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We present a comprehensive analysis of longitudinal particle drifting in a standing circularly polarized wave
at extreme intensities when quantum radiation reaction (RR) effects should be accounted for. To get an insight
into the physics of this phenomenon we made a comparative study considering the RR force in the Landau—
Lifshitz or quantum-corrected form, including the case of photon emission stochasticity. Specific features of
particle dynamics have a strong impact on spatial structures of the electron-positron (e~e™) density created in
vacuum through quantum electrodynamic (QED) cascades in counterpropagating laser pulses. Three-dimensional
particle-in-cell modeling accounting for QED effects confirms realization of different pair plasma structures.
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I. INTRODUCTION

Development of ELI [1], Appolon 10 [2], XCELS [3],
and other projects aimed at obtaining extreme laser fields
stimulates fundamental and applied studies of the interaction
of superintense laser radiation with matter. One of the features
of this interaction is a decisive role of photon emission by
electrons (positrons) and the corresponding radiation reaction
effect. The electron motion changes drastically due to the
impact of photon emission [4]. As a result, for example,
there may occur counterintuitive effects in a linearly polarized
field, such as anomalous radiative trapping in a standing
wave [5] and radiative trapping in a traveling wave [6].
Moreover, not only changes in particle momentum but also
the quantum (stochastic) nature of the photon emission play
an important role [7-10]. Another important feature is also
that emitted hard photons with energies above 1 MeV in an
extreme laser field can create electron-positron pairs through
multiphoton Breit-Wheeler processes [11,12]. Eventually,
both the distribution function of particles and field distribution
can be modified substantially due to avalanche-like electron-
positron pair production (electromagnetic cascade) [13] and
back reaction of the produced plasma [14].

For efficient emission of hard photons and their decay into
e~e™ pairs the critical factor is a transverse field which a
particle experiences in its rest frame. A simple case with
a strong transverse field is a couple of counterpropagating
laser pulses. Most theoretical studies of e~ e™ generation were
recently devoted to this case, which is also very instructive
for understanding the main physical processes involved in
such QED plasma behavior. Already in the first paper by
Bell and Kirk [13] a prolific pair production at intensities
of 10** W/cm? for a 1 um laser with circular polarization
was shown. The case with circular polarization differs from
that with linear polarization. On the one hand, the electric
field in the antinode plane of a circularly polarized standing
wave is a steadily rotating vector, whereas in the case of
linear polarization the electric field is oscillating in time.
This fact can lead to enhancement of electromagnetic cascade
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growth rate in the circular polarization case as compared to
linear polarization [15]. Moreover, as opposed to circular
polarization, linearly polarized focused laser beams allow
studying direct Schwinger pair creation [16]. The fundamental
reason of that is the possibility of fast pair escaping from the
vicinity of the electric-field antinode in the latter case. On
the other hand, in the case of linear polarization the particle
escaping normal to the electric field from the high-field region
can be suppressed by the anomalous radiative trapping (ART)
mode [5], whereas in a circularly polarized standing wave
particles are drifting from the antinode to the node of electric
field, because they are initially sitting on the top of the hump
of ponderomotive potential (antinode region). Thus, different
particle motion and dynamics of cascade growth rate in the
field with different polarization can lead to different pair
plasma structures. Despite quite a number of investigations
devoted to pair plasma structures in counterpropagating laser
beams with circular and linear polarizations [15,17-24], a
detailed analysis of structures in the field with different
polarizations, intensities, and focusing parameters would be
fundamentally important.

The goal of the present work is to study the types of
spatial e~ e™ density structures that can be realized in vacuum
through QED cascades in counterpropagating laser pulses
with circular polarization. We consider in detail particle
drifting in an inhomogeneous field, especially longitudinal
drifting as the most important process of particle escape for
counterpropagating pulses when standing-wave configuration
is formed. To get an insight into the physics we first present
long-term density distributions, showing that with radiation
reaction effects only the normal radiative trapping (NRT)
regime [5,25] is realized, unlike the case of linear polarization
when particles can be trapped in the ART regime. In NRT
and ART regimes particles are attracted due to the RR
effect to electric-field node or antinode regions of a standing
wave, respectively. Since QED cascades are mainly generated
in the high-field region, we once again consider particular
trajectories in the electric-field antinode. We revisit the earlier
works devoted to a stationary trajectory in a rotating electric
field. This trajectory in the form of a circle has a long
way of study. It was first considered in Refs. [26,27] taking
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into account radiation losses. Based on particle motion, the
authors of Ref. [26] made an attempt to derive dispersion
relations in plasma with the inverse Faraday effect taken
into account. Later the electron motion was investigated with
allowance for the Lorentz—Abraham—Dirac (LAD) force [28].
A nonlinear Thomson scattering cross section was found
for different limiting cases: the so-called radiation-dominated
case when the RR force is comparable with the Lorentz
force and quantum [29]. The stationary trajectory not only
allows us to obtain exact expressions for the ponderomotive
force and dielectric permittivity but also determines stationary
nonlinear plasma-field structures, accounting for the LAD
force [30]. The dispersion relation characteristics of stationary
trajectory were modified considering quantum corrections to
the Landau—Lifshitz (LL) force [19,31]. In our paper we will
show how the stochastic nature of photon emission changes
this trajectory. Moreover, the stochasticity generates a new
effect of particle diffusion, resulting in an additional channel
of particle escape. At the same time, the stochasticity slows
down longitudinal escape from the electric-field antinode to
the node [7] due to strong perturbation of particle motion.

It is also important that, at intensities approaching
10%* W/cm?, electromagnetic cascades start to be generated
along this trajectory [13]. Cascade growth rates were estimated
with different accuracy in Refs. [17,32-34]. However, analysis
of QED cascade development in an inhomogeneous field
should include all particle channels of escape from the
high-field region. This was done for some particular cases in
Ref. [35] for the transverse drift and in Refs. [7,36] considering
numerically longitudinal particle motion from the electric-field
antinode to the node. We present a comprehensive analysis of
particle drifting at extreme intensities from which quantitative
dependencies of escape rates as a function of field amplitude
are obtained. Comparison of the pair production growth rates
and the main particle loss rate connected with the longitudinal
drifting shows that three fundamental modes of QED cascades
may be formed in a standing circularly polarized wave, giving
rise to density distributions peaked at the antinode or node or in
both regions. This conclusion is confirmed by particle-in-cell
(PIC) simulations.

II. PARTICLE MOTION: LONG-TERM DISTRIBUTION

We first consider the long-term density distribution of
electrons initially uniformly distributed in a plane standing
circularly polarized wave, with the radiation reaction effect
taken into account. Of course, this is a direct consequence
of single-electron motions, but it allows us to understand
the asymptotic behavior of a particle ensemble. Such a
consideration allows us to introduce ART and NRT regimes in
a standing linearly polarized wave [5].

Without loss of generality, assume that electric E and
magnetic B fields may be written in the form

E = Re[a cos(y)(z — ix)e''], (1)

B = Re[asin(y)(z — ix)e'']. (2)

The fields are normalized to mw;c/e, where w; is the laser
frequency, m and —e are the mass and charge of the electron,
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c is the velocity of light, the y axis is perpendicular to E, B,
and y and ¢ are normalized to ¢/w; and 1/w;, respectively.
The momentum is normalized to mc. The equations of motion
make an autonomous system:

dp| _ apysin(y)sin(e)

i y rP» (3)
d;i = —acos(y)cos(¢) — apisin(y)sin(¢) _ Pl (4)
t Y
dep 1@ [ . P ]
— = —1+4+ —| cos(y)sin(p) — — sin(y)cos ()|, (5)
dt pPL v
dy P

where dimensionless variables are used, p; is the electron
momentum along the y axis, p, is the magnitude of momen-
tum projection on the xz plane, ¢ is the angle between E and
the momentum projection on the xz plane counterclockwise
measured from E, and y is electron Lorentz factor. Momentum
projections on the x and z axes are p, = p, sin(t + ¢)
and p, = p, cos(t + ¢), respectively. F, is the factor of the
radiation reaction force Fyy, so that F, = —pF,. F, can be
considered within the framework of different approaches:
(1) Without the radiation reaction force,

F, =0. 7)

(2) The radiation reaction force in the form of the Landau—
Lifshitz force (the main term proportional to y2 [37]):

F, = 2ana’[cos*(y) + p] + p] sin’(@))/By).  (8)

where « is the fine-structure constant, n = %, and 7/ is

Planck’s constant. We omit here introduction of LAD force
because it was described many times in the previous works
and gives the same results as the LL force, while both of them
are valid in the range of field frequency and field strength
parameters [38]. In the ultrarelativistic case, radiation power
P is related to F, by P ~ F,p*/y to an accuracy of 1/y>.
Following Ref. [39], we introduce the radiation reaction force
with quantum corrections.

(3) The radiation reaction force taking into account quan-
tum corrections,

o /‘X’ 4u* + 5u +4
Fr = I/t—4
33xny Jo (1 4+u)

where K,(x) is the modified Bessel function of the second
kind of order v, and quantum parameter [40,41]

K/3Q2u/3x)du, (9)

x = an,/cos? (y) + pj + pi sin? (¢). (10)

The approximation of Eq. (9) can be found in Sec. A.

One more way of describing radiation losses is to use the
quasiclassical approach [39]. Particle motion between two acts
of photon emission is described by equations without radiation
reaction force F, = 0, and at the instant of emission the particle
momentum decreases proportionally to the emitted photon
momentum. This approach is modeled within the framework
of the Monte Carlo method [7,14,42]. In our article we use the
method described in Ref. [10].
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FIG. 1. Long-term electron-density distribution in the field of

a plane circularly polarized standing wave as a function of wave

amplitude in the frame of (a) approach (3) and (b) the quasiclassical

approach. (c) NRT' and (d) NRT trajectories for wave amplitude

a = 100. Color along the trajectory corresponds to the gamma factor.
Surfaces under the trajectories represent |E|.

Based on the introduced equations of motion it is possible
to determine asymptotic regimes of motion in a circularly
polarized field as was done in Ref. [5] in a linearly polarized
field. The results are shown in Fig. 1. In the case of continuous
force [Fig. 1(a)], Eq. (9) is used. Ponderomotive trapping,
relativistic chaos, and NRT can be revealed as in the case
of a linearly polarized field. Relativistic effects at a = 1 lead
to chaotization of motion. Particles do not accumulate at the
electric-field node, they can randomly pass from one node to
another. Radiation reaction effects become apparent at smaller
wave amplitudes angr &~ 30 giving rise to the NRT regime
(for a linearly polarized wave angr ~ 400). Although the
radiation reaction force is much less than the Lorentz force
at such amplitudes, over a long period of time the influence of
dissipative force may be significant [4,25].

Along with the NRT trajectories there are special NRT*
trajectories in the 30 < a < 120; 280 < a < 390 amplitude
ranges. Unlike the NRT trajectories localized in a small region
around the electric-field node, the amplitude of the oscillations
along the y axis in the NRT* regime is Ay ~ 0.41;, where };
is wavelength. On these trajectories the electron goes to the
region of a strong electric field and is reflected from them
about every field period. The average energy is ynrr+ ~ 4,
while in the NRT regime ynrr < a. Moreover, as follows
from numerical simulations, the NRT* trajectory is localized,
whereas in the NRT regime the particle is drifting in the
transverse plane xz with average velocity 0.6¢. The direction
of drifting is determined by initial conditions. Examples of the
trajectories are shown in Figs. 1(c) and 1(d).

There are also other special points of the system (3)—(6)
py=0,y=xn/4(n € Z), p, =0.If a nonrelativistic elec-
tron appears in the vicinity of these points, it does not escape
from this region [10]. It is kept there by the ponderomotive
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potential, which is in agreement with the vertical solid lines
y = A /4, 31 /4 in Fig. 1.

The use of the Landau-Lifshitz force does not lead to
qualitative changes in Fig. 1(a). The only difference is a slight
shift of the amplitude ranges of the NRT* regime to smaller
amplitudes: 30 < a < 120; 180 < a < 280. Exclusion of radi-
ation reaction stops the formation of the NRT regime, and there
is only relativistic chaos at relativistic amplitudes. The stochas-
ticity of photon emission, on the contrary, changes the motion
regimes both quantitatively and qualitatively [Fig. 1(b)] in the
frame of the quasiclassical approach. The NRT" regime does
not arise, which testifies to the continuity and discreteness of
radiation losses. The impact of photon emission on the electron
does not allow the NRT™ regime to emerge and the electron can
skip to the region of other electric-field nodes, giving rise to
relativistic chaos. Moreover, stochasticity of photon emission
counteracts gradual cooling, which increases the threshold of
the NRT regime angr = 70. It is interesting that there is no
ART regime in a circularly polarized standing wave.

So, we have briefly described all stable asymptotic
regimes, taking into account radiation losses. However,
for fast processes like electron-positron pair production in
extremely strong fields, the dynamic effects of motion can
be very important. There is one more critical point at the
electric-field antinode.

III. IMPACT OF RADIATION DISCRETENESS ON
ELECTRON MOTION

It should be noted that the quantum-corrected RR force in
Egs. (3)—(6), used in most analytical treatments of ultrarela-
tivistic particle dynamics, describes an average regular trajec-
tory, while due to radiation discreteness actual motion changes
randomly at the instant of emission. This may affect average
particle characteristics, such as the mean relativistic factor (or
mean energy) and rate of particle drifting. Such an impact was
considered in Refs. [8—10] for a linearly polarized standing
wave. In this section we address this issue to the circularly
polarized wave, which, on the one hand, is a simpler field
configuration but, on the other hand, a new effect of particle
escape from a high-field region such as Brownian diffusion
due to randomization of motion can also be generated.

Apparently Egs. (3)—-(6) admit stationary trajectories in the
plane of the electric-field antinode. They were studied earlier in
Refs. [19,26,27,30,31,38]. These trajectories are circles at the
points y = nA;/2 and are governed by the following equations:

Plst = asin(@y),
a Ccos ((psl) = —LpstPLsts
Pist = 0, (11)

xse = m/a + ply.
2
_ 2 a
Vst = 1+pj_st_ 1+1+F27

rst
where F, is defined by Eqs. (8) and (9) with all variables
replaced by those with subindex st. Without radiation reaction
we have p g =a and ¢y = /2. The angle between the

electron momentum and the electric field ¢y becomes larger
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than 7/2 due to radiation reaction and the electric field
performs positive work compensating radiative losses.

For further analytical consideration we need to specify
asymptotic behavior of radiation reaction forces (8) and (9)
in quantum and radiation-dominated regimes. The radiation-
dominated regime occurs when F, > 0.2, quantum effects
become significant when x >> 0.2. The threshold amplitudes
of these regimes depend on wavelength [43]. Next, we focus
on the optical frequency domain where the most powerful
laser sources are expected. For the wavelength A; = 0.8 um,
the thresholds of radiation-dominated and quantum regimes
are approximately the same agr =~ agp ~ 300. When a >
ag,agr, then the LL force (8) is Fyy = 2an/3yd =8y

1/3

and the quantum-corrected force (9) is F,¢ = 32;(5{ 3 aﬂ”+;; =

3y ysi/ ? The validity condition of the LL force a < 1/n ensures
thata < y2.To generalize the expression for the gamma factor
in the radiation-dominated or quantum regime we introduce

1—s
Vs = (%) , (12)

where for the LL or LAD forces § =68, s =3/4 and for
the quantum corrected force § = 8y, s =1/4. Using this
asymptotic behavior and assuming a < 1/n we can simply
find that y2 > a. The radiation reaction force and the quantum
parameter are

Frst = Das’ (13)
xst = nD2a? 7, (14)

where D = §'~°. Without radiation reaction, yy = a and xq =
na*. Thus, characteristics of the trajectories are very sensitive
to the way we describe radiation losses. It is worth noting that,
for the quantum-corrected RR force, Eqgs. (12) and (14) ap-
proximate the gamma factor y;°" and the quantum parameter
x well at wave amplitudes a ~ 100 000, while at reasonable
values of a of the order of several thousands and A; &~ 0.8 um, a
more suitable approximation is " & 6.17a%% and x £ ~
1.8 x 10~*a'3*. The energy v, quantum parameter s, and
angle ¢ characterizing stationary trajectories with different
description of RR forces are compared in Fig. 2 (see also, e.g.,
Ref. [31]).

' aw
‘1b4a‘ 2x10°

/ , 2 —==s , 0
0 10“a 2x10 0 10°4 2x10 0

FIG. 2. (a) Lorentz factor, (b) angle between electric field
and electron momentum, (c) quantum parameter xy at stationary
trajectory as a function of the field amplitude of standing circularly
polarized wave. The dash-dotted and dotted lines correspond to
allowance for radiation reaction force with quantum corrections (9)
and in accordance with Landau-Lifshitz form (8), respectively. Values
obtained without radiation reaction are depicted by the dashed line.
The solid line corresponds to quasiclassical case. Formulas show
asymptotic behavior of trajectory parameters.
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However, the quantum nature of photon emission is es-
pecially important at x 2 1: electrons randomly emit hard
photons losing a significant part of their momentum and
energy and after that they are accelerated fast again. In this
case, due to random photon emission the particle motion is
irregular, it rather has a fragmentary nature. Therefore, the
averaged gamma factor as well as the quantum parameter do
not need to have the same values as in the case with the
quantum-corrected RR force. In the quasiclassical case, the
particles have a possibility to gain energy up to a, while in
the radiation-dominated regime the mean energy should be
proportional to a®7, and the mean value of x proportional
to a'5 [34]. For determining the dependence of ¥, xQ, ¢
on a for the case of interest we calculate the motion of 1000
particles at the antinode of electric field taking into account the
stochasticity of emission. In the long-term evolution of such an
ensemble, when the distribution function in momentum space
is stabilized, we determine the corresponding mean values. So,
according to the numerical simulations the gamma factor ys?
and quantum parameter Xs? are greater than the corresponding

values of y{", x in the case of quantum-corrected RR

force, and the angle gog is closer to m. These parameters as

functions of a are varied as follows: ys? = 1.13y°" and Xs? =
1.15x°". As we see, the stochasticity of photon emission
just slightly corrects the mean values of x and y but, more
importantly, it generates the new effect of particle diffusion
mainly in the transverse directions. This occurs because each
act of photon emission breaks the invariant p; — A = const.,
which causes additional drifting in the direction opposite to
the photon momentum. Note that this diffusion exists even in
a plane wave because it is connected with the stochastic nature
of photon emission. A relativistic particle is shifted along a
certain direction from its initial position after emission of n
photons roughly at A = Y% cos(¥;)c/W,. ¥ is the angle
between the direction and drift velocity after photon emission,
and W, is the probability of photon emission per unit time,

W, ~ % in the case of x > 1 [39]. v; is uniformly
distributed in the 0-27 range. Thus, the mean valueis u A = 0,
dispersion is ® A = 0.5n¢*>/ W2, and the diffusion coefficient

isd = 0.25¢2 /W, or, in dimensionless variables,

n1/3

d~ 1 (15)
/3

6oyl

IV. LONGITUDINAL DRIFTING

As follows from the long-term density distributions shown
in Fig. 1, the particles mainly tend to move from the high-
electric-field (antinode) region to the minimum ponderomotive
potential (node region). This is a quite expected result for a
standing wave with circular polarization, although we note
that the NRT™" regime [Figs. 1(a) and 1(c)] with the classical
description of the RR force and the ART regime in a linearly
polarized standing wave [5] were unexpectedly new. However,
for the problem of interest when pair plasma is generated
primarily in the antinode region, it is important to know the
rate of particle escape. To do so, we study the influence
of radiation on the stability of the stationary trajectory
given by Egs. (11). Assuming p = py + P(?), ¢ = @ + ¢(1),
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y = yg + ¥(t), where p(¢), @(t), y(¢) are small perturbations,
we substitute them into Eqgs. (3)-(6). Then keeping only
linear terms of the perturbations the governing equations are
written as

dp. . = .
= PistP — Frpisi — P1LFrsts (16)
dg 1 . 3
i » [—pL + acos(p)@], 17
st
dp) _ piyy _
d—t” = ;— — Frup)s (18)
st
dy  p
— = y—” (19)
st

Without loss of generality we assume yy, = 0. For comparative
analysis we consider again different descriptions of radiation
losses.

(1) LL force:

r 20”7 2.2 . 20”71’1]&& 4 2
F,=———a sin 2ps)@ + ——— —1—a”).
I Py sin (2os)@ 32 ( st )
(20)
(2) Quantum-corrected case:
. apisc | plulPL 4 acos(gs)@l
F, = 3 7}
3«/§7”7)/st 3xsila” + pJ_sl)
/oo u(du® + 5u + 4)
x A remr Y
0 (I +u)*

< | & 2u LK 2u J
u
1 3 Xt "3 3 xst

7L u(du® 45 4 2
ya u(4u® + 5u + )K2/3( u)du} 21
3Xst

Y Jo (I +u)?

The system (16)-(19) can be divided into two pairs of
equations (18), (19) and (16), (17). Solutions are written in
the form pj, § o €™’ and p,, @ o e*+'. Without radiation
reaction A+ = +(y* — 1)!/2/y, in the ultrarelativistic case
Ajx = £l and A, = 0. In a general case,

M = 0.5(=Fry £ F2 +4p3 . /v2). (22)

This means that y = nA;/2 is a saddle point, and the positive
value corresponds to the rate of particle drifting along the y
axis to the electric-field node. The asymptotic behavior of A+
fora > agp is

)L”_ ~ —F,, )L||+ ~ 1/Fr 23)

In the case of LL force (as well as LAD force), )‘]H“i o a 97,

for quantum-corrected force A{%" oc a%%. So, quantum cor-
rections change not only the factor of power function, but also
the power law and modify significantly the rate of longitudinal
drifting. Note that, in the case of quantum-corrected force, A {9
approaches the asymptotic behavior at a ~ 100000, whereas
for the considered parameters A{%" ~ 5.5a~0~.

The two roots of 1| are complex conjugates having negative

real parts. The stable focus is in the phase plane p, ¢. A
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FIG. 3. (a) Ay escape rate of electrons along the y axis,
(b) Re( ) rate of approach to the stationary trajectory in transverse
direction and (c) |[Re(A )|/A 4+ ratio as a function of field amplitude
of standing circularly polarized wave. Line style is the same as in
Fig. 2.

and A can be found numerically using Eqs. (16)—(19). A4,
ReA and their ratio are shown in Fig. 3.

First, the radiation reaction slows down the longitudinal
drift and accelerates approach to the stationary trajectory in the
transverse plane (p,¢). An ultrarelativistic particle radiates
along its instant vector of velocity with angular spread 1/y,
[44]. In the quantum case, when x. > | angular distribution
of radiated power can become larger ~ Xel 3 /ve [39]. However,
even in the quantum case as follows from Eqs. (12) and (14)
the angular spread ~(an/a)*? =~ 0.01a=%% is much less than
unity, thus the photon emission counteracts motion in the
direction of velocity. The stronger the radiation losses, the
slower the longitudinal drift is. At the same time, in the trans-
verse direction the particles tend to the stationary trajectory,
where losses are compensated by positive work of the field.
Second, when a > 860 in the case of classical approach with
quantum corrections (in the case of LL forcea > 370), we have
the [Re(AT™)| /Aﬁ‘jr” > 1 ratio and the particles first quickly
approach the stationary trajectory and after that slowly drift
in the longitudinal direction to the electric-field node. So, the
trajectory can be characterized by local values of the field, and
inertia of particle motion can be neglected. Radiation reaction
retards particles in the vicinity of the electric-field antinode,
and the characteristic time of the drift from the electric-field
antinode is t; Aﬁ The fact that #; can be much longer than
the optical cycle is explained not only by initial proximity to
the electric-field antinode, but also by the small value of A4,
which is important. In the case of using the LL (LAD) force,
A+ and ReA | are underestimated at a > ag.

The qualitative behavior of A, can be characterized by
considering longitudinal motion in the radiation-dominated
regime. In this regime p; < p., so the characteristics of the
trajectory are determined by the local value of the field a(y) =
acosy. Then the exact expression for ponderomotive force
from Egs. (3) and (11) is

@1 a’sinQy)
T+ ) 2v(1+ R

(24)

The same expression for ponderomotive force in the case
of the LAD force has been obtained in Ref. [30]. Then
assuming dp; /0t >~ 0 in Eq. (3) we can obtain expres-
sions for longitudinal momentum and velocity in the
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radiation-dominated regime as long as |[E(y)| > |B(y)|:

. Q B sin (2y) 25)
P = F, T 2D2g25—1 cog2st] (y)’
F in (2
vy =2 sn2y) (26)

v F, ~ 2Da’ cos? ™ )

The time of longitudinal drifting from the antinode of the
electric field t; = [dy/v, and A4 oca™ is in agreement
with Eq. (23).

To compare longitudinal drifting within the classical and
quasiclassical approaches, we consider the evolution of N, =
1000 electrons initially at rest located at the point y = 0.001,;
and determine the period of time 7, when the electrons’ center
of mass reaches the point y = X;/4. In the quasiclassical case,
electron evolution is drift and diffusion. In the classical case,
when (Reld | )/A+ > 1, it follows from the linearized system
of equations (16)—(19) that the trajectory in the vicinity of the
electric-field antinode y < A;/4 [cos(y) &~ 1] can be described
by the expression

Yo

= o e e, @)
-~ A+

y

and in the amplitude range a > agg,
y & yoe'l*. (28)

For small amplitudes a < agg the influence of radiation
losses over a short period of time is weak. Figure 4(a)
corresponds to a = 100. The trajectories obtained with and
without radiation reaction are approximately the same as long
as the particles do not reach the region of strong magnetic field.
After that, diffusion due to stochasticity of photon emission
smooths the electron distribution. The upper boundary of
electron distribution corresponds to the electrons that do not
have enough time to emit a photon [dashed line in Fig. 4(a)].
Motion of the electrons’ center of mass can be described
within the framework of the classical approaches to radiation
reaction description [solid, dotted, and dash-dotted lines in

a) t/T (b)

F 0.2 0.1

2 ¢
r 4

1 = 2 L

. ¥ 0 0
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0 01 02 03 04 05 0.1 02,03 04 05
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FIG. 4. Electron distribution evolution along y axis for wave
amplitude (a) a = 100, and (b) a =20000 in the quasiclassical
case. Solid line corresponds to trajectory of mass center. Trajectories
represented by dashed and dotted lines were obtained without
and with radiation reaction in Landau-Lifshitz form, respectively.
Quantum corrections to Landau-Lifshitz force give the trajectory
depicted by the dash-dotted line. Markers show trajectories in the
vicinity of electric-field antinode according to Eq. (28) with A =
AP (triangles) and Ay = Aﬁr (squares). Time along the dotted line

I+
in panel (b) is 2.5 times faster.
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Fig. 4(a)]. However, the trajectory considered above under
certain initial conditions does not approach the described
stationary trajectory [the line marked by triangles differs from,
for example, the dotted line in Fig. 4(a)]. In this case a
dynamical stop effect occurs at y & 0.14;. Radiation losses
smooth this effect; for the same reason the slowest motion
occurs without photon emission. Particles are not trapped at
the closest node region.

In the case of large amplitudes a > agg, radiation losses
change particle motion qualitatively. Figure 4(b) corresponds
to the extremely strong field with amplitude a = 20 000. First,
particles are trapped by the region of the closest electric-field
node. Second, initial conditions can be neglected, which is
why there is no stop effect, if radiation reaction is taken
into account. The particles rapidly approach the stationary
trajectory and then drift slowly to the electric-field node. This
is clear from comparison of the dash-dotted curve [radiation
reaction (9) is taken into account] and the curve corresponding
to Eq. (28) marked by triangles. The good agreement between
them confirms correctness of the analytically derived rate of
longitudinal drifting. The slowest longitudinal drift is typical
for particles that have experienced the greatest radiation losses.
Without radiation reaction, the trajectory is approximately the
same as that for a = 100. In other approaches, the drift is
essentially slower in the case of LL (LAD) force or excessively
fast in the case of quantum corrections (9). In fact, the
use of continuous radiation reaction force is not applicable
when the quantum parameter of the particle x 2 1. In this
case, the particle can lose a substantial part of its energy,
and consequently the same part of longitudinal momentum.
It needs additional time to be accelerated, to approach the
stationary trajectory and to obtain longitudinal momentum.
Recently it was noticed on an example of trajectories that, on
the average, particles drift longer to the electric-field node in
the quasiclassical case than in the case when radiation losses
are described as a continuous force [7]. That phenomenon
was explained by the straggling effect. The reason of the
difference can be clearer from comparison of ponderomotive
forces [proportional to sin(¢) as follows from Eq. (3), ¢ is
shown in Fig. 2(b)]. In the quasiclassical case sin(¢) is less than
in the case of quantum-corrected force. Thus, the quasiclassical
approach gives a more correct result taking into account energy
losses and stochasticity of photon emission.

The time spent by the particle to reach the electric-field
node #, as a function of wave amplitude is shown in Fig. 5.
Without radiation reaction, ¢, is approximately constant #, &
1.59T. Note that ¢, differs from ¢,. As stated above, the last
time interval characterizes the initial stage of drifting in the
vicinity of the electric-field node. In a general case, as a result
of radiation losses, #, becomes a monotonically increasing
function of a. However, even the classical radiation reaction
force with quantum corrections can give an error in calculation
of t, of about 40%. The greater x, the more probable the
emission of a large part of particle energy is and the clearer
the stochasticity emerges (compare the solid and dash-dotted
curves in Fig. 5). Like in the case of the quantum-corrected RR
force, the quasiclassical description shows that, in the vicinity
of electric-field antinode, the center of mass is described by

e'\%’ when a 2 860 and a >> agg [Fig. 4(b)], enabling the
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FIG. 5. Time ¢, needed for the electron to reach the electric-field
node as a function of wave amplitude. The solid line corresponds to
the quasiclassical approach. Dotted and dash-dotted lines obtained
taking into account radiation reaction force in the form of Landau-
Lifshitz and with quantum corrections, respectively. The dashed line
represents #, without radiation losses.

calculation of )\T‘{r as a function of a through Eq. (28). In this
case, for the considered wave amplitudes numerically retrieved

)\%r is shown in Fig. 3(a) and fits

Q 4,03
My ~da". (29)
Comparison of )»h{r in the quasiclassical case and in the case
with quantum corrected force shows that stochasticity does not

change the power law but decreases the factor, khg + 0.3

Reduction of the rate of longitudinal drifting has a great
impact on the development of QED cascades in the field of a
circularly polarized standing wave. First, electrons (positrons)
spend more time in the vicinity of electric-field antinode and
radiate more photons. Second, the longitudinal momentum
of photons as well as of electrons is smaller due to radiation
reaction, so displacement of the created electron-positron pairs
from the electric-field antinode is smaller too.

V. SPATIAL DISTRIBUTION OF e~e¢™ PLASMA

In this section we consider the spatial structures of pair
plasmas created in vacuum through QED cascades in a stand-
ing circularly polarized wave, especially along the longitudinal
direction. We pay particular attention to the avalanche stage,
where plasma back reaction can be neglected and therefore
field structures are fixed. Although this is the initial stage of
QED plasma evolution, these plasma structures may have a
strong impact on the subsequent laser-plasma interaction and
therefore may be considered as fundamental modes of vacuum
breakdown. As QED cascades are generated in the high-field
region, we can expect formation in colliding laser pulses of
a hump-like density structure in the vicinity of these regions.
However, this is not so, in general, because of a very important
role of longitudinal particle drifting. In cases of linear and
circular polarization, the reasons are qualitatively different.
Periodic oscillation of the Poynting vector in the standing
linearly polarized wave causes complex periodic dynamics
of pair plasma and cascade growth rate. Moreover, the NRT
and at higher amplitudes the ART regime suppressing drift
to the electric-field node are realized, whereas in a standing
wave with circular polarization only the NRT regime occurs,
drifting particles to the node region. We will try to give answers
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to why and when different regimes of pair development occur
in the field of a standing circular polarized wave, providing
arguments that density distributions may be peaked at the
electric-field antinode or node or in both regions.

At the stage of exponential growth of pairs it is natural
to assume that hump-like density structures result in the
competition of the growth rate of pair production and the
corresponding particle escape rate from the high-field region.
Moreover, in a standing circularly polarized wave escaping
particles are collected in the node region, as is seen in Fig. 1.

Thus, to make estimates we have to compare three parame-
ters. The first parameter is the growth rate of electromagnetic
cascade, which is maximal at the antinode where the field
structure is a rotating electric field. Development of the
cascade in such a field structure has been considered in
detail in Refs. [32-34]. The other two parameters are the
rate of longitudinal particle drifting to the electric-field node
considered above, for which Eq. (29) will be used as a more
correct one, and the rate of transverse drifting.

Using the PIC code PICADOR [45] that takes into account
quantum effects in the frame of the quasiclassical approach
[42] we calculated the cascade growth rate I" as a function of
a in the vicinity of the electric-field antinode. The calculated
I" is accurate to 0.22 with analytical approximation of cascade
growth rate in the rotating electric field [33]:

1/4 ;, ~\ 0.5
a 0] a
= 1.33(—) (—) lg (—) —0.22, 30)
ARR wy AaRR

where @ = 2m¢/107* = 1.88 x 10" s~! (1 um wavelength).
The threshold amplitude for the cascade development is
acs ~ 650, at this amplitude x.s =~ 0.87.

The transverse drifting implies two effects. First, particles
drift in inhomogeneous laser beams, as was considered in
Ref. [35]. Following this paper, in the case of weakly inhomo-

geneous field £ « a exp(—#) ata > agp and u K 1 close
to the beam axis, the particle escape rate, assuming r (that is
of order beam radius r, = \/E/ W or less) as a function of
time r = rg exp(Lesct) 1S

5 o arr 0.75
Fesc = . (3 1)
8 a

The field amplitude of one beam is a/2. This conclusion is
valid for large beams with radius r, 2 3, which corresponds
to u < 0.1. For these parameters e, is much less than '
and )\]H“!; as well, and transverse drifting can be considered
independently and almost does not change the longitudinal
drifting. Although this conclusion is analytically proved in the
frame of LL (LAD) force, it is also valid for the quantum-
corrected force and in the quasiclassical case.

In the case of the LL force, e /)\ﬁi =2 g;(f) = rg as fol-
lows from Eqs. (13) and (23), where U = 0.43 . 1. Irli dimen-
sional variables, Teic/A[y = U/(kirp)* (ki = w;/c) and does
not depend on a. These two rates are specified by the pondero-
motive force, but in different directions. The characteristic time
of escape is proportional to the ratio of the inhomogeneity scale
to drift velocity. Moreover, the velocity is proportional to the
field gradient, thus inversely proportional to the inhomogeneity
scale. The scale is 1/k; in the longitudinal direction, and 7,
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FIG. 6. Dimensionless electromagnetic cascade growth rate I’
(solid line is approximation, triangles are obtained from numerical
simulation), rate of longitudinal drift to electric-field node )‘ﬁ2+ (dash-
dotted line), rate of transverse drift I'e,. and transverse diffusion
drift I'; at the electric-field antinode (dashed line, © = 0.1) versus
field amplitude of two colliding circularly polarized laser beams. The
dotted wavy lines separate regions of different pair plasma structures
shown by Roman numerals.

in the transverse direction. Thereby in any case (LL, LAD,
quantum corrected forces, quasiclassical case) we can state
that Lese /A4 = U/ (k;7)?. So, even in a tightly focused field
[ese < Aj4. Numerical simulations confirm this conclusion.
Another drifting effect is diffusion due to the stochastic
nature of photon emission considered in Sec. IIL. Its rate is
Iy = 4d/r}. When x > 1 from Eqgs. (12) and (15) it follows

that

onl/3 75 \ =973

ry~ ! 2<—q) . (32)
3ar; \ a

In the quantum case s = 0.25, §, &~ 0.37a/n'/ this gives
asymptotically 'y /Aﬁi = 0.24/r7. Diffusion drifting is the
order of magnitude of drifting due to field inhomogeneity
'y ~ Desc (in the quantum case x > 1) but they are also less
important than longitudinal drifting, even for tightly focused
laser beams.

In Fig. 6 we summarize all parameters needed for QED
cascade development analysis as a function of field amplitude.
First of all, we determine the point where

@) = A%, (@), (33)

i.e., avalanche growth rate is exactly compensated by the
particle escape rate. The solution of equation (33), which is

a = agm ~ 1150, (34)

defines the threshold of cascade development for the con-
tinuous wave, i.e., for e"et plasma production it should be
a > ap;. Next, we consider pair production in two regions:
antinode and node of the electric field. In the antinode region
the pair production rate is I'(a) — Aﬁi(a) and the plasma

. . L 50 .
density as a function of time is ng(t) = noe" *+". ny is

initial plasma density. In the node region the particle growth is
)\‘% (a), because the particles escaping from the antinode drift
exactly to the node as shown in Fig. 1. However, the particles
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) -1 .
need time 8¢ ~ A2 to reach the node region, so dn, /dt =

I+
)L‘%na(t — 8t), and plasma density in the node region is

A2 0
na(r) = —ngeT R, (35)
M+
Density peaks in the node and antinode regions are the same,
when n,(t) & n,(t). Consequently,

Q
(D3 = De Mt ~ 1, (36)
having a solution
~ Q
'~ L.57Ap,. (37)
As follows from Fig. 6, Eq. (37) is satisfied at
a = agm ~ 1500. (38)

Thus we can identify three regimes of electromagnetic cascade
development. In the case when the intensities just slightly
exceed the threshold 0 < I'(a) — )\%(a) < )»%(a) pairs are
located mainly in the vicinity of the node. We mark this
regime as regime I in Fig. 6. At the intensities near the second
threshold, pairs are located in both antinode and node regions
with comparable peak density values (regime II). And regime
IIT occurs at higher intensities a > ayy when the peaks in the
node region have a lower density than in the antinode region.
In this case, at much higher intensities when I'(a) > Aﬁi(a),
density distribution will peak around the antinode plane only.

Using the PIC code PICADOR we performed three-
dimensional (3D) simulations of cascade development in
counterpropagating circularly polarized laser beams with a
focus on the avalanche regime, when the plasma back reaction
is negligible. The initial plasma seed density ng influences
only the duration of the avalanche stage, whereas the density
distributions normalized to n( are the same at this stage for
different ny. To omit the plasma back reaction during simula-
tions we consider the low initial density to be no = 0.01 cm ™.
The initial number of PIC-code macroparticles is 10°, and one
real particle corresponds to 2 x 10?* macroparticles. Laser
pulses are half infinite with one wave period leading edge.
To eliminate the influence of the leading edge, electrons and
positrons appear in numerical simulation in the field region
0.12; x 0.014; x 0.1x; around the point of the maximum
of electric-field amplitude when a standing wave is formed.
This is reasonable because two counterpropagating circularly
polarized laser pulses can strongly compress the plasma target.
The simulation box included 224 x 128 x 224 cells and was
3D as 7x; x 2X; x TA;, the time step was 1/(32w;). This grid
size and time step are sufficient to simulate laser interaction
with transparent plasma with the help of the adaptive event
generator utilized in PICADOR [42]. Probabilities of quantum
processes are considered in the frame of local constant
field approximation, which is justified below QED critical
field in the optical range [34,46,47], and the generator can
automatically subdivide the time step in order to resolve
quantum processes. We performed a parametric scan for a
wide range of incident amplitudes. Analysis of the cascade
development revealed three different regimes of pair plasma
evolution resulting in three types of spatial density structures.
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FIG. 7. Pair plasma structures at the initial stage of electromag-
netic cascades in the field of two colliding laser beams with 32,
diameter at FWHM and amplitudes (a) a/2 = 550, (b) a/2 = 700,
(c) a/2 = 2500. Electron density n is normalized to initial electron
density 7o = 0.01 cm™3. The dotted line represents the electric-field
magnitude along the symmetry axis of beams » = 0. The profile of

the electron distribution averaged along the x direction is shown by
the solid black line.

As follows from the simulations, the first threshold, when
cascades start to develop, is about ay,; =~ 1100 and the second
one, which we defined for the wave amplitude when maximum
values of the total pair number over transverse beam section
(black solid curves in Fig. 7) are approximately equal, is agy &
1400. These threshold values are quite close to those obtained
above. According to the numerical simulations, the peaks in the
node region disappear when a > 1900 and I" > 2.25)»%. In
Fig. 7 we present typical results of 3D simulations for the laser
beam radius r, = 1.54; (u = 0.1) in the form of pair plasma
distribution after five laser periods for amplitudes a/2 =
550, 700, 2500 [Figs. 7(a)-7(c), respectively] . It should be
mentioned that there is also transverse drift in the node region.
Unlike the antinode region, radiation losses do not suppress
transverse drift in the node region, because particle energy
is small y « a and F, < 1. The particles move in the NRT
regime there and, as was considered in Sec. II, drift transversely
with velocity of about 0.6¢. The corresponding characteristic
rate of escape I'); in dimensionless variables is 0.6/r;,. For the

considered parameters I'; = 0.064 is much less than )»TIQJF and
this drift can be neglected. Clearly, the results of simulations
are consistent with the three regimes discussed above.

VI. SUMMARY

In this paper we tried to understand what types of
fundamental spatial e~e™ plasma structures may be realized

J

. o 10.8828%2(1 + 18.08) + 68.7x2 + 70.8x> + 7.6403x*)~1/3
" 33y n | —10.8828 + 6.05498 2/ 4+ 28.551 5 ~¥/3 — 41.469) ' 4 24.7245x 43 — 8.1621x 2 if x > 10.
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through QED cascades in counterpropagating laser pulses
with circular polarization. To get an insight into the physics,
we first presented long-term density distributions, in which
asymptotic regimes such as ponderomotive trapping and
relativistic chaos are included. It was shown that only the NRT
regime is realized taking into account the radiation reaction
effect, whereas the ART regime trapping electrons in the
vicinity of electric-field antinode does not occur. However, the
latter regime is important for linear polarization. Since QED
cascades are mainly generated in the high-field region, we
presented a general analysis of longitudinal particle drifting
at extreme intensities when the quantum radiation reaction
effect should be accounted for. For qualitative estimation we
also considered the stochastic nature of photon emission,
particularly showing that discreteness of emission can addi-
tionally decrease drifting rates up to 1.4 times due to strong
perturbation of particle motion and generate a new effect of
particle diffusion. Based on the comparison of pair production
growth rates and the main particle loss rates connected with
longitudinal drifting from the electric-field antinode to node
we conclude that three fundamental modes of QED cascades
may be formed in a standing circularly polarized wave,
giving rise to density distributions peaked at antinode or
node or in both regions. This conclusion is confirmed by PIC
simulations.
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APPENDIX

For simplicity of numerical calculations it is possible to
use the following expression for quantum-corrected RR force,
which corresponds to Eq. (9) to an accuracy within 0.15%:

if ¥ <10
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