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Which-way double-slit experiments and Born-rule violation
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In which-way double-slit experiments with perfect detectors, it is assumed that having a second detector at the
slits is redundant because it will not change the interference pattern. We, however, show that if higher-order or
nonclassical paths are accounted for, the presence of the second detector will have an effect on the interference
pattern. Accounting for these nonclassical paths also means that the Sorkin parameter in triple-slit experiments is
only an approximate measure of Born-rule violation. Using the difference between single and double which-way
detectors, we give an alternative parameter which is an exact measure of Born-rule violation.
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I. INTRODUCTION

The which-way double-slit experiment is used as the
archetypal experiment to dramatically demonstrate the quan-
tum weirdness of wave-particle duality and wave-function
collapse: the explanation is that by merely knowing which
slit the particle went through collapses the wave function,
destroying the wave-like interference effects between the two
slits. In the ideal case of perfect detectors, it is generally
assumed that whether which-way detectors are placed at one
slit or both will yield the same results. The reason for this is
that a detection at one slit means that the particle is assumed
to not have gone through the other slit. Now on the other
hand, in the Feynman path integral formulation of quantum
mechanics all possible paths between points contribute to the
wave function; this even includes paths that go through one
slit then the other as depicted in Fig. 1. The inclusion of these
nonclassical or high-order paths provides corrections to the
interference patterns.

The Born rule is a fundamental axiom of quantum mechan-
ics. It states that if a quantum object is represented by a wave
function ψ(r,t), then the probability density of detecting it at
position r and time t is given by the absolute square of the
wave function [1],

P (r,t) = ψ∗(r,t)ψ(r,t) = |ψ(r,t)|2. (1)

Despite being a cornerstone of quantum mechanics, a direct
test of the Born rule was not attempted until 2010 by Sinha et al.
[2]. The test was a measure of the Sorkin parameter [3], which
quantifies nonpairwise interference, in a triple-slit experiment.
Since the exponent of the Born rule only allows for pairwise
interference, a nonzero Sorkin parameter would suggest vio-
lation of the Born rule. If beyond-pairwise interference were
indeed ever detected, it would likely lead to a modification
of Schrödinger’s equation, and may importantly provide a
sign post for beyond standard model theories [4,5]. The Sinha
et al. experiment, however, found the Sorkin parameter to
be zero, within experimental error bounds, and concluded no
Born-rule violation. Subsequent more precise measurements
of the Sorkin parameter also came to the same conclusion
[6–8]. Shortly after the Sinha et al. experiment, however, it
was pointed out that underlying the Sorkin parameter was the
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assumption that the wave function in the multislit setup is
simply the superposition of the individual wave functions of
the constituent single-slit setups [9,10]. Strictly speaking this is
an approximation, as first pointed out in Ref. [11]. Correcting
this approximation by including nonclassical paths renders the
Sorkin parameter nonzero, without violating the Born rule;
in fact, in some regimes these corrections can be significant
[9,10,12]. In a recent landmark experiment, a nonzero Sorkin
parameter caused by nonclassical paths was indeed measured
for the first time in the microwave regime [13]. The Sorkin
parameter therefore is not an exact test of Born-rule violation.
Given the success of quantum mechanics, any violation of the
Born rule is expected to be small. Therefore for a parameter to
be a useful measure of Born-rule violation, it is important that
it is accurate to higher orders. One notes that alternatives to
slit experiments, such as the single-spin experiment [14], may
test the Born rule without the reliance on spatial interference.

Here we will show that by accounting for nonclassical
paths, the which-way double-slit experiment with one and
two which-way detectors will produce different interference
patterns, contrary to commonly held assumptions. Making
use of this difference, we give an alternative parameter that
completely accounts for higher-order corrections, to exactly
test the Born rule: the parameter will be exactly zero if the
Born rule is not violated, nonzero otherwise. We first will
consider the case of perfect detectors and then generalize to
imperfect detectors.

II. PERFECT DETECTORS

A. Which-way double-slit experiment

Let us consider a double-slit experiment with two types
of which-way detectors: one detects whether a particle has
gone through slit A or B, the other detects that a particle
has gone through one or both slits, but does not know which
one. We will assume perfect detectors (Sec. III generalizes
to imperfect detectors). Such detectors can be illustrated in
a gedanken experiment, with light balls placed precariously
in the slits to serve as the detectors (Fig. 1). In one type of
detector a ball is placed in slit A, such that a particle entering
the slit will cause it to fall into a tray. We look into the tray to
reveal which slit the particle went through: if we see a ball in
the tray then the particle went through slit A, if we do not see
a ball, then the particle went through slit B. Implicit here is the
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FIG. 1. Top: Side view of one of the myriad of nonclassical paths
that enters both slits: the path enters slit A, makes an abrupt turn,
briefly enters slit B, before hitting the detecting screen. Bottom:
gedanken experiments with balls serving as detectors to illustrate
different which-way detector setups. (a) setup 1: no which-way
detectors, (b) setup 2: a type I which-way detector at slit A,
(c) setup 3: a type I which-way detector at slit B, (d) setup 4: type I
which-way detectors at slits A and B, (e) setup 5: a type II which-way
detector.

assumption that we cannot directly view the ball until it hits
the tray; in this sense the tray can be thought of as representing
a signal amplifier. In another detector, indistinguishable balls
are placed in each slit. In this case, peering into the tray we
will see either one or two balls. One ball indicates that the
particle had gone through one slit but it does not reveal which
one, whereas two balls indicate that the particle had gone
through both slits. We will call the former type I and latter
type II which-way detectors. Such types of detectors have been
realized in neutron [15] and molecular [16] interference setups,
electrons in semiconductors [17], atomic double-pulse Ramsey
interferometer experiments [18], inelastic electron holography
[19], electron interferometers [20], and ion and electron beam
nanofabrication [21].

If ψA represents the wave function from a single slit A and
ψB from a single slit B, it is widely taught that the intensity
or probability distribution in the double-slit experiment is
PAB = |ψA + ψB|2. The correction to this approximation can
be quantified with the Feynman path integral formulation. In
this formulation all paths between points are possible, even
paths that are vastly different from classical paths (classical
paths extremize the classical action). One of the myriad of
nonclassical paths that enter both slits is depicted in Fig. 1.
Because these types of paths enter both slits, they are not
captured by the individual single-slit wave functions, ψA and
ψB. If we label the contribution from paths that go through both
slits with ψAB, the probability distribution for the double-slit
experiment with no which-path detectors [Fig. 1(a): setup 1]
is corrected to

PAB = |ψA + ψB + ψAB|2. (2)

The higher-order corrections are typically small, but can be
significant [9,10,12,13]. These corrections are not exclusive to
the quantum mechanics, but are also present using Maxwell’s

equations as numerically calculated by Ref. [9]. Note that
ψA(B) represents all paths that go through slit A (or B) only,
including paths that go through that slit multiple times, and
ψAB represents all paths that go through both slits including
paths that enter the slits multiple times.

Now let us place a type I which-path detector at slit A
[Fig. 1(b): setup 2]. Conventionally, a detection at slit A
means that the particle did not go through slit B, otherwise
the particle went through slit B, so that the probability density
is PDA = |ψA|2 + |ψB|2. This, however, does not account for
nonclassical paths which can go through slits A and B. If
one accounts for nonclassical paths, then a detection at slit
A includes paths that only go through slit A as well as paths
that go through slits A and B; since they are indistinguishable,
we must sum both types of paths (ψA + ψAB). A nondetection
at slit A means that the path must have gone through slit B
only (ψB). Thus the probability density when there is a type I
which-path detector at slit A is

PDA = |ψA + ψAB|2 + |ψB|2; (3)

and similarly when there is a which-way detector at slit B
[Fig. 1(c): setup 3] the probability density is

PDB = |ψB + ψAB|2 + |ψA|2. (4)

Now if we place a second type I detector at slit B, three
types of paths are distinctly detected: paths that go through slit
A (ψA) or B (ψB) only, and nonclassical paths that go through
both before hitting the detection screen (ψAB). In our gedanken
experiment this is represented by placing two distinguishable
(red and black) balls, one in each slit [Fig. 1(d): setup 4].
Looking into the tray we will see a black ball, a red ball, or
both balls, to reveal that the particle had gone through slits A,
B, or both, respectively. The probability density when there
are type I detectors in both slits is therefore

PDADB = |ψA|2 + |ψB|2 + |ψAB|2. (5)

When there is a type II which-path detector [Fig. 1(e):
setup 5] one is not able to distinguish paths that contribute
to ψA from ψB. However, we can distinguish paths that went
through one slit from paths that went through both slits before
hitting the detecting screen. The probability density with a
type II detector is

PDAB = |ψA + ψB|2 + |ψAB|2. (6)

We would like now to quantify the difference in the
probability distribution of the single (setup 2) and double
(setup 4) which-way detector double-slit experiments. Let
the source be at position rS = (−S,0), the screen detector
at rD = (D,yD), and slit centers are at (0, ± d/2) (Fig. 1).
The slits have w width. The setup is symmetric in the z

direction, which means we can ignore this component because
it only introduces an irrelevant constant, effectively becoming
a two-dimensional problem [10]. We assume a monochromatic
point source and consider a duration much larger than the
time of flight, so that the probability distribution at the screen
detector can be quantified with the time-independent two-point
propagator, which is attained by summing over all possible
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paths between r1 and r2,

K(r1,r2) =
∫

D[x(s)] exp

(
ik

∫
ds

)
, (7)

where D[x(s)] is the usual path integral measure of paths
x(s) with contour length s. However, the problem of summing
over all possible paths with the boundary conditions imposed
by the slit plane is unwieldy and has yet to be exactly
solved. Nevertheless, Sawant et al. [10] argue that a good
approximation can be achieved by considering two types of
paths: paths with straight trajectory segments from source to
slit, then to detecting screen; and paths composing of straight
trajectory segment from source to slit, then to another slit,
before hitting the detection screen (Fig. 1). This conjecture
has subsequently been supported with finite-difference time-
domain simulations (FDTD) [12]. Following the convention
of Sawant et al. we will call the former classical paths, and
the latter nonclassical paths (as we have been doing). One
notes that consideration of just the classical paths directly
leads to Fresnel’s theory of diffraction by a slit [22]. Using the
following free propagator for straight paths [23]

K(r1,r1) = k

2πi

eik|r1−r2|

|r1 − r2| , (8)

and the identity

K(r1,r3) =
∫

dr2K(r1,r2)K(r2,r3), (9)

the propagator for classical paths is

KP(rD,rS) = −
(

k

2πi

)2 ∫
dy

eik|l1+l2|

l1l2
, (10)

where l1 = (y2 + S2)1/2, l2 = [(yD − y)2 + D2]1/2, and the
integral runs over the width space of slit P. We will work
in the Fraunhofer limit where the distance from the slit to the
source and screen detector is much larger than the slit spacing,
so that l1 ≈ S + y2/2S and l2 ≈ D + (yD − y)2/2D, giving
(γ ≡ exp[ik(S + D)]/SD) [10]

KP(rD,rS) ≈ −γ

(
k

2πi

)2 ∫
dy eik( y2

2S
+ (yD−y)2

2D
). (11)

The propagator for nonclassical paths is

KPQ(rD,rS) =
(

k

2πi

)3 ∫
dyP dyQ

eik|l1+l2+l3|

l1l2l3
, (12)

where l1 = (y2
P + S2)1/2, l2 = yQ − yP, l3 = [(yD − y)2 +

D2]1/2, and the yP (yQ) integral runs over the width space
of slit P (Q). In the Fraunhofer limit and under the stationary
phase approximation [10],

KPQ(rD,rS) ≈γ i
3
2

(
k

2π

) 5
2
∫

dyP dyQ|yQ − yP|− 1
2

× eik( y2

2S
+|yQ−yP|+ (yD−y)2

2D
). (13)

The Fraunhofer limit and stationary phase approximation
introduce uncertainty on the order of K × 10−4 [10].

The contributions from nonclassical paths become more
pronounced as the operating wavelength increases relative to

slit spacing. The reason for this is that longer wavelengths
mean more overlap between the single-slit wave functions,
so that nonclassical paths which enter both slits are more
likely. For this reason, the recent experiment which measured
a nonzero Sorkin parameter worked in the microwave regime.
Here as a case study we will consider the optical regime
with the following parameters: photon source of λ = 810 nm
wavelength, slit width w = 500 nm, interslit spacing of d =
2000 nm, and source and detector distances S = D = 1 mm.

For a point source at rS , ψ(rD) = K(rD,rS), where
K(rD,rS) is the corresponding propagator from source to
screen. Using Eqs. (11) and (13), Fig. 2(a) plots the intensity
of the single which-way detector experiment (setup 2), PDA ;
all plots are normalized to the maximum central intensity
of the double-slit experiment, PAB(0). (PDB is not shown
because it is the same as Fig. 2(a) reflected about the y

axis.) Figure 2(b) plots the intensity of the double which-way
detector experiment (setup 4), PDADB . Figure 2(c) shows the
difference in the interference pattern produced by the single
and double which-way detector setups, �1 ≡ PDA − PDADB .

The nonzero value of �1 = ψAψ∗
AB + ψ∗

AψAB is the result
of the interference between the single slit A and the nonclas-
sical path wave functions. �1/PAB(0) is on the order of 10−2,
which is much larger than the uncertainty introduced by the
Fraunhofer limit and stationary phase approximation. In the
optical regime, the Sinha et al. experiment achieved intensity
accuracies of order 10−2 normalized to the expected two-
path interference, and subsequent experiments with multipath
interferometers [6,8] have claimed accuracies of at least an
order of magnitude better. If the same sort of accuracy
can be achieved in double-slit experiments with which-way
detectors, the effects of the second which-way detector on
the interference pattern due to nonclassical paths should be
detectable.

For completeness we have also plotted the intensities of
PAB and PDAB , and their difference, �2, in Figs. 2(d)–2(f). The
nonzero value of �2 = (ψA + ψB)ψ∗

AB + (ψA + ψB)∗ψAB is
the result of the interference between the classical and
nonclassical path wave functions of the double slits.

B. Born-rule violation

The Sorkin parameter for the triple-slit experiment is
defined as

IABC ≡ PABC − PAB − PAC − PBC + PA + PB + PC, (14)

where PABC is the probability of detection when all three slits
(A, B, C) are open, PAB is the probability of detection when
two slits (A, B) are open, and so on. If one assumes that the
probabilities are simply given by the linear superposition of the
individual wave functions of the constituent single-slit setups
(PABC = |ψA + ψB + ψC|2, PAB = |ψA + ψB|2, and so on),
then by rewriting probabilities in Eq. (14) in terms of wave
functions, it can be shown that IABC = 0 if the Born rule is
correct. The proposed advantage of using the Sorkin parameter
to experimentally test the Born rule is that one does not need
to know the theoretical values of these probabilities, one need
only measure them.
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FIG. 2. (a) Normalized intensity of the single type I which-way detector experiment (setup 2). (b) Normalized intensity of the double type
I which-way detector experiment (setup 4). (c) Difference in the interference pattern produced by the single and double type I which-way
detector experiments, �1 ≡ PDA − PDADB . (d) Normalized intensity of the double-slit experiment without which-way detectors (setup 1).
(e) Normalized intensity of the type II which-way detector experiment (setup 5). (e) Difference in the interference pattern between setup 1 and
setup 5, �2 ≡ PAB − PDAB . Parameters: photon source of λ = 810 nm wavelength, slit width w = 500 nm, interslit spacing of d = 2000 nm,
and source and detector distances S = D = 1 mm. All plots are normalized to the maximum central intensity of the double-slit experiment,
PAB(0).

If one accounts for nonclassical paths, the probability of
detection must be corrected to PABC = |ψA + ψB + ψC +
ψABC|2, where ψABC is the wave function made up of
nonclassical paths when slits A, B, and C are open, which are
not accounted for by single-slit wave functions ψA,ψB,ψC.
Similar corrections are required for two slits, e.g., PAB =
|ψA + ψB + ψAB|2. The inclusion of these corrections mean
that IABC �= 0. This was first noted by De Raedt et al. [9].
Because the interference pattern of the triple-slit experiment
can be described classically, Raedt et al. solved Maxwell’s
equation with FDTD simulations to show that the linear
single-slit wave-function superposition assumption underlying
the Sorkin parameter was not correct; therefore IABC �= 0 does
not immediately signal Born-rule violation.

In principle one may theoretically calculate this nonzero
value of IABC with the higher-order corrections. In practice,
however, there are an infinite number of nonclassical paths
and an exact calculation is currently impossible (work in this
field has produced approximate closed-form solutions [12]).
Having to theoretically calculate probabilities negates the main
benefit of using the Sorkin parameter, which is to test the Born
rule without the need for such calculations.

Furthermore there are regimes where nonclassical paths can
have significant contributions, as shown in Fig. 2, and therefore
produce relatively large values of the Sorkin parameter even
though the Born rule has not been violated. Here we introduce
an alternative parameter which will produce exactly zero in all
regimes when the Born rule is not violated.

The Sorkin parameter can be generalized to systems with
three and more slits, but not two slits. The reason for this
is that IAB ≡ PAB − PA − PB �= 0 even if one ignores the

nonclassical paths. This is why the triple-slit experiment is
the simplest setup to test the Born rule with the Sorkin
parameter. However, if one adds which-way detectors, double-
slit experiments can be used to exactly test the Born rule. In
particular we introduce the following parameter as an exact
test of the Born rule:

IAB ≡ PAB − PDA − PDB − PDAB + 2PDADB . (15)

Substitution of Eqs. (2)–(6) into Eq. (15) shows that IAB = 0.
Like the Sorkin parameter, IAB subtracts from PAB all possible
combinations of pairwise interaction terms yielding IAB = 0 if
the Born rule holds; if the probability of detection is anything
other than the absolute square of the wave function, then IAB �=
0 in general. Different from the Sorkin parameter, however, IAB

exactly accounts for the higher-order corrections to all orders.
This allows an exact direct test of the Born rule, limited only
to experimental uncertainty.

Specifically, the experiment to test the Born rule will
involve repeating the double-slit experiments five times,
each time the only thing to be changed is the which-path
detector configuration, to get values for PAB,PDA ,PDB ,PDAB ,
and PDADB . One may then measure IAB using Eq. (15): any
value other than IAB = 0 signals Born-rule violation.

III. IMPERFECT DETECTORS

In practice, detectors are imperfect, whether by design or
because of technical limitations. Which-way detectors with
controllable efficiency have been used in experiments to reveal
the quantum-classical boundary [18,20,21]. Unlike perfect
detectors, imperfect detectors introduce detection efficiency
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as additional parameters. Here we will consider the case of
detectors with the same efficiency. For a case study we will
use the parameters set in Sec. II.

To study the double-slit experiment with imperfect detec-
tors we write down the basis-independent representation of
the wave functions in the previous section as |ψA〉, |ψB〉, and
|ψAB〉 (we will project to the position basis in the end). When
there are no detectors the state of the particle at the detection
screen is

|ψ〉 = |ψA〉 + |ψB〉 + |ψAB〉. (16)

In the presence of detectors, the particle becomes entangled
with the detector as it pass through the slits. We denote the
normalized triggered state of a type I detector at slit A (setup 2)
as |DA〉 and the normalized untriggered state as |0〉. In terms
of the gedanken experiment, these states of the detector are
represented by 1 and 0 balls in the tray, respectively. The state
of the system after the particle passes through the slit plane is

|φDA〉 = (|ψA〉 + |ψAB〉)|1A〉 + |ψB〉|0〉. (17)

We are only interested in the probability of detection of the
particle at the detection screen, so we trace out the detector
states from the density matrix obtained from the pure state
of Eq. (17). We project this reduced density matrix onto the
position basis to get the probability distribution

P ′
DA

= |ψA + ψAB|2 + |ψB|2
+ 2Re[(ψA + ψAB)∗ψB]〈0|DA〉. (18)

〈0|DA〉 is the amount of overlap between the triggered and
untriggered detector states, which determines the level of
interference in the probability distribution. When these states
are orthogonal, one retrieves the perfect detector probability
distribution of Eq. (3). An operative understanding of the
overlap term is made clear by setting 〈0|DA〉 = 1 − n, where
0 � n � 1, and rewriting Eq. (18) as

P ′
DA

= nPDA + (1 − n)PAB. (19)

From Eq. (19) we can interpret n as the efficiency of the
detector at slit A: the detector will detect an event with
efficiency n and when it does, the probability distribution is
PDA ; and the detector will miss an event with efficiency 1 − n

and when it does, the probability distribution is PAB. Similarly
for a detector at slit B only, one gets

P ′
DB

= nPDB + (1 − n)PAB. (20)

For a type I detector at each of the slits (setup 3), we denote
the normalized states of the detector system as |DA〉, |DB〉, and
|DADB〉 (representing the black, red, and black and red ball
states in the gedanken experiment). The state of the system
after the slit plane is

|φDADB〉 = |ψA〉|DA〉 + |ψB〉|DB〉 + |ψAB〉|DADB〉. (21)

The corresponding probability distribution is

P ′
DADB

= |ψA|2 + |ψB|2 + |ψAB|2 + 2Re[ψ∗
AψB〈DB|DA〉

+ ψ∗
AψAB〈DADB|DA〉 + ψ∗

BψAB〈DADB|DB〉].
(22)

Equation (22) is a general representation of the probability
distribution. Let us consider the case where 〈DADB|DA〉 =

〈DADB|DB〉 = 1 − n and 〈DB|DA〉 = (1 − n)2. This yields

P ′
DADB

= n2PDADB + n(1 − n)(PDA + PDB ) + (1 − n)2PAB.

(23)

Our choice of detector-state overlaps can thus be interpreted
as the result of two n-efficient, type I which-way detectors at
slits A and B, with n2 probability that both detectors can detect
an event, n(1 − n) probability that one detector can detect an
event and the other does not, and (1 − n)2 probability that both
detectors missed an event.

A comparison of Eqs. (18) and (22) shows that even if
nonclassical paths are neglected (i.e., ψAB = 0), the presence
of a second which-way detector can have an effect on the
probability distribution when the detectors are imperfect;
formally the difference results from the fact that 〈0|DA〉 �=
〈DB|DA〉 in general. Note that unlike Eqs. (19) and (20),
Eq. (23) is implementation specific, dependent on the form
of the overlap of detector states.

For the type II detector (setup 4), we denote the normalized
states of the detector system as |D1〉 and |D2〉 (representing
the one and two indistinguishable-ball states in the gedanken
experiment). The state of the system after the slit plane is

|φDAB〉 = (|ψA〉 + |ψB〉)|D1〉 + |ψAB〉|D2〉. (24)

The corresponding probability distribution is

P ′
DAB

= |ψA|2 + |ψB|2 + |ψAB|2 + 2Re(ψ∗
AψB)

+ 2Re(ψ∗
AψAB + ψ∗

BψAB)〈D2|D1〉. (25)

〈D2|D1〉 gives the amount of overlap between the one and two
indistinguishable-ball states. When these states are orthogonal,
we can be sure that the particle has passed through one or two
slits. Conversely, when the states completely overlap we have
no information on whether the particle has passed through
one or two slits, which is equivalent to having no detectors.
In between these two extremes, the detector states partially
overlap and we have an imperfect, type II which-way detector.
Setting 〈D2|D1〉 = 1 − n, Eq. (25) can be rewritten as

P ′
DAB

= nPDAB + (1 − n)PAB. (26)

Figures 3(a)–3(d) plots P ′
DA

(solid line) and P ′
DADB

(dashed
line) for n = 0.25,0.5,0.75,1 under the parameters set in
Fig. 2. As the efficiency increases there is a transition
from classical wave-like interference to corpuscular quantum
behavior due to which-way detector observation. The presence
of a second which-way detector increases the efficiency of
detection, thereby seeing an earlier transition to corpuscular
behavior.

For comparison we also plot P ′
DA

(solid line) and P ′
DADB

(dashed line) when the higher-order contributions are ignored
(i.e., ψAB = 0) in Figs. 3(e)–3(h). As detector error is
eliminated, detection efficiency is eliminated as a parameter
which can distinguish the presence of a second detector. If
higher-order contributions are neglected, then there is no
difference between having one or two perfect detectors, as
shown in Fig. 3(h). In contrast, if one accounts for higher-order
contributions, even as detector error is eliminated, the presence
of a second detector cannot be made redundant [Fig. 3(d)], as
discussed in the Sec. II.
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FIG. 3. Comparative plots of single (solid blue line) and double (dashed red line) which-way detectors. (a)–(d) P ′
DA

and P ′
DADB

with
higher-order contributions for detector efficiencies n = 0.25,0.5,0.75,1. (e)–(f) P ′

DA
and P ′

DADB
without higher-order contributions. As the

efficiency increases there is a transition from classical wave-like interference to corpuscular quantum behavior. Parameter values follow Fig. 2.

As which-way detectors are not perfect, in practice it
is more likely that P ′

DA
,P ′

DB
,P ′

DADB
, and P ′

DAB
will be the

measured quantities. Therefore, by simultaneously solving
Eqs. (19), (20), (23), and (26), we write here the perfect
(n = 1) probability distributions as functions of the imperfect
probability distributions (0 < n < 1):

PDA = P ′
DA

− (1 − n)PAB

n
, (27)

PDB = P ′
DB

− (1 − n)PAB

n
, (28)

PDADB = P ′
DADB

+ (1 − n)2PAB − (1 − n)
(
P ′

DA
+ P ′

DB

)
n2

,

(29)

PDAB = P ′
DAB

− (1 − n)PAB

n
, (30)

0.00

0.14

Δ’
av

  / 
P A

B
(0

)

10
n

│P’D   D     - P’D  │A B  A

│P’D        - PAB│
AB

│P’D    - PAB│
A

│P’D   D     - PAB│
A B

FIG. 4. Average absolute difference in probability distributions
as function of which-way detector efficiency. The solid (dashed)
line plots the average difference in probability distribution �′

av, with
(without) higher-order contributions, between y1 = −1.75 mm and
y2 = 1.75 mm. Other parameter values follow Fig. 2.

Substitution of Eqs. (27)–(30) into Eq. (15) gives the parameter
to test for Born-rule violation in terms of the measured proba-
bility distributions with inefficient which-way detectors. Using
this substitution one may then test the Born rule with inefficient
detectors. Retrieving the perfect probability distributions from
the imperfect ones, however, requires resolutions that can
distinguish the different imperfect probability distributions.

Figure 4 plots the average absolute difference in the
probability distribution as a function of detector efficiency for
the various probability functions of Eqs. (19), (20), (23), and
(26), with higher-order contributions (solid line) and without
higher-order contributions (dashed line),

�′
av = 1

y2 − y1

∫ y2

y1

|P ′
P − P ′

Q|dy. (31)

Overall the lower the efficiency of the detectors, the harder it is
to distinguish the different imperfect probability distributions,
with the difference between P ′

DA
and P ′

DADB
(solid blue

line), and PDAB and P ′
AB (solid orange line) being the most

difficult to observe. [Note that Fig. (3) corresponds to the blue
lines in Fig. (4).] Under the experimental parameters used
in Fig. (2), if one were to achieve an accuracy of 10−2 in
the measurement of the probability distributions (as achieved
by the Sinha et al. experiment [2]), then Fig. 4 shows that
the which-way detector efficiency required to distinguish the
different imperfect probability distributions would need to be
greater than 50%.

IV. CONCLUSION

We have shown that the inclusion of higher-order or
nonclassical paths will lead to different interference patterns
for which-way double-slit experiments with one and two
which-way detectors. These differences should be measurable
in regimes where the operating wavelength is commensurate
to or larger than slit spacing. Previously, direct tests of the
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Born rule have been triple-slit experiments measuring the
Sorkin parameter. The Sorkin parameter, however, is only an
approximate test of the Born rule, and can only be applied
in regimes where the operating wavelength is much smaller
than slit spacing. By explicitly accounting for higher-order
correction, we have given an alternative parameter which is an
exact test of the Born rule for all wavelengths and slit spacing.
This should open up a new suite of experiments based on
which-path double-slit experiments, to test the Born rule to
accuracies limited only by experimental uncertainties and not
theoretical ones.
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