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We analyze entanglement and nonlocal properties of the convex set of symmetric N -qubit states which
are diagonal in the Dicke basis. First, we demonstrate that within this set, semidefinite positivity of partial
transposition (PPT) is necessary and sufficient for separability—which has also been reported recently by
Yu [Phys. Rev. A 94, 060101(R) (2016)]. Furthermore, we show which states among the entangled diagonal
symmetric are nonlocal under two-body Bell inequalities. The diagonal symmetric convex set contains a simple
and extended family of states that violate the weak Peres conjecture, being PPT with respect to one partition but
violating a Bell inequality in such partition. Our method opens directions to address entanglement and nonlocality
on higher dimensional symmetric states, where presently very few results are available.
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I. INTRODUCTION

The characterization of entanglement, which has been
recognized in the last two decades as the crucial resource for
many quantum tasks, remains a challenging open problem
when the state under scrutiny is genuinely multipartite.
Although assessing if a generic multipartite state is entangled
is known to be an NP-hard problem [1,2], the situation may
be different if the quantum state possesses some symmetries.
Those can be explored to provide novel separability criteria
that fail in the general case [3–8].

Symmetric states, ρS , are defined as the states of N

qubits that lie in the subspace SN ⊂ B(H), H = (C2)⊗N

and fulfill that VσρS = ρSV
†
σ ′ , where Vσ is the operator

representing the permutation σ over the N -element set. Due
to such symmetry, SN � B(CN+1). Thus, the rank of ρS

is bounded, 1 � r(ρS) � N + 1. These states thus describe
identical bosons, i.e., invariant under permutations. Symmetric
states are, by construction, either fully separable or genuine
multipartite entangled [9]. The experimental realization of
symmetric states with photons and atoms has paved the way to
seminal quantum information test beds such as the verification
of truly multipartite entanglement [10,11]. Also, it has been
demonstrated that symmetric states outperform other states
for metrological tasks [12]. Symmetric states also arise in the
interaction of a quantized electromagnetic field in a cavity
with a set of two-level atoms, as well as the ground state
of many-body Hamiltonians, e.g., the Lipkin-Meshkov-Glick
model [13]. Thus, their relevance, and in particular, the
characterization of their quantum correlations, impinges in
several domains. A natural representation of such states is
given by means of the Dicke basis as

ρS =
∑

pkj

∣∣DN
k

〉 〈
DN

j

∣∣, ∑
pkj = 1, (1)

where |DN
k 〉 denotes a Dicke state, i.e., states of N qubits

invariant under the permutation of their elements∣∣DN
k

〉 = (
CN

k

)−1/2 ∑
σ

|σ (1k0N−k)〉, (2)

*anna.sanpera@uab.cat

where k denotes the number of qubits on the state |1〉 and
CN

k = N !/[(N − k)!k!] is a normalization factor. Within the
symmetric states, the diagonal symmetric (DS) is the convex
subset formed by those states which are diagonal in the Dicke
basis:

ρDS =
N∑

k=0

pk

∣∣DN
k

〉 〈
DN

k

∣∣, ∑
pk = 1, (3)

and which possess an even larger symmetry due to the fact that
they remain invariant under twirling unitary operations [14].

Here we analyze the properties of the DS subset and present
the necessary and sufficient conditions to certify entanglement.
We have also investigated the nonlocal character of this family
by means of two-body Bell inequalities. We show that, within
the DS set, there is a large number of states that violate the
weak Peres conjecture [15], meaning that they are PPT bound
entangled with respect to one partition but nevertheless they
violate a Bell inequality.

Our article is organized as follows. In Sec. II, we prove that
all N -qubit DS states that are PPT (semidefinite positive under
partial transposition) with respect to the largest bipartition
are necessarily separable (see also [16] for a different proof
based on extremal witnesses). In Sec. III, for the sake of
simplicity, we focus on the simplest nontrivial case, N = 4
qubits. For such a case, we are able to give several geometrical
representations of the set of separable states which helps
one to understand the structure of DS space. In Sec. IV, we
ask which DS-entangled states are nonlocal under two-body
Bell inequalities. To this aim, we use the recently introduced
two-body Bell inequalities for many-body systems [17] and
show that not all entangled DS states violate such inequalities
while providing also one of the simplest counterexamples of
the weak Peres conjecture [15]. We recall here that the weak
Peres conjecture states that if a given density matrix ρ is PPT
with respect to a given partition A|B, it does not violate a Bell
inequality, whereas the strong Peres conjecture refers to the
impossibility of violating a Bell inequality if ρ is PPT with
respect to all partitions. Recently, several counterexamples to
both the weak and the strong Peres conjecture have appeared
[18–20]. After a brief summary of the obtained results, we
conclude in Sec. V.
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II. SEPARABILITY OF DIAGONAL SYMMETRIC STATES

To study the separability of ρDS for N qubits, one should
determine first whether the state is PPT with respect to all
possible partitions. Denoting by ρ

�t

DS the partial transpose
with respect to the partition t |N − t , permutational symmetry
implies ρ

�t

DS ∈ B(Ct+1 ⊗ CN−t+1) and, accordingly, its rank is
bounded by r(ρ�t

S ) � (t + 1)(N − t + 1). The lowest nontriv-
ial case corresponds to N = 4, since for N < 4, dim(SN ) � 6,
and PPT is a necessary and sufficient condition for separability
[21]. Recently it has also been demonstrated, using the
extremality of witness operators, that if ρ

��N/2	
DS � 0, then ρDS

is separable [16] (see also [22] for a numerical proof of the
N = 4 case). Our proof, however, relies only on the symmetry
displayed by the states without knowing the extremal points
of such set. Notice that these results exclude the possibility of
finding bound entangled states among the DS set. In contrast,
symmetric bound entangled states ρS exist even for N = 4
[23]. To focus our study we start with the following theorem.

Theorem 1. A nontrivial separable DS state ρDS must be of
full rank, i.e., pk 
= 0 for all k = 0,1, . . . ,N .

By trivial separable DS states we mean states of the form
ρDS = ∑

pk|DN
k 〉〈DN

k | with either k = 0 or k = N , as well
as any mixture of them. Theorem 1 states that any ρDS whose
rank r(ρDS) � N is entangled unless it is trivially separable.
Therefore, from now on we restrict our study to states such
that r(ρDS) = N + 1. The proof of the theorem follows directly
from Lemma 1 below.

Lemma 1. ρDS is PPT with respect to each possible partition
if and only if ρ

��N/2	
DS � 0.

Proof. Let us rewrite ρDS in the canonical basis, e.g.,
{i1,i2, . . . ,iN }, where ik = {0,1} ∀k.

ρDS =
2N∑

μ,ν=1

pμν

∣∣i μ

1 ,i
μ

2 , . . . ,i
μ

N

〉 〈
i ν
1 ,i ν

2 , . . . ,i ν
N

∣∣, (4)

and pμν = pm 
= 0 if and only if
∑N

s=1 i
μ
s = ∑N

s=1 i ν
s = m,

since diagonal symmetry imposes that all matrix elements
are zero except those containing the same number m of
excitations, i.e., number of is = 1. Since 0 �

∑N
s=1 i

μ
s �

N , exactly
(
N

m

)
number of rows (and hence columns by

symmetry) in the matrix representation (4) will have pm as
the only nonzero entries. Equivalently, the only nonvanishing
matrix elements of any partial transposed matrix ρ

�t

DS are
those fulfilling

∑N
s=1 i

μ
s + ∑N

s=1 i ν
s = 2m, i.e., pm 
= 0 if and

only if
∑N

s=1 i
μ
s = m + t, . . . ,m, . . . ,m − t and

∑N
s=1 i ν

s =
m − t, . . . ,m, . . . ,m + t .

Rewriting the above conditions in a matrix form, ρ
��N/2	
DS �

0, corresponds to

Mk =

⎡
⎢⎢⎢⎢⎣

p0+k p1+k p2+k . . . pm+k

p1+k p2+k p3+k . . . pm+1+k

p2+k p3+k p4+k . . . pm+2+k

...
...

... . . .
...

pm+k pm+1+k pm+2+k · · · p2m+k

⎤
⎥⎥⎥⎥⎦ � 0,

(5)

where m = �N
2 	 and k = 0,1. Note that the Mk’s are Hankel

matrices [24]. The PPT condition with respect to any other
partition t, ρ

�t

DS, is included in the positive semidefinite of the
principal minors of Mk . Finally, notice that a necessary con-
dition for M0,1 � 0 is that pk 
= 0 for all k = 0,1, . . . ,N + 1.
Therefore, this proves that a generic diagonal symmetric state
must be of full rank ρDS = N + 1, otherwise it is entangled
or trivially separable. This proves Theorem 1. An alternative
proof of the theorem not relying on the properties of Hankel
matrices is given in the Appendix.

With the above lemma, we proceed now to the main theorem
and its demonstration.

Theorem 2. All diagonal symmetric states of N qubits
that are PPT with respect to the largest possible bipartition
�N/2	| N − �N/2	 are separable (see also [16]).

Proof. The proof of Theorem 2 is as follows:
(1) We have proven in Lemma 1 that if ρ

��N/2	
DS � 0, then

ρ
�t

DS � 0 for t = 1, . . . ,�N/2	, which means that ρDS is full

PPT if and only if ρ
��N/2	
DS � 0.

(2) We construct an extended symmetric mixed state, ρEXT,
which fulfills ρEXT = ρ

�1
EXT = ρ

��N/2	
EXT and show that ρEXT � 0

if and only if ρ
��N/2	
DS � 0. This ρEXT is actually obtained by

adding some coherence (off-diagonals) terms to the ρDS. Since
the rank of ρDS is maximal, adding coherences cannot make it
larger.

(3) Using the fact that any ρ ∈ B(C2 ⊗ CN ) such that
ρ = ρ�1 is separable [25], if ρEXT � 0, then it is separable.

(4) Finally, we prove that ρDS can be obtained from ρEXT by
local unitary transformations. Therefore, if ρ

��N/2	
DS � 0, then

ρDS is separable. The details of steps (2) and (3) are given
below.

Step (2). We extend the original matrix ρDS =∑
pi |DN

i 〉〈DN
i | as follows:

ρDS → ρEXT =
∑

pi

∣∣DN
m

〉 〈
DN

l

∣∣, m + l = 2i (6)

∀N � m,l � 0. Notice that by adding the coherences
|DN

m 〉〈DN
l |, the extended matrix fulfills ρEXT = ρ

�t

EXT, for every
t = 1, . . . ,�N/2	. Notice that PPT has to be performed in the
canonical basis. However, by expressing ρEXT in the Dicke
basis,

ρEXT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0 0 p1 0 p2 0 . . . pn/2

0 p1 0 p2 0 p3. . . 0
p1 0 p2 0 p3 0 . . .pn/2+1

· · · · · · · ·
· · · · · · · ·
· · · · · · · ·

pn/2 0 pn/2+1 · · · · pn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

it is straightforward to see that ρEXT � 0 if and only if the
associated Hankel matrices M0,1 � 0.
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Step (3). Finally, it is straightforward to notice that ρDS can
be obtained by applying local unitaries on ρEXT as follows:

ρDS = 1

2π

∫ 2π

0
dϕ U⊗NρEXT(U †)⊗N, (8)

with

U =
(

1 0

0 eiϕ

)
.

Since local unitaries cannot change the entanglement proper-
ties of the matrix, this ends the demonstration of the theorem
stating that given a diagonal symmetric matrix, ρDS, the state

is separable if and only if the state ρDS is PPT with respect to
the largest bipartition. �

III. GEOMETRY OF N = 4 DS SPACE

To understand the geometry of the space of DS states, we
focus now on the N = 4 case where only two partitions exist,
1|3 and 2|2. The ranks of interest are r(ρDS) � 5, r(ρ�1

DS) � 8,
and r(ρ�2

DS) � 9. As we shall see, generic separable states are
of maximal tri-rank (5,8,9), while extremal separable states
can have a tri-rank as low as (5,6,6). We use Theorem 2 to
determine the geometry of the DS PPT states. We write an
un-normalized generic ρDS in the canonical basis:

ρDS =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0 · · · · · · · · · · · · · · ·
· p1 p1 · p1 · · · p1 · · · · · · ·
· p1 p1 · p1 · · · p1 · · · · · · ·
· · · p2 · p2 p2 · · p2 p2 · p2 · · ·
· p1 p1 · p1 · · · p1 · · · · · · ·
· · · p2 · p2 p2 · · p2 p2 · p2 · · ·
· · · p2 · p2 p2 · · p2 p2 · p2 · · ·
· · · · · · · p3 · · · p3 · p3 p3 ·
· p1 p1 · p1 · · · p1 · · · · · · ·
· · · p2 · p2 p2 · · p2 p2 · p2 · · ·
· · · p2 · p2 p2 · · p2 p2 · p2 · · ·
· · · · · · · p3 · · · p3 · p3 p3 ·
· · · p2 · p2 p2 · · p2 p2 · p2 · · ·
· · · · · · · p3 · · · p3 · p3 p3 ·
· · · · · · · p3 · · · p3 · p3 p3 ·
· · · · · · · · · · · · · · · p4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

The PPT region is given by the inequalities which arose by imposing ρ
�2
DS � 0. Explicitly,

ρ
�2
DS =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0 · · · · p1 p1 · · p1 p1 · · · · p2

· p1 p1 · · · · p2 · · · p2 · · · ·
· p1 p1 · · · · p2 · · · p2 · · · ·
· · · p2 · · · · · · · · · · · ·
· · · · p1 · · · p1 · · · · p2 p2 ·

p1 · · · · p2 p2 · · p2 p2 · · · · p3

p1 · · · · p2 p2 · · p2 p2 · · · · p3

· p2 p2 · · · · p3 · · · p3 · · · ·
· · · · p1 · · · p1 · · · · p2 p2 ·

p1 · · · · p2 p2 · · p2 p2 · · · · p3

p1 · · · · p2 p2 · · p2 p2 · · · · p3

· p2 p2 · · · · p3 · · · p3 · · · ·
· · · · · · · · · · · · p2 · · ·
· · · · p2 · · · p2 · · · · p3 p3 ·
· · · · p2 · · · p2 · · · · p3 p3 ·

p2 · · · · p3 p3 · · p3 p3 · · · · p4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

It is straightforward to see that ρ�2
DS � 0 corresponds to M0 � 0

and M1 � 0 [Eq. (5)] where

M0 =
∣∣∣∣∣∣
p0 p1 p2

p1 p2 p3

p2 p3 p4

∣∣∣∣∣∣, M1 =
∣∣∣∣ p1 p2

p2 p3

∣∣∣∣. (11)

To give a geometrical picture of the set of separable
DS states, notice that the conditions arising from Mk �
0 given by Eq. (11) reduce to pipi+2 � p2

i+1 for i =
0,1,2 plus the condition det(M0) � 0. After imposing the
proper normalization of the states, the above inequalities
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0.2 0.2

0.3 0.3

0.4

0.6

FIG. 1. Representation of the PPT-DS region for N = 4. The
picture corresponds to s = p0 + p4 = 0.6. Notice the shape of the
region of separable states is independent of the value of s.

read

E1 ≡ 8p0p2 − 3p2
1 � 0, (12a)

E2 ≡ 9p1p3 − 4p2
2 � 0, (12b)

E3 ≡ 8p2p4 − 3p2
3 � 0, (12c)

F2 ≡ p4
(
72p0p2 − 27p2

1

)
− 2p3

2 − 9p3(p1p2 + 3p0p3) � 0. (12d)

Normalization,
∑

i pi = 1, reduces the number of free pa-
rameters to just four. The region bounded by Eqs. (12) in
the (p0,p1,p3) space can be easily depicted by imposing
the constraint p0 + p4 = s, for s ∈ (0,1) as shown in Fig. 1.
While the parameter k varies continuously in the range (0,1),
the shape of the PPT volume remains invariant making its
properties independent of s.

Taking “slices” of constant p0 in the above representation
makes the geometry of PPT diagonal symmetric states even
simpler, as depicted in Fig. 2. For each slice, the PPT region is
bounded just from two surfaces, F2 = 0 and E1 = 0, and thus
PPT�2 ⊂ PPT�1 . In Fig. 2 we also represent all the possible

+

(5, 7, 7)

(5, 8, 9)

(5, 8, 8)

(5, 6, 6) (5, 6, 6)

1 = 0E

E2 = 0

F2 = 0

E3 = 0

A

PPT over 1|3

PPT over 2|2

FIG. 2. The generic PPT region given by Eqs. (12). Generic
separable states are of rank (5,8,9) (dark area), while extremal
separable states are of rank (5,6,6), (5,8,8), and (5,7,7). Point A
is an edge entangled state that satisfies PPT�1 > 0 but PPT�2 < 0.

tri-ranks (r(ρ),r(ρ�1 ),r(ρ�2 )) a PPT DS state can have, (5,8,9)
being the generic one. Point A in Fig. 2 corresponds to the state
ρJC, given below in Eq. (13), which is derived from the Jaynes-
Cumming model describing a two-level atom interacting with
the first M levels of an electromagnetic field in a cavity. Notice
that ρJC ∈ B(C2 ⊗ CM ) but when expressed in the Dicke basis
they can be mapped onto a diagonal symmetric state; ρJC ∈
B[(C2)⊗M ]. For the particular case of M = 4, these states
read [26]

ρJC = a

4

∣∣D4
0

〉 〈
D4

0

∣∣ + ∣∣D4
1

〉 〈
D4

1

∣∣ + 3

2a

∣∣D4
2

〉 〈
D4

2

∣∣
+ 1

a2

∣∣D4
3

〉 〈
D4

3

∣∣ + 1

4a2b

∣∣D4
4

〉 〈
D4

4

∣∣, (13)

with a,b ∈ R � 0 and a > b. Interestingly enough, this family
of states fulfill E1 = 0 and E3 = 0 and they are extremal points
in the subset of states satisfying PPT�1 � 0 but they do not
fulfill that PPT�2 > 0. Thus, they are PPT-edge states with
respect to the partition ρ

�1
JC . Furthermore, these states have

been shown to be bound entangled in B(C2 ⊗ C4) [26] where
there is only a possible partition.

IV. NONLOCALITY OF DIAGONAL SYMMETRIC STATES

All entangled DS are, by construction, genuine multipartite
entangled. It is, therefore, natural to ask about their properties
with respect to nonlocality. Recently, it has been shown that it
is possible to detect nonlocality on symmetric N -qubit states
just involving only one- and two-body correlations [17]. Such
Bell inequalities provide an experimentally accessible setup
to test nonlocality in many-body systems without relying on
N -body correlations. The Bell inequality reads

B(θ,φ) ≡ αS0 + βS1 + γ

2
S00 + δS01 + ε

2
S11 + βC � 0,

(14)

with

Sl ≡
∑N

i=1

〈
M(i)

l

〉
, (15)

Slr ≡
∑N

i 
=j=1

〈
M(i)

l M(j )
r

〉
, (16)

for l,r = 0,1, where M0 = cos φ σz + sin φ σx and M1 =
cos θ σz + sin θ σx are the measurements and θ, φ the devices
orientation angles.

In particular, Eq. (14) is violated by all entangled Dicke
states |DN

k 〉 (i.e., k 
= 0,N ) for the following set of specific
parameters [27]:

ν =
⌊

N

2

⌋
− k,

α = v 2νN (N − 1),

β = α/N,

γ = N (N − 1),

δ = N,

ε = −2,

βC =
(

N

2

)
[N + 2(2ν2 + 1)]. (17)
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FIG. 3. Device angles for which there is Bell violation of Eq. (14)
for the Dicke states |D4

1,3〉 (dark) and |D4
2〉 (dark + light). The device

angle that corresponds to the maximal Bell violation is indicated.

Defining Q(|ψ〉) := 〈ψ |B|ψ〉, if Q(|ψ〉) < 0 the state |ψ〉
violates Bell inequality (14) thereby the state |ψ〉 is entangled
and nonlocal. For simplicity, we keep on in the N = 4 case
and consider that r(ρDS) = 5. With the parametrization given
in Eq. (17), the Bell inequalities for the entangled Dicke states
are given by the expressions

Q
(∣∣D4

1,3

〉) = 75 + 12 cos θ + 3 cos2 θ + 48 cos φ − 18 cos2 φ

− 3 sin2 θ + 24 sin θ sin φ + 18 sin2 φ, (18)

Q
(∣∣D4

2

〉) = 46 + 6 cos2 θ − 16 cos θ cos φ − 36 cos2 φ

− 6 sin2 θ + 32 sin θ sin φ + 36 sin2 φ. (19)

We first search the optimal device orientation, i.e., the
one which provides maximal violation for |DN=4

i 〉, according
to (18) and (19). It corresponds to θ = 3.916 and φ =
3.002 yielding the values Q(|D4

1,3〉) = −0.683 and Q(|D4
2〉) =

−2.913. The dependence of the Bell inequality on the device
orientation is depicted in Fig. 3, for all entangled Dicke
states |D4

1,2,3〉. Given the permutational invariance of DS
states, nonlocal DS states, i.e., states for which Q(ρDS) ≡∑

pkQ(|D4
k 〉) < 0, are given by the following inequality:

(p1 + p3)Q1 + p2Q2 > (p0 + p4)Q0, (20)

where Qk ≡ |Q(|D4
k 〉)|. For N = 4, it is easy to check which

states are nonlocal in terms of the negativity of partial
transposition (NPT) conditions. Our results are schematically
summarized in Fig. 4, where we fix the values of p0 and
p4 and evaluate numerically the Bell inequality (14) for any
possible value of pi (i = 1,2,3) of the DS mixture. Gray
regions correspond to DS states that violate the two-body Bell
inequality.

The boundaries between local and nonlocal states arise
from the condition (p1 + p3)Q1 + p2Q2 = (p0 + p4)Q0. In

FIG. 4. Nonlocality of DS states for p0 = p4 = 0.1. Gray areas
correspond to ρDS which are nonlocal, while white areas depict
local states. PPT denotes separable states. By PPT1|3 we refer to
ρDS such that it is PPT with respect to partition 1|3 but NPT
with respect to partition 2|2. The boundaries of the PPT region
obtained by numerically evaluating Bell inequalities are in one-to-one
correspondence with the regions bounded by Eqs. (12).

Fig. 4, first we notice that, as expected, not all NPT states are
nonlocal under two-body Bell inequalities. Secondly, that such
inequality provides exactly the boundaries of the separable
states. That is, for this values of p0 and p4, Eqs. (12) can be
derived independently from the violation of inequality given
by Eq. (14). Finally, the dark-gray area in Fig. 4 indicates
that there exist states which are PPT with respect to 1|3,
but nonlocal—hence violating the weak Peres conjecture.
For other values of p0 and p4 we can see that also the
Jaynes-Cumming states as described in Eq. (13) do violate
a Bell inequality. Thus, despite the fact that there are no bound
entangled states in the diagonal symmetric convex set of N

qubits, as demonstrated in Theorem2 (see also [16]), there are
states ρ ∈ B(C2 ⊗ C4) that can be mapped onto the diagonal
symmetric states of four qubits and which are PPT with
respect to the only possible partition (C2|C4) and nonlocal,
i.e., bound entangled states that violate Bell inequalities.
These PPT states are the simplest counterexample to the Peres
conjecture [15,18,19], as they have a very simple structure
and their nonlocality is revealed using only two-body Bell
inequalities.

V. CONCLUSIONS

We have analyzed the entanglement of diagonal symmetric
states of N qubits which describe bosonic states of identical
particles. First, we have proven that separable diagonal
symmetric states of N qubits are necessarily of full rank,
i.e., N + 1. Secondly, we have demonstrated, exploting the
symmetries of the state, that for such family, PPT is a sufficient
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and necessary condition for separability. Third, for N = 4, we
have provided a complete geometrical description of the set
of separable DS states. Finally, we have shown that there is
not a one-to-one correspondence between entanglement and
nonlocality using two-body Bell inequalities, and that there
exist an extended family of diagonal symmetric states that
are PPT with respect to a partition but nevertheless violate a
Bell inequality in this partition. We conclude by remarking
that some of our methods can be extended to symmetric
states in higher dimensions where, so far, very few results are
known.
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APPENDIX: AN ALTERNATIVE PROOF OF THEOREM 1

This proof is based on the separability criteria from
Ref. [28]. The criterion given there is both necessary and
sufficient, but for our purpose only a part of the necessary
conditions would suffice.

Let ρ = ∑m
j=1 λj |ψj 〉〈ψj | be the spectral decomposition

of a state with λi > 0. Consider the normalized pure state
|χ〉 = ∑m

j=1 xj |ψj 〉, xj ∈ C, and let its single party marginals
be σK, K = 1,2, . . . ,N . Then the state ρ is separable, which
implies that there are n � m number of distinct solutions
x(i) (two solutions x(i) and x(j ) are distinct if and only if
x(i) 
= cx(j )) to the system of equations

det(σK − I ) = 0, K = 1,2, . . . ,N. (A1)

The normalized state |χ〉 in our case is given by |χ〉 =∑N
k=0 xk|DN

k 〉. Splitting each |DN
k 〉 into 1|23 · · · N ,

|χ〉 =
N∑

k=0

xk

(√
N − k

N
|0〉|k̄〉 +

√
k

N
|1〉|k − 1〉

)
(A2a)

= |0〉
N−1∑
k=0

ak|k̄〉 + |1〉
N−1∑
k=0

bk|k̄〉, (A2b)

where |k̄〉 := |DN−1
k 〉 for 0 � k � N − 1, otherwise 0; ak :=

[(N − k)/N ]1/2xk, bk := [(k + 1)/N)]1/2xk+1. The normal-
ization is simply given by

∑N−1
k=0 (|ak|2 + |bk|2) = 1. Any

single-qubit marginal of |χ〉 is given by

σ =
(∑N−1

k=0 |ak|2
∑N−1

k=0 akb̄k∑N−1
k=0 ākbk

∑N−1
k=0 |bk|2

)
. (A3)

Hence the separability condition of Eq. (A1) reads(
N−1∑
k=0

|ak|2 − 1

)(
N−1∑
k=0

|bk|2 − 1

)

−
(

N−1∑
k=0

akb̄k

)(
N−1∑
k=0

ākbk

)
= 0

⇒ (ak)N−1
k=0 = c(bk)N−1

k=0 , where c ∈ C, (A4)

by Cauchy-Schwarz inequality and using the normalization.
So, the general solution of Eq. (A1) is given by

xk = c

√
k + 1

N − k
xk+1, k = 0,1, . . . ,N − 1.

By definition of |χ〉, if pk = 0 for some k, the corre-
sponding xk = 0. If p0 = 0, there is one unique solution
x = (0,0, . . . ,0,1). Since the number of (distinct) solutions
has to be at least the number of nonzero pk’s, pN = 1 is
the only nonzero pk . Similarly, if pN = 0, p0 = 1 is the only
nonzero pk and there is no solution if p0 = 0 = pN . For any
other pk = 0 with p0pN 
= 0 there are exactly two solutions
{(1,0, . . . ,0), (0, . . . ,0,1)} to Eq. (A1), and hence for ρ to be
separable at most two of the pk’s could be nonzero, which are
p0 and pN . �
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