak with the increase of
the bath temperature. The same conclusion is also reported
in Refs. [23,36]. In Ref. [23], the authors demonstrated
that, by making use of the trace distance, the degree of
non-Markovianity in the qubit-boson model almost equals
zero when the bath temperature is very high. In Ref. [36], the
authors found that the backflow of quantum information from
the bath to the system is reduced, which means the decrease
of non-Markovianity, when bath temperature increases. And
according to our analysis in Sec. III A, the non-Markovianity
may add the possibility to realize the QZE for a qubit or
a qutrit coupled to a zero-temperature Lorentzian environ-
ment. Therefore, for the qubit-boson and the qutrit-boson
models considered in our paper, the quantum Zeno dynamics
may become harder to realize with the increase of bath’s
temperature because a high temperature possibly reduces
the non-Markovianity. In this sense, the result obtained in
this subsection is consistent with our previous analysis in
Sec. III A. Several previous studies have come to the same
conclusion; for example, in Ref. [10], the authors found that,
for the pure dephasing qubit-boson model, the quantum Zeno
time in terms of quantum Fisher information becomes smaller
with the increase of the bath temperature; this result indicates

FIG. 5. (a) Effective decay rate �(τ ) of the biased qubit-boson
model obtained by the numerical HEOM method at different
temperatures: βε = 0.5 (purple dot-dashed line), βε = 0.1 (blue
dashed line), and βε = 0.01 (red solid line); other parameters are
chosen as ε = 1, 
 = −0.1ε, χ = 0.05, and ωc = 10ε and the initial
state is |ψ(0)〉 = |e〉. (b) The effective decay rate �(τ ) of the biased
qutrit-boson model obtained by the numerical HEOM method at
different temperatures: βε = 1 (purple dot-dashed line), βε = 0.15
(blue dashed line), and βε = 0.01 (red solid line); other parameters
are chosen as ε = 1, 
 = 0.5ε, χ = 0.05, and ωc = 10ε and the
initial state is |ψ(0)〉 = |J = 1,m = 1〉.

that the increase of the bath temperature makes the quantum
Zeno dynamics more difficult. However, considering the fact
that our Hamiltonian of the quantum dissipative system is more
general, this conclusion is more convincing.

IV. DISCUSSIONS AND CONCLUSIONS

Here, we would like to provide a possible physical ex-
planation why the non-Markovianity may be favorable for
the accessibility of the QZE in quantum dissipative systems.
For the sake of simplicity, we restrict our discussion in the
two-level quantum open system to the initial pure state. To
establish the linkage between the non-Markovianity and the
QZE in two-level quantum open systems, we first need to
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demonstrate the following lemma which is very helpful for
our analysis.

Lemma. A larger value of D[�̂s(t),�̂⊥
s (0)] makes a longer

quantum Zeno time τZ in two-level quantum open systems,
where D[ρ̂,�̂] ≡ 1

2 Tr[
√

(ρ̂ − �̂)†(ρ̂ − �̂)] denotes the trace
distance [22] between quantum state ρ̂ and �̂; �̂⊥ refers to
an arbitrary quantum state orthogonal to �̂.

Proof. Assuming the initial state of a two-level quan-
tum subsystem is given by �̂s(0) = |ϕ1〉〈ϕ1|, where |ϕ1,2〉
are the basis vectors of a certain representation, then the
reduced density matrix at time t can be expressed in
the following form: �̂s(t) = c11(t)|ϕ1〉〈ϕ1| + c12(t)|ϕ1〉〈ϕ2| +
c∗

12(t)|ϕ2〉〈ϕ1| + c22(t)|ϕ2〉〈ϕ2|. The trace distance between
�̂s(t) and �̂⊥

s (0) = |ϕ2〉〈ϕ2| is given by D[�̂s(t),�̂⊥
s (0)] =√

c2
11(t) + |c12(t)|2. On the other hand, the survival proba-

bility of the initial state �̂s(0) can be expressed as c11(t) �
1 − t2/τ 2

Z in the short-time region. Then, one can find

that D[�̂s(t),�̂⊥
s (0)] =

√
(1 − t2/τ 2

Z)2 + |c12(t)|2. From this
expression, it is easy to see that, for a certain fixed time t , a
larger value of D[�̂s(t),�̂⊥

s (0)] induces a longer quantum Zeno
time τZ or makes the QZE easier to realize. In fact, considering
the fact that the trace distance is a measure of distinguishability
between two quantum states, this lemma tells us a very
intuitive physical result: a higher (or lower) distinguishability
between �̂s(t) and �̂⊥

s (0) [or �̂s(0)] makes the QZE easier to
realize.

The physical meaning of the trace distance D[�̂s(t),�̂⊥
s (0)]

can be easily understood from the view of the exchange of
quantum information [22–24,37]. We can define the change
rate of the trace distance as � [ρ̂,�̂] ≡ dD[ρ̂,�̂]/dt . When
� [�̂s(t),�̂⊥

s (0)] < 0, �̂s(t) and �̂⊥
s (0) approach each other, and

this can be understood as the quantum information flows from
quantum subsystem to the bath; when � [�̂s(t),�̂⊥

s (0)] > 0,
�̂s(t) and �̂⊥

s (0) are away from each other, and this can be
interpreted as the quantum information flows back to the
quantum subsystem, which is the typical character of the
non-Markovianity [22–24,37]. Obviously, one can find that

D[�̂s(t),�̂
⊥
s (0)] = D[�̂s(0),�̂⊥

s (0)] − Iloss[�̂s(t),�̂
⊥
s (0)]

+ Igain[�̂s(t),�̂
⊥
s (0)], (12)

where D[�̂s(0),�̂⊥
s (0)] = 1 due to the fact that �̂s(0) and

�̂⊥
s (0) have orthogonal supports, Iloss[�̂s(t),�̂⊥

s (0)] indicates
the quantum information loss due to the dissipation, and
Igain[�̂s(t),�̂⊥

s (0)] refers to the quantum information gained
from the bath during the time interval [0,t]. Their definitions
are given by [37]

Iloss[�̂s(t),�̂
⊥
s (0)] ≡ −

∫
�<0

dt � [�̂s(t),�̂
⊥
s (0)],

Igain[�̂s(t),�̂
⊥
s (0)] ≡

∫
�>0

dt � [�̂s(t),�̂
⊥
s (0)].

In a Markovian process, the bath is memoryless and there
is no feedback information flows from bath to the quantum
subsystem, i.e., Igain[�̂s(t),�̂⊥

s (0)] = 0 for all the time in-
terval [0,t]. In this case, the trace distance D[�̂s(t),�̂⊥

s (0)]
monotonically decreases, and �̂s(t) and �̂⊥

s (0) become more
and more “similar.” On the contrary, for a non-Markovian

process, the feedback quantum information flows from bath
to the quantum subsystem may increase the distinguishability
between �̂s(t) and �̂⊥

s (0), namely the value of D[�̂s(t),�̂⊥
s (0)]

becomes large. In this sense, the trace distance D[�̂s(t),�̂⊥
s (0)]

in a non-Markovian bath may be larger than the trace distance
D[�̂s(t),�̂⊥

s (0)] in a Markovian bath. According to the lemma,
this nonmonotonic behavior of quantum information flow may
induce a longer quantum Zeno time or, in other words, the
non-Markovianity may be favorable for the accessibility of
the QZE in quantum open systems.

We want to emphasize that Igain[ρ̂,�̂] is not a rigorous
physical quantity to characterize the non-Markovianity in
quantum open systems. Igain[�̂s(t),�̂⊥

s (0)] only quantifies the
quantum information, which flows from the bath back to
the quantum subsystem, with respect to the standard state
�̂⊥

s (0) during the time interval [0,t]. In this case, the value of
Igain[�̂s(t),�̂⊥

s (0)] strongly lies on the chosen of the standard
state �̂⊥

s (0) or the initial state �̂s(0). However, any rigorous
measure of the non-Markovianity of quantum open system
should focus on the decoherence mechanism itself and be
independent of the initial state. Meanwhile, as shown in
Ref. [37],Igain[ρ̂,�̂] still can be regarded as a modified measure
of non-Markovianity and may give the same results with the
measure of non-Markovianity given in Ref. [22] for some
physical models.

In our theoretical formalism, we assume that all the
measurements are ideal and instantaneous. After each mea-
surement, the measured quantum subsystem is completely
collapsed to its initial state. This postulation of wave-packet
collapse is comprehensively adopted in most of the previous
studies [1,2,9–12,28,29] and very beneficial to our numerical
approach. However, it is necessary to point out that the
QZE and the QAZE are independent of the postulation of
wave-packet collapse. In Ref. [38], the authors provide a
description of the QZE and the QAZE in quantum dissipative
systems without using the wave-packet collapse postulation
and discuss the effect of the nondemolition measurement
on the QZE and the QAZE. Furthermore, many literatures
have shown that the effect of measurement can be replaced
by a continuous strong coupling between the to-be-measured
system and an auxiliary apparatus [39]. Nevertheless, neither
of these two formalisms is suitable for a numerical study of
the QZE and the QAZE in quantum dissipative systems; it
would be very interesting to numerically explore the QZE
and the QAZE in quantum dissipative systems beyond the
wave-packet collapse postulation.

The QZE (QAZE) has become a focus of attention not only
because of its foundational implications about the quantum
mechanics, but also because it may be exploited to explore
some potential applications in the quantum control [40], the
communication complexity problem [41], and the quantum
state protection or preparation [42]. To achieve any of the
above potential applications, the noisy bath cannot be ignored.
This is the main reason why we consider the effects of the
non-Markovian noise and the bath temperature on the QZE
(and QAZE). Our work is a step forward in a physical insight
into understanding of the QZE and the QAZE in quantum
dissipative systems.

In conclusion, we adopt a numerical HEOM method to
investigate the QZE and the QAZE in quantum dissipative
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systems. This numerical approach allows us to study the
dynamical behavior of a quantum dissipative system with-
out the usual Markovian approximation, the rotating-wave
approximation, and the perturbative approximation. We in-
vestigate the effective decay rates of a biased qubit-boson
model and a biased qutrit-boson model at both zero and
finite temperatures. The multiple Zeno–anti-Zeno crossover
phenomena are found in these quantum dissipative systems.
It is necessary to point out that the existence of multiple
peaks can be significant for experiments, because it allows
us to observe the Zeno–anti-Zeno transition by a relatively
large measurement interval. We also find that the value of
the quantum Zeno time in a Markovian regime is shorter
than that of the non-Markovian regime. This result suggests
that the non-Markovianity of the bath may be favorable for
the accessibility of the QZE in quantum dissipative systems.
Moreover, for the finite-temperature case, it is shown that the
value of the quantum Zeno time at high bath temperature
is shorter than that of the low-temperature case. This result
implies that the high bath temperature may add the difficulty
in observing the QZE in quantum dissipative systems. Finally,
due to the generality of the spin-boson model, we expect our
results to be of interest for a wide range of experimental ap-
plications in quantum computation and quantum information
processing.
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APPENDIX: METHODOLOGY

In this appendix, we briefly outline how to use the HEOM
method to study the reduced dynamics of a biased qubit
coupled to a bosonic bath. To demonstrate the validity of
the numerical results obtained by the HEOM method, we
make some careful comparisons between our numerical results
and the analytical results from the generalized Silbey-Harris
transformation [12–14].

The bath correlation function C(t) of a general spin-boson
model is given by

C(t) ≡ Trb[ĝb(t)ĝb(0)�̂b]

=
∫

dω J (ω)

[
coth

(
βω

2

)
cos(ωt) − i sin(ωt)

]
,

where ĝb(t) ≡ ∑
k gk(â†

ke
iωkt + âke

−iωkt ). If the bath corre-
lation function can be expressed as a sum of exponential
functions, i.e.,

C(t) =
∑

j

ζj e
−υj t , (A1)

where ζj and υj are assumed to be complex numbers for
the generality, the hierarchical equations can be derived
by making use of the Feynman-Vernon influence functional

approach [17,18] or the superoperator technique [19,20,43].
Equation (A1) is the key condition to perform the HEOM
method. For the Lorentz spectrum, the bath correlation
function at zero temperature is given by

CL(t) = 1
2γ0λ e−(λ+iω0)t . (A2)

This is the simplest case of Eq. (A1). Following procedures
shown in Ref. [20], one can obtain the hierarchy equations of
the reduced quantum subsystem as follows:

d

dt
ρ̂�l(t) = (−iĤ×

s − �l · �ν)ρ̂�l(t) + �̂

2∑
p=1

ρ̂�l+�ep
(t)

+
2∑

p=1

lp�̂pρ̂�l−�ep
(t), (A3)

where �l = (l1,l2) is a two-dimensional index, �e1 = (1,0),
�e2 = (0,1), and �ν = (λ − iω0,λ + iω0) are two-dimensional
vectors, and two superoperators �̂ and �̂p are defined as
follows:

�̂ = −if (ŝ)×, �̂p = i

4
γ0λ[(−1)pf (ŝ)◦ − f (ŝ)×],

with X̂×Ŷ ≡ [X̂,Ŷ ] = X̂Ŷ − Ŷ X̂ and X̂◦Ŷ ≡ {X̂,Ŷ } =
X̂Ŷ + Ŷ X̂. The same hierarchical equations can also be
derived by making use of the stochastic decoupling scheme
proposed by Shao et al. [27].

The initial-state conditions of the auxiliary matrices are
ρ̂�l=�0(0) = ρ̂s(0) and ρ̂�l �=�0(0) = 0, where �0 = (0,0) is a two-
dimensional zero vector. For numerical simulations, we need to
truncate the number of hierarchical equations for a sufficiently
large integer L, which means all the terms of ρ̂�l(t) with l1 +
l2 > L are set to be zero. Then terms of ρ̂�l(t) with l1 + l2 � L

form a closed set of differential equations.
In the finite-temperature case, the bath correlation func-

tion C(t) does not satisfy the condition to perform the
HEOM method for the Lorentz spectrum. Thus we assume
that bath density spectral function is the Ohmic spectrum
with Drude cutoff, namely J (ω) = JO(ω), for the finite-
temperature case. The bath correlation function is then given
by [17–19]

CO(t) =
∞∑

j=0

ζj e
−υj t , (A4)

where υj = ωcδ0j + 2jπ (1 − δ0j )/β denotes the j th Matsub-
ara frequency and

ζj = 4χωc

β

υj

υ2
j − ω2

c

(1 − δ0j )

+
[
χωc cot

(
βωc

2

)
− iχωc

]
δ0j

are the expansion coefficients. With the help of the bath
correlation function given by Eq. (A4), the hierarchical
equations at finite temperature can be obtained as follows
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(a) (b)

(d)(c)

FIG. 6. Time evolution of the population difference 〈σ̂z(t)〉 for Ĥs = ε

2 σ̂z − 


2 σ̂x and f (ŝ) = σ̂z with different coupling parameters: (a)
γ0 = 0.2
, (b) γ0 = 0.4
, (c) γ0 = 0.6
, and (d) γ0 = 1.0
. The purple solid lines are the numerical results obtained by the HEOM method,
the red circles denote the results obtained by the generalized Silbey-Harris transformation approach, and the blue dashed lines represent the
Born-Markov results from Ref. [14]. Other parameters are chosen as ε = 0.2, 
 = 2.5ε, λ = 0.2γ0, and ω0 = √

ε2 + 
2.

[17–19]:

d

dt
ρ̂��(t) = (−iĤ×

s − �� · �μ)ρ̂��(t)

−
⎛
⎝ 2χ

βωc

− iχ −
ε∑

q=0

ζq

υq

⎞
⎠f (ŝ)×f (ŝ)×ρ̂��(t)

+ �̂

ε∑
q=0

ρ̂��+�eq
(t) +

ε∑
q=0

�q�̂q ρ̂�l−�eq
(t), (A5)

where �� = (�0,�1,�2, . . . ,�ε) is a (ε + 1)-dimensional in-
dex, �eq = (0,0,0, . . . ,1q, . . . ,0) and �μ = (υ0,υ1,υ2, . . . ,υε)
are (ε + 1)-dimensional vectors, and ε is the cutoff num-
ber of the Matsubara frequency. The superoperator �̂q is
defined as

�̂q = −i
[
ζR
q f (ŝ)× + iζ I

q f (ŝ)◦
]
,

where ζR
q and ζ I

q are the real and imaginary parts of ζq .

If the bath temperature is very high, i.e., β → 0, or the
value of ε is very large, i.e., ε → ∞, the term of⎛

⎝ 2χ

βωc

− iχ −
ε∑

q=0

ζq

υq

⎞
⎠f (ŝ)×f (ŝ)×ρ̂��(t),

can be approximatively neglected [18] and Eq. (A5) reduces
to the hierarchical equations in Ref. [27]. This approximation
is reliable when the bath temperature is not very low. The
initial-state conditions of the auxiliary matrices are ρ̂��=�0(0) =
ρ̂s(0) and ρ̂�� �=�0(0) = 0, where �0 = (0,0,0, . . . ,0) is a (ε + 1)-
dimensional zero vector. In this paper, we keep on adding
the number of the differential equations until the final result
converges. It is necessary to point out that the HEOM approach
is independent of the usual Markovian approximation, the
rotating-wave approximation, and the perturbative approxima-
tion; in this sense, it can be regarded as a rigorous numerical
method.

In order to verify the feasibility and the validity of the
HEOM method, we make a comparison between the result
obtained by the numerical HEOM method and that of the
analytical generalized Silbey-Harris transformation approach
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[12–14]. In Fig. 6, we display the dynamics of the population
difference 〈σ̂z(t)〉 ≡ Tr[�̂s(t)σ̂z] of the biased qubit-boson
model, which is a very common quantity of interest in
experiments. Here we assume that the initial state of the biased
qubit is �̂s(0) = |e〉〈e|, and the bath is initially prepared in its
Fock-vacuum state

⊗
k |0k〉 with Lorentzian spectrum.

In Fig. 6(a), we consider the value of the system-bath
coupling strength as γ0 = 0.2
, which is weak enough for
this model, and compare the numerical results obtained by the
HEOM approach and analytical results from the generalized
Silbey-Harris transformation method. Good agreement is
found between results from the two different approaches. For
the strong-coupling regime, such as γ0 = 
 in Fig. 6(d), a
deviation is found between the results calculated by the HEOM
approach and the generalized Silbey-Harris transformation
method. However, the HEOM results are believed to be more
reliable, because the generalized Silbey-Harris transformation

method neglects the higher-order terms of the system-bath
coupling strength which is invalid in strong-coupling regime.
In the moderately strong-coupling regime, such as γ0 = 0.4


in Fig. 6(b) and γ0 = 0.6
 in Fig. 6(c), one can find that the
results of the generalized Silbey-Harris transformation method
are still in qualitative agreement with those of the numerical
HEOM method. Moreover, we also compare these results
with that of the Born-Markov approximation and find that the
Born-Markov approximation gives a relatively large deviation
in the population dynamics regardless of the weak-coupling
or the strong-coupling regimes. In this sense, the generalized
Silbey-Harris transformation method captures the dynamics of
the biased qubit-boson model when the system-bath coupling
is not too strong. On the contrary, the usual Born-Markov
theory may give a qualitatively incorrect conclusion as a
result of neglecting the feedback action of the bath with
memory.
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