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The attainability of the quantum Cramér-Rao bound (QCR), the ultimate limit in the precision of the estimation
of a physical parameter, requires the saturation of the quantum information bound (QIB). This occurs when the
Fisher information associated to a given measurement on the quantum state of a system which encodes the
information about the parameter coincides with the quantum Fisher information associated to that quantum state.
Braunstein and Caves [Phys. Rev. Lett. 72, 3439 (1994)] have shown that the QIB can always be achieved via a
projective measurement in the eigenvectors basis of an observable called the symmetric logarithmic derivative.
However, such projective measurement depends, in general, on the value of the parameter to be estimated,
therefore requiring previous knowledge of the quantity one is trying to estimate. For this reason, it is important
to investigate under which situation it is possible to saturate the QCR without previous information about the
parameter to be estimated. Here, we show the complete solution to the problem of which are the initial pure states
and which projective measurements allow the global saturation of the QIB, without the knowledge of the true
value of the parameter, when the information about the parameter is encoded in the system by a unitary process.

DOI: 10.1103/PhysRevA.95.042125

I. INTRODUCTION

The aim of quantum statistical estimation theory is to
estimate the true value of a real parameter x through suitable
measurements on a quantum system of interest. It is assumed
that the state of the quantum system belongs to a family
ρ̂(x) of density operators, defined on a Hilbert space H and
parametrized by the parameter x. The practical implementation
of the estimation process comprises two steps: The first one
consists in the acquisition of experimental data from specific
quantum measurements on the system of interest while the
second one consists in data manipulation in order to obtain an
estimative of the true value of the parameter [1]. The first step is
implemented via a positive-operator valued measure (POVM),
described by a set of positive Hermitian operators {Êj }, which
add up to the identity operator (

∑N
j=1 Êj = 1̂). The probability

of obtaining the measurement result j , if the value of the
parameter is x, is then given by pj (x) = Tr[ρ̂(x)Êj ]. The
second step is implemented by using an estimator to process
the data and produce an estimate of the true value of the
parameter.

It is well known that there is a fundamental limit for
the minimum reachable uncertainty in the estimative of the
value of a parameter x, produced by any estimator. When this
uncertainty is quantified by the variance δ2x of the estimates
of x, this ultimate lower bound is known as the quantum
Cramér-Rao (QCR) bound and is given by δ2x � 1/νFQ(xv),
where FQ(xv) is the quantum Fisher information (QFI) of the
state ρ̂(xv), ν is the number of repetitions of the measurement
on the system, and xv is the true value of the parameter. The QFI
is defined as FQ(xv) ≡ max

{Êj }
{F(xv,{Êj })}, where F(xv,{Êj })

is the Fisher information (FI) associated to the probability
distributions pj (xv) = Tr[ρ̂(xv)Êj ]. In this regard, FQ(xv) is
a measure of the maximum information on the parameter xv

contained in the quantum state ρ̂(xv). Determining the exact
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conditions necessary for the saturation of the fundamental
limit of precision plays a central role in quantum statistical
estimation theory.

Braunstein and Caves [2] (see also Ref. [3]) have in-
vestigated and demonstrated the attainability of the QCR
bound by separating it in two steps, which are represented by
the two inequalities δ2x � 1/νF(xv,{Êj }) � 1/νFQ(xv). The
first inequality corresponds to the classical Cramér-Rao (CCR)
bound associated with the particular quantum measurement
{Êj } performed on the system, where F(xv,{Êj }) is the
Fisher information about the parameter xv associated to the
set of probabilities {pj (xv)}. The saturation of the CCR bound
depends on the nature of the estimator used to process the
data drawn from the set of probabilities {pj (xv)} in order to
estimate the true value of the parameter. Those estimators
that saturates the CCR bound are called efficient estimators or
asymptotically efficient estimators [4] when the saturation only
occurs in the limit of a very large number ν of measured data.
A typical example of an asymptotically efficient estimator is
the maximum likelihood estimator [4]. Only special families
of probability distributions {pj (xv)} allow the construction of
an efficient estimator for finite ν.

The second inequality applies to all quantum measure-
ments {Êj } and establishes the bound F(xv,{Êj }) � FQ(xv).
Saturation of this bound corresponds to finding optimal
measurements {Êj }, such that

F(xv,{Êj }) = FQ(xv). (1)

These are quantum measurements that would allow one to
retrieve all the information about the parameter encoded in
the quantum state of the system. The saturation of this bound
is also known as the saturation of the quantum information
bound (QIB) in quantum statistical estimation theory [1].
The quest for determining the optimal measurements for any
metrological configuration has a long history, going back to
the pioneering works of Helstrom [5] and Holevo [6], and
has been subject of interest of recent work [1–3,7,8]. In order
to prove the attainability of the QCR bound, the authors of
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Ref. [2] have shown that an upper bound to the QFI, based on
the so-called symmetric logarithmic derivative (SLD) operator
L̂(x), was indeed equal to the QFI. This upper bound was first
discovered by Helstrom [5] and Holevo [6] and is given by

FQ(xv) � Tr[ρ̂(xv)L̂2(xv)].

The proof consists in showing that a sufficient condi-
tion for achieving the equalities F(xv,{Êj }) = FQ(xv) =
Tr[ρ̂(xv)L̂2(xv)] is given by the use of a POVM {Êj } such
that the operators Êj are one-dimensional projection operators
onto the eigenstates of the SLD operator L̂(xv). That is
{Êj (xv)} ≡ {|lj (xv)〉 〈lj (xv)|}, where |lj (xv)〉 is an eigenstate
of L̂(xv). At this point it is important to notice that although
the use of this optimal POVM is sufficient to saturate the QIB,
it depends, in general, on the true value of the parameter one
wants to estimate, i.e., {Êj } = {Êj (xv)}, which is why this
type of saturation is called local. Also, it is important to note
that there is no general proof that local saturation of the QIB
can be obtained with POVMs corresponding to nonprojective
measurements.

Mainly two approaches have been adopted in order to deal
with the fact that the optimal POVM depends on the true value
xv of the parameter. The first one relies on adaptive quantum
estimation schemes that could, in principle, asymptotically
achieve the QCR bound [9–16]. Such approach is valid for
any arbitrary state ρ̂(x). The second one looks for the families
of density operators {ρ̂(x)}, for which the use of a specific
POVM {Êj } that does not depend on the true value of the
parameter leads to the saturation of the QIB. Our work follows
this approach.

Within the second approach, when the family {ρ̂(x)}
corresponds to operators with no null eigenvalues (full rank),
the analysis of the saturation of the QIB is simplified because,
given ρ̂(x), there is only one solution for the SLD operator
equation:

dρ̂(x)

dx
= 1

2
[ρ̂(x)L̂(x) + L̂†(x)ρ̂(x)], (2)

with L̂†(x) = L̂(x) [17]. For full-rank operators, Nagaoka [17]
showed that saturation of the quantum information bound by
using a POVM that does not depend on the true value of
the parameter is only possible for the so-called quasiclassical
family of density operators. He also presented complete
characterization of the quantum measurements that guarantee
the saturation for this family. Therefore, the problem of finding
the states and the corresponding optimal measurements that
lead to the saturation of the QIB, independently of the true
value of the parameter, in the case of one-parameter families
of full-rank density operators has been solved already.

However, for the opposite case of pure states (rank-
one density operators), the complete characterization of the
families of states and the corresponding measurements that
lead to the saturation of the QIB, independently of the true
value of the parameter, are still open questions in the case
of arbitrary Hilbert spaces. It is important to remark that
inside the families of pure states the QFI reaches its largest
values. Among these families, the most important ones are
those unitarily generated from an initial state ρ̂0 = |φ+〉 〈φ+|

as

ρ̂(x) = e−iÂx ρ̂0 eiÂx, (3)

where the Hermitian generator Â does not depend on the
parameter x to be estimated. In this case the QFI is given
by [3]

FQ = 4〈(�Â)2〉+, (4)

where 〈(�Â)2〉+ = Tr[ρ̂0(Â − 〈Â〉+)2] and 〈Â〉+ ≡ Tr[ρ̂0Â].
For these kinds of families, Ref. [3] considered the situa-

tions where the Hermitain operators Â generate displacements
on a Hilbert space basis {|x〉}, i.e., e−iÂx |0〉 = |0 + x〉, where
|0〉 is an arbitrary state. For these situations, the authors
could find all the initial states |φ+〉 and the corresponding
global optimal POVMs that saturate the QIB, independently
of the true value of the parameter x. In Ref. [8], the authors
investigated under which conditions a global saturation of QIB
can happen for two-level quantum systems.

Here, we present the complete solution to the problem of
which are the initial states |φ+〉 and the corresponding families
of global projective measurements that allow the saturation of
the QIB, within the quantum state family given in Eq. (3), for
arbitrary generators Â, that do not depend on the parameter
to be estimated, and with discrete spectrum. Since there is
no proof that the QIB can be, in general, locally attained via
nonprojective measurements, our search for global saturation
of the QIB is restricted to the set of projective measurements.
We put together a catalog of the initial states |φ+〉 that allow
global saturation of the QIB according to the number of
eigenstates |Akl

〉 (l = 1, . . . ,M) of the generator Â which are
present in their expansion in the eigenbasis of Â. For a fixed
value of the mean 〈Â〉φ+ , each member of this catalog can be
expanded in terms of a subset {kl} of eigenstates |Akl

〉 whose
corresponding eigenvalues are equidistant from the mean,
provided the coefficients of that expansion satisfy certain sym-
metry conditions. We show that the global saturation of the QIB
requires specific projective measurements within the subspace
{|Akl

〉}l=1,...,M , determined by the initial state |φ+〉, and give
the full characterization of these projective measurements. We
also identify, among all the initial states |φ+〉 that lead to global
saturation of the QIB, for a fixed value of the mean 〈Â〉φ+ ,
which one has the largest QFI. When the spectrum of the
generator Â is lower bounded, such state is a balanced linear
superposition of the lowest eigenstate of Â and the eigenstate
symmetric to it in relation to the mean. Interestingly, the QCR
bound associated to that state corresponds to the well-known
Heisenberg limit in quantum metrology [18]. This shows that,
for the situations considered in this paper, the states that
lead to the Heisenberg limit saturate the QIB via projective
measurements which do not depend on the true value of the
parameter.

The paper is organized as follows. In Sec. II we reformulate
the conditions for the saturation of the QIB, first settled in
Ref. [2], in a way appropriate to treat the one-parameter
quantum state families in (3). Next, in Sec. III, we find the
solutions for these conditions that give the structure of all the
initial states and all the projective measurements that allow
the saturation of the QIB without the knowledge of the true
value of the parameter. In Sec. IV, we applied our results in
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two contexts: phase estimation in a two-path interferometry
using the Schwinger representation and phase estimation with
one bosonic mode. Section V is devoted to showing that our
solutions for the saturation of the QIB include the initial
states whose quantum Fisher information correspond to the
so-called Heisenberg limit and showing that these are the
initial states that allow the maximum retrieval of information
about the parameter, among all initial states that saturate
the QIB. Finally, we give in Sec. VI a summary of our
results.

II. CONDITION FOR GLOBAL SATURATION OF THE QIB
IN PURE STATE MODELS

Let us begin with an arbitrary quantum-state family and
consider the set of inequalities, first established in Ref. [2],
that the Fisher information associated with a POVM {Êj } must
satisfy:

F(xv,{Êj }) =
∑

j

1

Tr[ρ̂(xv)Êj ]

(
Tr

[
dρ̂(x)

dx

∣∣∣∣
x=xv

Êj

])2

=
∑

j

(Re{Tr[ρ̂(xv)Êj L̂
†(xv)]})2

Tr[ρ̂(xv)Êj ]
(5a)

�
∑

j

|Tr[ρ̂(xv)Êj L̂
†(xv)]|2

Tr[ρ̂(xv)Êj ]

=
∑

j

∣∣∣∣Tr

[(
ρ̂1/2(xv)Ê1/2

j

{Tr[ρ̂(xv)Êj ]}1/2

)

× [Ê1/2
j L̂†(xv)ρ̂1/2(xv)

]]∣∣∣∣
2

(5b)

� Tr[ρ̂(xv)L̂(xv)L̂†(xv)]

= Tr[ρ̂(xv)L̂2(xv)] ≡ FQ(xv), (5c)

where in Eq. (5a) we used the Sylvester equation (2), in Eq. (5b)
the inequality Re2(z) � |z|2, and in Eq. (5c) the Cauchy-
Schwarz inequality |Tr[ÂB̂†]|2 � Tr[ÂÂ†]Tr[B̂B̂†] and the
fact that L̂(xv) is an Hermitian operator. The necessary and
sufficient conditions for the saturation of the QIB given in (5)
can be condensed into the requirement that the quantities

λj (xv) = Tr[ρ̂(xv)Êj L̂(xv)]

Tr[ρ̂(xv)Êj ]
(6)

be real numbers for all values of j and possible values of xv .
Let us restrict our attention to the pure quantum state

family given in (3), where the generator Â of the unitary
transformation has a discrete spectrum. In that case, if
the system is initially in the state |φ+〉, after the unitary
transformation it will be in the state

|φ+(xv)〉 = e−i{Â−〈Â〉+}xv |φ+〉 , (7)

where xv is the true value of the parameter to be estimated and
the phase e−ixv〈Â〉+ guarantees that the QFI is just the variance
of the generator Â in the initial state |φ+〉 [see Eq. (4)]. We
consider now projective quantum measurements on the system,

(a)

(b)

Û(xv)

Û†(xe)

|φ+(xv)

|φ+(xv)Û(xv)

|φ+

|φ+

State 
preparation

Final State 
Projective 

measurement on the 
final state

{|ψj(xe) ψj(xe)|}

|φ+( )
Final State Projective 

measurement on the 
final state

{|ψj ψj |}

FIG. 1. (a) Quantum estimation process of the parameter xv

corresponding to the laboratory’s setup. In this case, the projective
measurement on the final state depends on an estimated value xe

for the parameter, where |ψj (xe)〉 is given in Eq. (8). (b) Equivalent
quantum estimation process appropriate for theoretical analysis. In
this case, the parameter to be estimated is ε ≡ xv − xe, which is
imprinted on the final state given in Eq. (10), and the projective
measurement on that state does not depend on ε.

described by the projectors

Êj (xe) = |ψj (xe)〉〈ψj (xe)|
= e−i{Â−〈Â〉+}xe |ψj 〉〈ψj |ei{Â−〈Â〉+}xe , (8)

which may depend on a guess xe at the true value of the
parameter, based, for example, on some prior information
about that value. Here, {|ψj 〉} is a countable basis of the Hilbert
space of the system. The probability of getting the result j in
the projective measurement {|ψj (xe)〉〈ψj (xe)|} can then be
written as

pj (xe,xv) = Tr[|φ+(xv)〉〈φ+(xv)|Êj (xe)]

= Tr[|φ+(ε)〉〈φ+(ε)| |ψj 〉〈ψj |] = pj (ε),

where we define

ε = xv − xe. (9)

Notice that pj (ε) corresponds equivalently to the probability of
getting the result j in the projective measurement {|ψj 〉〈ψj |}
on the final state

|φ+(ε)〉 = Û (ε) |φ+〉 = e−i{Â−〈Â〉+}ε |φ+〉 . (10)

The relation between the Fisher information associated to the
measurement {|ψj (xe)〉〈ψj (xe)|} on the state |φ+(xv)〉 and the
Fisher information associated to the measurement {|ψj 〉〈ψj |}
on the state |φ+(ε)〉 is

F(xv,{|ψj (xe)〉}) = F(ε,{|ψj 〉}) ≡ F(ε),

where we use ∂pj (xe,x)/∂x|x=xv
= dpj (ε′)/dε′|ε′=ε . There-

fore, the estimation of the true value xv of the parameter x

in the pure state family given in Eq. (7) via the projective
measurement {|ψj (xe)〉〈ψj (xe)|}, which depends on the esti-
mated value xe, is equivalent to the estimation of the parameter
ε in the pure state family given in Eq. (10) via the projective
measurement {|ψj 〉〈ψj |}, which does not depend on the values
xe and xv (see Fig. 1).
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The Sylvester equation that define the SLD operator
associated with the states |φ+(ε)〉 can be written as an algebraic
equation between operators:

L̂′
0 = 2Û †(ε)

dρ̂(ε′)
dε′

∣∣∣∣
ε′=ε

Û (ε)

= ρ̂0L̂0(ε) + L̂0(ε)ρ̂0, (11)

where ρ̂0 ≡ |φ+〉〈φ+|, and

L̂′
0 ≡ 2i[ρ̂0,(Â − 〈Â〉+)],

L̂0(ε) ≡ Û †(ε)L̂(ε)Û (ε).

Given an initial state ρ̂0, the structure of the infinite solutions
L̂0(ε) of Eq. (11) can be better displayed if one defines the
auxiliary state

|φ−〉 ≡ −2i√
FQ

(Â − 〈Â〉+) |φ+〉 , (12)

orthogonal to the initial state |φ+〉. In this case, one can rewrite
the operator L̂′

0 as

L̂′
0 = √FQ(|φ+〉 〈φ−| + |φ−〉 〈φ+|),

withFQ = 4〈(�Â)2〉+. Let us introduce now a countable basis
{|φk〉} of the Hilbert space of the system, with |φ1〉 = |φ+〉 and
|φ2〉 = |φ−〉. In this basis, all the solutions L̂0(ε) have the
matrix structure

|φ+〉 |φ−〉 |φ3〉 · · · |φk〉 · · ·
〈φ+|
〈φ−|
〈φ3|

...
〈φk|

...

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√
FQ 0 · · · 0 · · ·√

FQ

0
... L(ε)
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (13)

where L(ε) is an arbitrary Hermitian matrix. When the matrix
L(ε) is the null matrix, we recover the particular solution L̂′

0.
We stress that Eq. (11) has an infinite number of solutions even
if ε = 0 (i.e., when the guess value xe coincides with the true
value xv) because L(0) is not necessarily the null matrix.

We are now able to rewrite the saturation conditions of the
QIB in Eq. (6) for our pure quantum state family models as
the requirement that

λj (ε) = Tr[ρ̂(ε) |ψj 〉〈ψj | L̂(ε)]

Tr[ρ̂(ε) |ψj 〉〈ψj |] (14a)

= 〈ψj |Û (ε)L̂0(ε)|φ+〉
〈ψj |φ+(ε)〉 (14b)

= √
FQ

〈ψj | φ−(ε)〉
〈ψj | φ+(ε)〉 (14c)

be real numbers. Here we define

|φ−(ε)〉 = Û (ε) |φ−〉 = e−i{Â−〈Â〉+}ε |φ−〉 . (15)

In Eq. (14b), we used the fact that, according to Eq. (13),
all SLD operators L̂0(ε) verify L̂0(ε) |φ+〉 = L̂′

0 |φ+〉 =√
FQ |φ−〉 for all values of ε.
From Eq. (14b) one can see that, when ε = 0 (xe = xv), if

the states |ψj 〉 are eigenstates of L̂0(0), then the conditions in
Eqs. (14) are automatically satisfied for all values of j and we
recover in our formalism the conditions for the saturation of
the QIB first stated in Ref. [2]. We are, however, interested in
finding the conditions for global saturation of the QIB, which
correspond to all the initial states |φ+〉 and all the projective
measurements {|ψj 〉〈ψj |} that allow the saturation of the QIB
for all values of ε. This is equivalent to finding projective
measurements on the final state |φ+(xv)〉 that, regardless of
the true value xv of the parameter, lead to the saturation of the
QIB. For this sake, it is convenient to rewrite the inequalities
that must be satisfied by the Fisher information F(ε) as

F(ε) = FQ

⎛
⎝1 −

∑
j

{Im[wj (ε)z∗
j (ε)]}2

pj (ε)

⎞
⎠

� FQ = 4〈(�Â)2〉φ+ ,

where

〈ψj |φ+(ε)〉 ≡ |zj (ε)|eiαj,+(ε), (16a)

〈ψj |φ−(ε)〉 ≡ wj (ε), (16b)

with αj,+(ε) = arg(zj (ε)).
This yields conditions which are equivalent to those in

Eq. (14) and can be written as

Im[wj (ε)z∗
j (ε)] = 0. (17)

Notice that the relation above must apply for any value of ε and
for all j . For future use, we rewrite the conditions in Eq. (17)
as ∑

j ′ �= j

|vj,j ′ | |zj ′(ε)|
|zj (ε)| cos[αj ′,+(ε) − αj,+(ε) + φj,j ′ ]

= 〈Â〉+ − vj,j , (18)

where we define 〈ψj | Â |ψj ′ 〉 ≡ |vj,j ′ |eiφj,j ′ .

III. PROJECTIVE MEASUREMENTS AND STATES FOR A
GLOBAL SATURATION OF THE QIB

Any initial state |φ+〉 of the quantum-state family given
in Eq. (10) can be written in the basis of eigenstates of the
generator Â. In order to find the initial states that allow global
saturation of the QIB, we consider states |φ+〉 that are finite
linear combinations of the eigenstates |Akl

〉 of Â:

|φ+〉 =
M∑
l=1

|ckl
| eiθkl |Akl

〉 , (19)
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with θkl
= arg(ckl

) and ckl
�= 0. The set of integers {kl}l=1,...,M

with k1 < k2 < · · · < kM are the labels of the eigenstates that
define the subspace {|Akl

〉}l=1,...,M of the Hilbert space of the
system. When the spectrum of Â is unbounded, the initial states
|φ+〉 may have an infinite number of terms in an expansion like
in Eq. (19). In this case, as it will be shown, depending on the
class of projective measurements one uses, one either takes the
limit M → ∞ or has to consider instead approximated states,
which correspond to a truncation up to sufficiently large M

terms in Eq. (19). It is also important to notice that the evolved
state |φ+(ε)〉 remains in the subspace {|Akl

〉}l=1,...,M for all
values of ε. We also assume that the mean value 〈Â〉+ is a
predetermined fixed quantity and therefore all the considered
initial states have to satisfy this constraint.

A global saturation of the QIB for a initial state |φ+〉 and a
projective measurement {|ψj 〉〈ψj |} means that

F(ε) =
∑

j

pj (ε)λ2
j (ε) (20a)

= FQ

∑
j

〈φ+(ε)|ψj 〉 〈ψj |φ−(ε)〉2

〈ψj |φ+(ε)〉 (20b)

= FQ〈φ−(ε)|
⎛
⎝∑

j

|ψj 〉〈ψj |
⎞
⎠|φ−(ε)〉 (20c)

= FQ, (20d)

for all values of ε. From Eqs. (20a) to (20b) we use the
definition of λj (ε) given in Eq. (14) and from (20b) to (20c) we
use that λ∗

j (ε) = λj (ε). Therefore, the last equality in Eqs. (20)
holds only if projectors {|ψj 〉〈ψj |} span the subspace wherein
the evolved state |φ+(ε)〉 lives, i.e.,

1̂M ≡
M∑
l=1

|Akl
〉 〈Akl

| =
M∑

j=1

|ψj 〉 〈ψj | , (21)

where we used the fact that the projectors {|ψj 〉〈ψj |} are
linearly independent. For this reason, one can write

|ψj 〉 =
M∑
l=1

|bj,kl
| eiθj,kl |Akl

〉 , (22)

where θj,kl
= arg(bj,kl

).
Now, using the expansions in Eqs. (19) and (22), and the

definition of the state |φ−〉 in (12), we arrive to

zj (ε) =
M∑
l=1

|ckl
| |bj,kl

|ei{−(Akl
−〈Â〉φ+ )ε−θj,kl

+θkl
}, (23a)

wj (ε) = −2i√
FQ

M∑
l=1

|ckl
| |bj,kl

| (Akl
− 〈Â〉)

×ei{−(Akl
−〈Â〉φ+ )ε−θj,kl

+θkl
}. (23b)

In order to obtain the structure of the initials states |φ+〉
and the projective measurements {|ψj 〉〈ψj |}j=1,...,M that allow
for a global saturation of the QIB, we substitute Eqs. (23) in

Eqs. (17) and analyze which are the conditions that the sets
{Akl

}, {ckl
}, and {bj,kl

} with j,l = 1, . . . ,M must satisfy in
order to be solutions of these equations. This is done in the
following section.

A. Structure of the initial states and the projective
measurements

In Appendix A, we show that if the set of eigenstates
{|Akl

〉}l=1,...,M present in the decomposition of |φ+〉 does
not contain two eigenstates |Akl

〉 corresponding to the same
eigenvalue of Â, Eqs. (17) are satisfied if and only if the
sets {Akl

}, {ckl
} and {bj,kl

} with j,l = 1, . . . ,M , verify the
conditions

Akl
− 〈Â〉+ = −(Akδ(l) − 〈Â〉+), (24a)

|ckl
||bj,kl

| = |ckδ(l) ||bj,kδ(l) |, (24b)

(θkδ(l) − θj,kδ(l) ) + (θkl
− θj,kl

) = ξj , (24c)

where ξj are arbitrary real numbers. When ξj = njπ , where nj

is an even integer, the solutions correspond to real wave func-
tions zj (ε) = 〈ψj |φ+(ε)〉 and wj (ε) = 〈ψj |φ−(ε)〉, and when
nj is odd, the solutions correspond to pure imaginary wave
functions. Here, δ(l) ≡ M − (l − 1), for l = 1,2, . . . ,
M/2�,
where 
· · · � is the ceiling function. It is interesting to note
that when M = 2, Eq. (24c) does not constitute a restriction
on the two phases, θk1 and θk2 , which appear in the expansion
of the initial state |φ+〉 in Eq. (19). In this case, using only
the conditions in Eqs. (24a) and (24b), one can show that
wj (ε)z∗

j (ε) is given by

wj (ε)z∗
j (ε) = 4|ck1 |2|bk2 |2(Ak1 − 〈Â〉+)

× sin (2(Ak1−〈Â〉+)ε+θk2−θk1+θj,k1 − θj,k2 ),

(25)

and it is always real. Therefore, the condition of the saturation
of the QIB in Eq. (17) is fulfilled independently of the values
of the phases θk1 and θk2 . Notice also that wj (ε)z∗

j (ε), in
Eq. (25) [j = 1,2], is real independently of the values θj,k1

and θj,k2 of the phases that appear in the expansion of the
states |ψj 〉 of the projective measurement basis in Eq. (22).
This means, in particular, that if an initial state |φ+〉 saturates
the QIB with a projective measurement basis {|ψj 〉}j=1,2, then
it also saturates the QIB with any projective measurement
basis {|ψ̃j 〉 = eih(Â) |ψj 〉}j=1,2, where h(Â) is real function of
the operator Â.

When M > 2, Eq. (24c) fixes the relations between the
phases θkl

and θkδ(l) , of the initial state |φ+〉, and the phases
θj,kl

and θj,kδ(l) , of the states |ψj 〉 of the projective measurement
basis, that indeed are crucial for the saturation of the QIB.

If there are some eigenstates |Akl
〉 in the decomposition of

|φ+〉 corresponding to the same eigenvalue of Â, then Eqs. (24)
are only sufficient conditions to get equality in Eqs. (17).
However, in this case we cannot guarantee that they are also
necessary conditions.

Inserting the conditions given in Eqs. (24) into the expres-
sion for zj (ε), given in Eq. (23a), one gets

zj (ε) = e
i

( ξj

2 +sj (ε)π
)
|η(M)

j (ε)|, (26)
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FIG. 2. The vertical dashed (red) and full (black) lines represent the position of the eigenvalues of the Hermitian generator Â along
the real line. The blue dot indicates the location of the fixed mean value 〈Â〉+. The full (black) vertical lines correspond to the subset of
eigenvalues {Akl

}l=1,...,M , whose corresponding eigenstates were used to construct the initial state |φ+〉 and, therefore, verify the symmetry
in Eq. (24a). The dashed (red) vertical lines correspond to the rest of the spectrum of Â that do not enter in the construction of the initial
state |φ+〉.

with the integer sj (ε) defined as eisj (ε)π = sgn(η(M)
j (ε)) and where we also define

η
(M)
j (ε) =

{
2
∑
M/2�

l=1 |ckl
||bj,kl

| cos ((Akl
− 〈Â〉+)ε + (θkl

− θj,kl
)), for even M,

2
∑
M/2�−1

l=1 |ckl
||bj,kl

| cos ((Akl
− 〈Â〉+)ε + (θkl

− θj,kl
)) + |ck
M/2� ||bj,k
M/2� | for odd M.

(27)

Therefore, the phase of the wave function zj (ε) =
〈ψj |φ+(ε)〉 is

αj,+(ε) = arg (zj (ε)) =
(

ξj

2
+ sj (ε)π

)
, (28)

for all values of ε.

B. Interpretations of the conditions for a global saturation
of the QIB

The condition given in Eq. (24a) establishes the symmetry
that the subsets of eigenvalues {Akl

}l=1,...,M of the generator Â,
whose respective eigenstates enter in the decomposition of the
initial state |φ+〉, must exhibit. This symmetry is sketched
in Fig. 2. It requires that, given a fixed value for 〈Â〉+,
the expansion of the initial state |φ+〉 in the eigenbasis of
Â contains 
M/2� (M even) or 
M/2� − 1 (M odd) pairs
of eigenstates of Â, each pair corresponding to symmetric
eigenvalues, Akl

and Akδ(l) , with respect to the mean 〈Â〉+.
Notice that for an arbitrary generator Â, such a expansion with
M > 2 may not exist. This is not the case if the spectrum of
Â is equally spaced. On the other hand, it is always possible
to find initial states |φ+〉 whose expansion in the eigenbasis of
Â contains M = 2 eigenstates and that satisfy condition (24a)
for arbitrary generators Â.

If we now use in Eq. (24b) the orthonormality of the
measurement basis vectors {|ψj 〉}

M∑
j=1

bj,kl
b∗

j,kl′ = δll′ , (29)

we get conditions for the moduli of the expansion coef-
ficients of the initial state |φ+〉 and of the states |ψj 〉 of
the measurement basis in terms of the eigenstates of the

generator Â:

|ckl
| = |ckδ(l) |, (l = 1, . . . ,M) (30)

and

|bj,kl
| = |bj,kδ(l) |, (j,l = 1, . . . ,M), (31)

respectively. These conditions imply that the eigenstates |Akl
〉

and |Akδ(l)〉 appear with equal weights in the expansion of
the initial state and of the measurement basis states in terms
of the eigenbasis of Â. They also imply that, in order to
allow a saturation of the QIB for all values of ε, both
the initial state |φ+〉 and the states |ψj 〉 of the projective
measurement basis must have zero skewness relative to the
operator Â. For example, it is straightforward to verify that,
for the initial state ρ̂0 ≡ |φ+〉〈φ+|, the condition in Eq. (30)
leads to

S ≡ Tr

[
ρ̂0

(
Â − 〈Â〉+√

〈�2Â〉

)3]

= 〈Â3〉 − 〈Â〉3 − 3〈Â〉〈�2Â〉
(〈�2Â〉)3/2

= 0, (32)

where S is the skewness of the state ρ̂0 relative to the generator
Â.

Using Eq. (24a), we see that

〈Â〉+ = Akl
+ Akδ(l)

2
, for all l, . . . ,M. (33)

It is easy to check that, for all the initial states |φ+〉 in Eq. (19)
with Akl

verifying the symmetry in Eq. (24a) and also the
balance condition in Eq. (30), the mean value of the generator
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Â coincides with the prefixed value 〈Â〉+:

〈φ+| Â |φ+〉 ≡
M∑
l=1

|ckl
|2 Akl

=
{∑
M/2�−1

l=1 2 |ckl
|2 Akl

+Akδ(l)

2 + |c
M/2�|2Ak
M/2� ,if M is odd∑M/2
l=1 2 |ckl

|2 Akl
+Akδ(l)

2 ,if M is even

}
= 〈Â〉φ+ , (34)

where we used Eq. (33), the normalization condition,∑M
l=1 |ckl

|2 = 1, of the state |φ+〉, and, if M is odd, that
〈Â〉+ = A
M/2�.

We can also check that all the states {|ψj 〉} of a projective
measurement basis that satisfy the balance condition in
Eq. (31) and the condition on the phases in Eq. (24c) satisfy
the conditions for the a global saturation of the QIB, given in
Eq. (18). Indeed, using (21), (24c), and (31) we get, for j �= j ′,

|vj,j ′ |eiφj,j ′ ≡ 〈ψj | Â |ψj ′ 〉 = 〈ψj | (Â − 〈Â〉+) |ψj ′ 〉

= 2 e
i

( ξj −ξj ′
2 + π

2

) 
M/2�∑
l=1

|bj,kl
||bj ′,kl

|

× (Akl
− 〈Â〉) sin (θj ′,kl

− θj,kl
− (ξj − ξj ′)/2)

≡ 2 e
i

( ξj −ξj ′
2 + π

2 +s ′
j,j ′ π
)
|η′

j,j ′ |, (35)

with e
is ′

j,j ′ π = sgn(η′
j,j ′), so that

φj,j ′ = π/2 + (ξj − ξj ′ )/2 + s ′
j,j ′π. (36)

Gathering together the results in Eqs. (28) and (36), we obtain

αj ′,+(ε) − αj,+(ε) + φj,j ′ = π

2
+ [sj ′(ε) − sj (ε) + s ′

j,j ′ ]π.

If we insert the above relation into the saturation condition
of Eq. (18), the left-hand side of that equation turns equal to
zero. On the other hand, in an analogous way to that used in
Eq. (34), we can show that

〈ψj | Â |ψj 〉 = 〈Â〉+ for j = 1, . . . ,M. (37)

Therefore, the right-hand side of Eq. (18) is also null by virtue
of the balance condition on the coefficients in Eq. (31) and the
symmetry of the spectrum {Akl

}l=1,...,M , given in (24a).

C. Projective measurements for a global saturation of the QIB

In the previous section, we have shown that the states of
a projective measurement basis {|ψj 〉}j=1,...,M that leads to a
global saturation of the QIB must have a balanced decomposi-
tion in terms of the subset {|Akl

〉}l=1,...,M of eigenstates of the
generator Â. That is, the coefficients bj,kl

= 〈Akl
|ψj 〉 of the

decomposition must verify the conditions in (31) and (24c).
However, the orthonormality of the measurement basis states
|ψj 〉 places supplementary conditions on the coefficients bj,kl

.
In what follows, we will show two examples of families of
projective measurements that fulfill all the requirements for
allowing a global saturation of the QIB.

1. First family of projective measurements

We arrive at the first family of projective measurements
when, based on Eq. (37), we investigate the structure of
the measurement basis {|ψj 〉} that satisfies the condition
〈ψj | Â |ψj 〉 = α (j = 1, . . . ,M), where the constant α does

not depend on the value of j and is not necessarily equal
to 〈Â〉+. In Appendix B we show that one solution to this
condition corresponds to a decomposition of the states |ψj 〉 in
terms of the eigenstates {|Akl

〉}l=1,...,M with coefficients

bj,kl
= 1√

M
eiθj,kl , (38)

where the phases are

θj,kl
= (jπ/M)fl + jβ/M + φkl

, (39)

with

fl =
{

(l − 1) + [(−1)l + 1](M − 1)/2, for even M,

(l − 1)(1 − M), for odd M,
(40)

and β and φkl
arbitrary real numbers.

Now, when M > 2, using Eq. (39) in Eq. (24c), we get for
the phases of the initial state |φ+〉

θkl
+ θkδ(l)

=
{

j

M
[2π (M − 1)+2β]+ξj+φkl

+φkδ(l), M even,
j

M
[−π (M − 1)2+2β]+ξj+φkl

+φkδ(l), M odd,
,

with δ(l) = M − (l − 1). If we choose in Eq. (41) β =
−π (M − 1), if M is even, or β = π (M − 1)2/2, if M is odd,
then we can choose ξj = 0 [j = 1, . . . ,M], to get

θkl
+ θkδ(l) = φkl

+ φkδ(l) . (41)

Notice that the phases φkl
can always be interpreted as the result

of the mapping |ψj 〉 ≡ eih(Â)|ψ̃j 〉, with h being a real function,
where φkl

= h(Akl
) and the states |ψ̃j 〉 of the projective

measurement basis have the coefficients b̃j,kl
≡ 〈ψ̃j |φ+〉,

given in Eq. (38), with the phases θ̃j,kl
= (jπ/M)fl + jβ/M .

Therefore, once we arbitrarily fix the phases θkl
of the initial

state |φ+〉, the states |ψj 〉 of the projective measurement
basis must have the phases θj,kl

given in Eq. (39), with
φkl

= h(Akl
) for any real function h. This shows that the

phases θkl
can be chosen arbitrarily, since the phases φkl

are arbitrary. Furthermore, we see that, for this example of
projective measurement, there are no conditions on the real
numbers ξj , so they can be chosen equal to zero.

The family of projective measurements defined in Eq.(38)
and Eq.(39) verify the balance condition in Eq. (31) regardless
of the subset {Âkl

}l=1,...,M of eigenstates of Â present in the de-
composition of the initial state |φ+〉. However, Eq. (31) and the
symmetry imposed by Eq. (33) on the eigenvalues {Akl

}l=1,...,M

guarantee that 〈ψj | Â |ψj 〉 = 〈Â〉+ for j = 1, . . . ,M .

2. Second type of projective measurements

The second example of a projective measurement basis
{|ψj 〉}j=1,...,M that allows a global saturation of the QIB is the
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one whose coefficients bj,kl
are given by

bj,kl
≡ 〈Akl

|ψj 〉 =
√

(M − l)!(l − 1)!

(j − 1)!(M − j )!

(
eiϑ

2

)l− M+1
2

×P
(l−j,l+j−(M+1))
M−l (0), (42)

where P
(α,β)
n (x) are the Jacobi polynomials [19], and ϑ is an

arbitrary real number. These coefficients can be connected to
the matrix elements

d
j
m′

z,mz
(π/2) ≡ 〈j,m′

z|ei π
2h̄

Ĵy |j,mz〉 (43)

in the theory of angular momentum [19], where |j,mz〉 are
eigenstates of the component Ĵz of the angular momentum
operator Ĵ , if the respective indexes are identified as M =
2j + 1, l = m′

z + (M + 1)/2 and j = mz + (M + 1)/2. The
condition 1 � l,j � M corresponds here to the constraint
−j � m′

z,mz � j. Notice that even values of M correspond
to half-integrals values of j, while odd values of M correspond
to integral values. More specifically, this mapping of indexes
leads to the correspondence

bj,kl
→ ei(m′

zϑ)d
j
m′

z,mz
(π/2). (44)

Using the properties of the matrix elements d
j
m′

z,mz
(β) [19],

it is easy to show that |d j
m′

z,mz
(π/2)| = |d j

−m′
z,mz

(π/2)|, which
is exactly the balance condition |bj,kl

| = |bj,kδ(l) |, with δ(l) =
M − (l − 1). Since the real numbers d

j
m′

z,mz
(π/2) are elements

of an orthogonal matrix (real unitary matrix), the orthonor-
mality of the states |ψj 〉 is guaranteed. Because the matrix
elements d

j
m′

z,mz
(π/2) are real numbers, we have for the phases

of the coefficients bj,kl

θj,kl
= [l − (M + 1)/2]ϑ + s ′′

l,j,Mπ, (45)

where the integer s ′′
l,j,M is such that eis ′′

l,j,Mπ =
sgn(P (l−j,l+j−(M+1))

M−l (0)). Now, when M > 2, using Eq. (24c),
it is easy to see that, in this case, the phases θkl

of the initial
state |φ+〉 must satisfy

θkl
+ θkδ(l) = 0 mod 2π, (46a)

(s ′′
l,j,M + s ′′

δ(l),j,M )π + ξj = 0 mod 2π. (46b)

The set of Eqs. (46b) determines the values of ξj , mod 2π .
This implies that, in contrast to the use of the first family of
projective measurements, here the phases θkl

of the coefficients
ckl

, in the decomposition of the initial state |φ+〉 in the
eigenbasis of the generator Â [cf. Eq. (19)], are no longer
completely arbitrary.

Notice that the subset {Akl
}l=1,...,M of eigenvalues of Â that

obey the symmetry in Eq. (24a) (see also Fig. 2), required for
a global saturation of the QIB are not necessarily equally
spaced. Thus, the states |ψj 〉 =∑M

j=1 bj,kl
|Akl

〉, with the
coefficients bj,kl

given in (42), are not necessarily equivalent
to eigenstates of an angular momentum operator. However,
when the eigenvalues {Akl

}l=1,...,M of the operator Â are
equally spaced, the operator Â, restricted to the subspace
{|Akl

〉}l=1,...,M , is itself equivalent to an angular momentum
operator, and if we use the basis {|ψj 〉}j=1,...,M with the

coefficient bj,kl
given in (42), then the states |ψj 〉 are also

eigenstates of an angular momentum operator.

IV. SOME EXAMPLES OF GLOBAL SATURATION
OF THE QIB

The case in which the generator Â is indeed an angular
momentum component, let us say Â = Ĵz/h̄, was studied
in Ref. [20] in the context of phase estimation in two-path
interferometry, using the Schwinger representation. In this
case, the parameter to be estimated, xv = �ϕv , is the phase
difference between the two paths. Our complete characteriza-
tion of the structure of the initial states |φ+〉 and the projective
measurements {|ψj 〉} that lead to a global saturation of the
QIB contains the results presented in Ref. [20] as special cases.
Indeed, if we use Eq. (30) together with Eq. (46a), we see that
the initial states that permit a global saturation of the QIB, for
phase estimation in two-path interferometry, satisfy

〈j,mz |φ+〉 = |〈j,mz|φ+〉|eiθmz

= |〈j, − mz|φ+〉|e−iθ−mz

= 〈j, − mz|φ+∗〉, (47)

with −j � mz � j, θmz
≡ θkl

, where the index mz is connected
with kl = l by a suitable map. Equation (47) is exactly the
condition given in Eq. (8) of Ref. [20] for initial states
|φ+〉 with a fixed photon number N = 2j. The projective
measurement for a global saturation of the QIB in this case
is {|ψj 〉 = |j,mx〉}, where {|j,mx〉} are eigenstates of the Ĵx

component of an angular momentum and the index mx is
connected with j by a suitable map. Notice that this is exactly
the projective measurement basis given by the coefficients in
Eq. (43), since ei π

2h̄
Ĵy |j,mz〉 = |j,mx〉, and coincides with the

projective measurement basis used in Ref. [20]. The number
MT of coefficients 〈j,mz〉 φ+ different from zero could be such
that MT < M = 2j + 1, the total number of possible values
of mz. However, there is no difference for the saturation of
the QIB if we consider the subspace {|j,mz〉}, with mz =
l − (M + 1)/2 and l = 1, . . . ,M , as the subspace where the
initial state |φ+〉 lives. This subspace is equally spanned by the
projective measurement {|j,mx〉}, with mx = j − (M + 1)/2
and j = 1, . . . ,M .

Our results show that all measurement basis of the family
{e−iϕĴz/h̄ |j,mx〉}, where ϕ is an arbitrary phase, lead to the
saturation of QIB for the initial states that satisfy Eq. (47).
That is,

F(�ϕv,{e−iϕĴz/h̄ |j,mx〉}) = FQ ≡ 4〈(�Ĵz)
2〉+

= 4
〈
Ĵ 2

z

〉
+ (48)

for all values ϕ [see Eq. (1)]. Notice that the initial states |φ+〉
that satisfy (47) have 〈Ĵz〉+ = 0.

The formalism used here assumes that the spectrum
{Akl

}l=1,...,M corresponding to the subspace {|Akl
〉}l=1,...,M

where the initial state lives is not degenerate. This is not the
case if the initial states has a fluctuating photon number, i.e.,

|φ+〉 =
∑

j

∑
m

(j)
z

c
m

(j)
z

∣∣j,m(j)
z

〉
, (49)
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with c
m

(j)
z

≡ 〈j,m(j)
z |φ+〉. Since j = N/2 is no longer fixed,

eigenstates |j,m(j)
z 〉 with equal values of m

(j)
z but different

values of j could enter in the decomposition of |φ+〉. Such
states, however, are eigentstates of Ĵz corresponding to the
same eigenvalue h̄m

(j)
z . Nevertheless, if the state in Eq. (49)

verifies the conditions in Eq. (47) for all values of j, then it can
be shown that global saturation of the QIB can be reached via
the projective measurement basis {|�j 〉 = |j,mx〉}, with∑

j

∑
m

(j)
x

∣∣j,m(j)
x

〉〈
j,m(j)

x

∣∣ = ⊕jmax

j=01̂j,

where jmax is the largest value of j in the expansion in Eq. (49).
However, one cannot guarantee, in this case, that those are
the only states that permit a global saturation of the QIB. The
coefficients bj,kl

≡ 〈Akl
|�j 〉 are

bj,kl
→ 〈

j′,m(j′)
z

∣∣j,m(j)
x

〉
= δj′j ei(m′

zϑ)d
j
m′

z,mz
(π/2), (50)

with j = 0, . . . ,jmax and −j � m
(j)
z � j. Therefore, in each

invariant subspace 1̂j, the corresponding coefficients bj,kl
are

ei(m′
zϑ)d

j
m′

z,mz
(π/2). Notice that it is allowed to consider states

with jmax → ∞.
It is interesting to show how the global saturation of the

QIB in the context of phase estimation with one bosonic mode
may happen. In this case, the generator Â = n̂ = â†â is the
number operator associated with the bosonic mode, described
by the annihilation operator â. Since the generator n̂ has a
nondegenerate spectrum, our results provide all the initial
states |φ+〉 that allow a global saturation of the QIB under
projective measurements. Let us see how these states can be
constructed. Given a fixed value for 〈n̂〉+, since the spectrum of
n̂ is equally spaced, state |φ+〉 satisfies the symmetry condition
in Eq. (24a) only if 〈n̂〉+ coincides with some eigenvalue of
n̂ or is the arithmetic mean of any two eigenvalues. Then,
all the eigenstates |n〉 with eigenvalues 0 � n � 〈n̂〉+ and the
eigenstates symmetric to them with respect to the mean 〈n̂〉+,
can be used to construct an initial state according to Eqs. (19)
and (30). It is, then, easy to see that because the spectrum of
n̂ is lower bounded, the number of terms in Eq. (19) must be
finite. This means, for example, that coherent states

|φ+〉 = |α〉 ≡
∞∑

n=0

e−|α|2/2 αn

√
n!

|n〉 ,

with 〈n̂〉+ = |α|2, are not among the initial states that allow a
global saturation of the QIB under projective measurements.

However, if we consider coherent states with large values
of 〈n̂〉+ = |α|2, we can approximate the Poisson distribution
by a Gaussian [21], i.e.,

pn ≡ e−〈n̂〉+ 〈n̂〉n+
n!

≈ e
− 1

2〈n̂〉+ (n−〈n̂〉+)2

√
2π〈n̂〉+

≡ gn,

yielding

|φ+〉 = |α〉 ≈
∞∑

n=0

√
gne

iθn |n〉 ≈
M−1∑
n=0

√
gne

i n θ |n〉 , (51)

with M = 2〈n̂〉+ + 1. Clearly this state verifies the balance
condition

√
gn = √

g2〈n̂〉++2−n in Eq. (30) so that it can saturate
the QIB if we use the projective measurement basis

|ψj 〉 = 1√
M

M−1∑
n=0

eiθj,n |n〉 ,

where the phases θj,n are given in Eqs. (39) and (40) with
kl = l = n − 1. It is interesting to notice that, because the
phases in the state Eq. (51) do not satisfy the conditions in
Eq. (46a), it is not possible, in this case, to use the projective
measurement basis defined in Eq. (42).

V. GLOBAL SATURATION OF THE QIB AND THE
HEISENBERG LIMIT

A very relevant problem in quantum metrology consists in
determining, for fixed resources, which are the states that reach
the largest possible QIB. Such states lead to the lowest possible
quantum Cramér-Rao bound, using those resources. For the
pure state families given in Eq. (3), one can consider 〈Â〉+ as
the fixed resource. We show now that, for those families, the
largest QIB among all the initial states |φ+〉 that allow a global
saturation of that bound corresponds to

FHL
Q = 4(〈Â〉+ − A0)2, (52)

when the generator Â has a lower bounded spectrum. Here, A0

is the lowest eigenvalue of Â. The quantum Cramér-Rao bound
1/νFHL

Q is known in the literature as the Heisenberg limit [18].
This implies that the Heisenberg limit can be attained with
projective measurements, without any previous information
about the true value of the parameter and without the use
of any adaptive estimation scheme. It also implies that the
Heisenberg limit cannot be surpassed under these conditions.

The initial states that permit a global saturation of the QIB
and have a quantum Fisher information equal to FHL

Q are
written as

|φHL
+ 〉 = 1√

2
(|A0〉 + eiθk |Ak〉),

where Ak ≡ 2〈Â〉+ − A0 and θk is an arbitrary phase. The
states in the projective measurements basis that lead to the
saturation of the QIB, for the initial states above, have
the structure

|ψ1〉 = 1√
2

(|A0〉 + eiθ1,k |Ak〉),

|ψ2〉 = 1√
2

(|A0〉 − eiθ1,k |Ak〉),

with θ1,k an arbitrary phase.
In order to show that FHL

Q is the largest quantum informa-
tion associated with the states that may globally saturate the
QIB, notice that, for a fixed value of 〈Â〉+, there are several
initial states |φM

+ 〉 that can be decomposed in the form given
in Eq. (19), for M � 2, which satisfy condition (30). All these
states allow a global saturation of the QIB, that is

FM (xv,{|ψj 〉}) = FM
Q = 4〈(�Â)2〉φM+ , (53)

regardless of the value of xv , where FM (xv,{|ψj 〉}) is the
Fisher information associated with the projective measure-

042125-9



TOSCANO, BASTOS, AND DE MATOS FILHO PHYSICAL REVIEW A 95, 042125 (2017)

ment {|ψj 〉 〈ψj |} on the states |φM
+ 〉. Here, 〈(�Â)2〉φM+ =

Tr[|φM
+ 〉〈φM

+ |(Â − 〈Â〉+)2].
Using condition (30), that is, |ckl

| = |ckδ(l) |, we can write

FM
Q ≡ 4〈(�Â)2〉φM+ = 8


M/2�∑
l=1

|ckl
|2(〈Â〉+ − Akl

)2

= 4(〈Â〉+ − Ak1 )2 − 4c(〈Â〉+ − Ak1 )2

− 8

M/2�∑
l=2

|ckl
|2[(〈Â〉+ − Ak1 )2 − (〈Â〉+ − Akl

)2]

� 4(〈Â〉+ − Ak1 )2 ≡ FM=2
Q

� 4(〈Â〉+ − A0)2 ≡ FHL
Q . (54)

Here, we used |ck1 |2 = 1/2 −∑s(M)
l=2 |ckl

|2 − c/2, where s(M)
is equal to 
M/2� if M is even and equal to 
M/2� − 1 if M is
odd. We also set c = 0 if M is even and c = |ck
M/2� |2 = 〈Â〉+
if M is odd, and we use that |〈Â〉+ − A0| � |〈Â〉+ − Ak1 | �
|〈Â〉+ − Akl

|, for l = 2, . . . ,M . This shows that FHL
Q is the

largest quantum Fisher information associated to the initial
states that allow a global saturation of the QIB.

VI. CONCLUSION

In conclusion, we have considered the long-standing quest
to find all the initial states, together with the corresponding pro-
jective measurements, that allow a saturation of the quantum
information bound (QIB) without any previous information
about the true value of the parameter to be estimated and

without the use of any adaptive estimation scheme. We have
been able to completely solve this problem for the important
situation where information about the parameter is imprinted
on an initial pure probe state via an unitary process whose
generator does not depend explicitly on the parameter to be
estimated.

We have fully characterized all the initial states and
corresponding projective measurements that allow a global
saturation of the QIB under such conditions. We have also
shown that, for a fixed mean value 〈Â〉+ of the generator
of the unitary transformation, the largest quantum Fisher
information associated to those states leads to the so-called
Heisenberg limit. This implies that the Heisenberg limit can be
attained with projective measurements, without any previous
information about the true value of the parameter and without
the use of any adaptive estimation scheme.
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APPENDIX A

Here we show that Eqs. (17) are satisfied if and only if
the sets {Akl

}, {ckl
}, and {bj,kl

} with j,l = 1, . . . ,M , verify the
conditions in Eqs. (24), assuming that the set of eigenstates
{|Akl

〉}l=1,...,M present in the decomposition of |φ+〉 does
not contain two eigenstates |Akl

〉 corresponding to the same
eigenvalue of Â. We start writing

Im[wj (ε)z∗
j (ε)] = − 2√

FQ

M∑
l=1

M∑
l′=1

|ckl
|ckl′ ||bj,kl

||bj,kl′ |(Akl
− 〈Â〉+) cos ((Akl′ − Akl

)ε + θkl
− θj,kl

− θkl′ + θj,kl′ )

=
M∑
l=1

M∑
l′=1

(Akl
− 〈Â〉+)[hj,l,l′ cos ((Akl′ − Akl

)ε) − gj,l,l′ sin ((Akl′ − Akl
)ε)], (A1)

where we use the expressions for zj (ε) and wj (ε) in Eqs. (23).
Furthermore, we use the identity cos(x + y) = cos x cos y −
sin x sin y and define

hj,l,l′ ≡ |ckl
|ckl′ ||bj,kl

||bj,kl′ |
× cos(θkl

− θj,kl
− θkl′ + θj,kl′ ), (A2a)

gj,l,l′ ≡ |ckl
|ckl′ ||bj,kl

||bj,kl′ |
× sin(θkl

− θj,kl
− θkl′ + θj,kl′ ). (A2b)

Because the equality in Eqs. (A1) must hold for any value
of ε, we can write those equations for −ε and combine the two
cases in order to arrive to the equivalent equations

M∑
l=1

hj,l,l(Akl
− 〈Â〉+) +

M∑
l=1l �=l′

M∑
l′=1

hj,l,l′

× (Akl
− 〈Â〉+) cos ((Akl′ − Akl

)ε) = 0 (A3a)

M∑
l=1l �=l′

M∑
l′=1

gj,l,l′

×(Akl
− 〈Â〉+) sin ((Akl′ − Akl

)ε) = 0, (A3b)

that must be valid for all values of ε and j = 1, . . . ,M . It is
more convenient to rewrite Eqs. (A3) summing over indexes
such that l < l′:

M∑
l=1

M∑
l′=l+1

h̃j,l,l′ ( cos(ωl′lε) − 1) = 0, (A4a)

M∑
l=1

M∑
l′=l+1

g̃j,l,l′ sin(ωl′lε) = 0, (A4b)

where we define g̃j,l,l′ ≡ gj,l,l′ (Akl
− 〈Â〉+ + Akl′ − 〈Â〉+)

and the frequencies ωl′l ≡ Akl′ − Akl
. We also use that when
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we evaluate Eq. (A3a) for ε = 0 we have
∑M

l=1 hj,l,l(Akl
−

〈Â〉+) = −∑M
l=1l �=l′

∑M
l′=1 hj,l,l′ (Akl

− 〈Â〉+).
Note that, in principle, the frequencies ωl′l can be degener-

ate or nondegenerate. So, we can divide the sum in Eq. (A4b)
as ∑

l

∑
l′

g̃j,l,l′ sin(ωl′lε) (A5a)

+
∑
l′′

∑
l′′′

[∑
l=l′′

∑
l′=l′′′

g̃j,l,l′

]
sin(ωl′′′l′′ε) = 0, (A5b)

where the sums over the indexes l,l′ correspond to the
nondegenerate frequencies and the sums over the indexes
l′′,l′′′ over the degenerate ones. Note that we consider in
Eq. (A4b) that l < l′, then Akl

< Akl′ , because k1 < · · · < kM .
Analogously, l′′ < l′′′, so that Akl′′ < Akl′′′ .

Because the functions sin (ωl′lε) and sin (ωl′′′l′′ε) are linearly
independent, the coefficient g̃j,l,l′ and

∑
l=l′′
∑

l′=l′′′ g̃j,l,l′ , in
Eqs. (A5), must be equal to zero for all values of j . Now, note
that the coefficients of the expansion in Eq. (19) of the initial
state |φ+〉 are such that ckl

�= 0 for l = 1, . . . ,M . Notice also
that the coefficient bj,kl

of the expansion of the measuring basis
states |ψj 〉, in Eq. (22), can only be zero for specific values of
l but not for all values of j = 1, . . . ,M . So, from g̃j,l,l′ = 0,
in Eq. (A5b), we arrive to

Akl
− 〈Â〉+ + Akl′ − 〈Â〉+ = 0. (A6)

This condition simply says that, for nondegenerate frequencies
ωl′l ≡ Akl′ − Akl

, the mean 〈Â〉+ must be the arithmetic
mean of the eigenvalues Akl

and Akl′ , i.e., (Akl′ + Akl
)/2 =

〈Â〉+. Clearly, the frequency ωM,1 is nondegenerate because
ωl′l < ωM,1 for all values of l,l′ = 1, . . . ,M (Ak1 < · · · <

AkM
). Therefore, we must have (AkM

+ Ak1 )/2 = 〈Â〉+, or
equivalently,

AkM
− 〈Â〉+ + Ak1 − 〈Â〉+ = 0. (A7)

Now, note that the frequencies ωM,2 and ωM−1,1 must be
degenerate. Otherwise, we would arrive to the contradictory
results 〈Â〉+ = (AkM

+ Ak2 )/2 > (AkM
+ Ak1 )/2 = 〈Â〉+ or

〈Â〉+ = (AkM−1 + Ak1 )/2 < (AkM
+ Ak1 )/2 = 〈Â〉+ by using

Eq. (A7) and that Ak2 > Ak1 , and AkM−1 < AkM
. However,

since ωl′,l < ωM,2 and ωl′,l < ωM−1,1 for all values of l,l′ =
2, . . . ,M and ωM,2,ωM−1,1 < ωM,1, the only possibility is
that ωM−1,1 = ωM,2. This is equivalent to the condition
(AkM−1 + Ak2 )/2 = (AkM

+ Ak1 )/2, and, using Eq. (A7), it is
also equivalent to

AkM−1 − 〈Â〉+ + Ak2 − 〈Â〉+ = 0. (A8)

We can now repeat the arguments for the frequencies ωM−1,3

and ωM−2,2. Indeed, this frequencies must be degener-
ate because, otherwise, we arrive at the contradictory re-
sults 〈Â〉+ = (AkM−1 + Ak3 )/2 > (AkM−1 + Ak2 )/2 = 〈Â〉+ or
〈Â〉+ = (AkM−2 + Ak2 )/2 < (AkM−1 + Ak2 )/2 = 〈Â〉+ by us-
ing Eq. (A8) and that Ak3 > Ak2 , AkM−2 < AkM−1 . However,
since ωl′,l < ωM−1,3 and ωl′,l < ωM−2,2 for all values of l,l′ =
3, . . . ,M and ωM−1,3,ωM−2,2 < ωM−1,2, the only possibility
is that ωM−2,2 = ωM−1,3. This is equivalent to the condition
(AkM−2 + Ak3 )/2 = (AkM−1 + Ak2 )/2, and, using Eq. (A8), it is

also equivalent to

AkM−2 − 〈Â〉+ + Ak3 − 〈Â〉+ = 0. (A9)

These two steps illustrate the iterative process to be followed.
They show that the frequencies ωδ(l),1+l and ωM−l,l , with δ(l) =
M − (l − 1) and l = 1, . . . ,s(M), where s(M) ≡ 
M/2� if M

is even and s(M) ≡ 
M/2� − 1 if M is odd, are degenerate in
such a way that ωδ(l),1+l = ωM−l,l and that they are different
from any other frequencies. This is enough to prove that
Akδ(l) − 〈Â〉+ + Akl

− 〈Â〉+ = 0, that is exactly the condition
in Eq. (24a). This symmetry condition for the spectrum of
eigenvalues {Akl

}l=1,...,M , of Â, that enter in the decomposition
of the initial state |φ+〉, is illustrated in Fig. 1, where we see
that when M is odd necessarily A
M/2� = 〈Â〉+.

Because ωδ(l),1+l = ωM−l,l for l = 1, . . . ,s(M), and be-
cause these frequencies are different from any other frequen-
cies, the coefficient of sin(ωδ(l),1+l) = sin(ωM−l,l) in Eq. (A5b)
must be equal to zero, i.e., (gj,δ(l),l+1 + gj,l,M−l)(Akδl

−
〈Â〉+ + Akl+1 − 〈Â〉+) = 0. Analogously, the coefficient of
cos(ωδ(l),1+l) − 1 = cos(ωM−l,l) − 1 in Eq. (A4a) must be
equal to zero, i.e., (hj,δ(l),l+1 − hj,l,M−l)(Akδl

− 〈Â〉+ +
Akl+1 − 〈Â〉+) = 0. This leads to the following sets of equa-
tions:

|ckδ(l) ||ckl+1 ||bj,kδ(l) ||bj,kl+1 | sin(θkδ(l) − θj,kδ(l) − θkl+1 + θj,kl+1 )

= −|ckM−l
||ckl

||bj,kM−l
||bj,kl

| sin(θkl
−θj,kl

−θkM−l
+θj,kM−l

),

(A10a)

|ckδ(l) ||ckl+1 ||bj,kδ(l) ||bj,kl+1 | cos(θkδ(l) − θj,kδ(l) − θkl+1 + θj,kl+1 )

= |ckM−l
||ckl

||bj,kM−l
||bj,kl

| cos(θkl
−θj,kl

−θkM−l
+θj,kM−l

).

(A10b)

By taking the square in both Eqs. (A10a) and (A10b) and
adding them, we get

|ckδ(l) ||bj,kδ(l) ||ckl+1 ||bj,kl+1 | = |ckδ(l+1) ||bj,kδ(l+1) ||ckl
||bj,kl

|,
(A11)

where l = 1,2, . . . ,s(M) and we use that δ(l + 1) = M − l.
By applying l = s(M) in Eq. (A11), and noting that if M is
even δ(s(M) + 1) = s(M) and δ(s(M)) = s(M) + 1 and if M

is odd δ(s(M) + 1) = s(M) + 1, we arrive at

|cks(M) ||bj,ks(M) | = |ckδ(s(M)) ||bj,kδ(s(M)) |. (A12)

After that, we substitute l = s(M) − 1 in Eq. (A11). In the
resulting expression, we apply Eq. (A12) in order to have

|cks(M)−1 ||bj,ks(M)−1 | = |ckδ(s(M)−1) ||bj,kδ(s(M)−1) |. (A13)

Then, we use l = s(M) − 2, together with Eq. (A13), in
Eq. (A11). Following this iterative procedure, we are able
to show that

|ckl
||bj,kl

| = |ckδ(l) ||bj,kδ(l) |, (A14)

for l = 1,2, . . . ,s(M), which is the result of Eq. (24b).
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Now, we plug Eq. (A14) into Eqs. (A10) and, by solving the
resulting system of equations, we get the following solution:

(θkδ(l) − θj,kδ(l) ) + (θkl
− θj,kl

) = (θkl+1 − θj,kl+1 )

+ (θkM−l
− θj,kM−l

). (A15)

If we apply l = s(M) − 1 in Eq. (A15) [l = s(M) does not
give any extra information about the phase relation], we have

(θks(M)−1 − θj,ks(M)−1 ) + (θkδ(s(M)−1) − θj,kδ(s(M)−1) )

= (θks(M) − θj,ks(M) ) + (θkδ(s(M)) − θj,kδ(s(M)) ). (A16)

If we use l = s(M) − 2 in Eq. (A15) and then substitute
Eq. (A16) in the result, we obtain

(θks(M)−2 − θj,ks(M)−2 ) + (θkδ(s(M)−2) − θj,kδ(s(M)−2) )

= (θks(M) − θj,ks(M) ) + (θkδ(s(M)) − θj,kδ(s(M)) ). (A17)

If we put l = s(M) − 3 in Eq. (A15) and plug Eq. (A17) into
the result, we will find the same term of the right-hand side
of the Eqs. (A16) and (A17). Repeating these steps iteratively
for all the remaining terms, we will see that the terms (θkδ(l) −
θj,kδ(l) ) + (θkl

− θj,kl
) are equal for all l = 1,2, . . . ,s(M). So,

as in principle the phases are all different from each other, this
equality among all the expressions only holds if

(θkδ(l) − θj,kδ(l) ) + (θkl
− θj,kl

) = ξj , (A18)

where ξj is a constant depending only on j . Equation (A18) is
that one in Eq. (24c).

APPENDIX B

Here we prove that one solution to the conditions

〈ψj | Â |ψj 〉 = α , j = 1, . . . ,M, (B1)

is given by states |ψj 〉 whose expansion in the eigenbasis
of the generator Â is of the form shown in Eq. (22), with
the coefficients given in Eq. (38) and the phases in (39)
and (40). Remember that, since all the coefficients bj,kl

�= 0,
the subspace spanned by {|ψj 〉}j=1,...,M and the subspace
spanned by {|Akl

〉}l=1,...,M coincide. Let us start defining an
auxiliary unitary operator V̂ within the subspace {|ψj 〉}j=1,...,M

of the system Hilbert space, such that

V̂ |ψj 〉 = |ψj+1〉 , (B2)

V̂ |ψM〉 = eiβ |ψ1〉 , (B3)

where 1 � j � (M − 1) and β is an arbitrary phase. We call V̂
the shift operator over the basis {|ψ〉j }j=1,...,M . It is important
to notice that, for every finite basis, it is always possibly to
define an operator V̂ that shift the elements of the basis. The
unitary matrix, in the basis {|ψj 〉}j=1,...,M , that represent V̂ is⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 · · · 0 eiβ

1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Its eigenvalues are of the form eidl = ei(flπ+β)/M and the
eigenvectors of the form

|dl〉 = 1√
M

M∑
j=1

e−iθ ′
j,l |ψj 〉 , (B4)

with

θ ′
j,l = (jπ/M) fl + jβ/M, (B5)

and fl given in Eq. (40). Therefore, the subspace {|ψj 〉} can
be equivalently described by the basis {|dl〉}l=1,...,M formed by
the eigenstates of the shift operator. We emphasize here that
the states |dl〉 belong to the system Hilbert space, which could
have an arbitrary dimension. The matrix whose elements are

〈ψj |dl〉 = (1/
√

M)e−iθ ′
j,l (B6)

is unitary, so we can invert the relation in Eq. (B4) to write

|ψj 〉 = 1√
M

M∑
l=1

eiθ ′
j,l |dl〉 . (B7)

We can express the unitary shift operator as V̂ = eiD̂ , where
D̂ is a Hermitian operator with eigenvalues

dl ≡ (flπ + β)/M, (B8)

and eigenvectors given in Eq. (B4). Notice that D̂ has a
nondegenerate spectrum and that its diagonal elements in the
basis {|ψj 〉} are all equals, i.e.,

〈ψj | D̂ |ψj 〉 = 1

M

M∑
l=1

dl ≡ α1, (B9)

where α1 does not depend on the value of j .
Now, remember that we are looking for the states |ψj 〉 that

verify (B1). This is a similar condition to the one in (B9) for
the generator D̂ of the shift operator V̂ = eiD̂ . Let us show
that it is possible to consider that Â is diagonal in the subspace
spanned by the basis {|dl〉}l=1,...,M of eigenstates of D̂. We first
note that

〈ψj=M | dl〉 = e−iβ

√
M

, (B10)

for all values l = 1, . . . ,M . Additionally, using Eq. (40) in
Eq. (B5), we get for l �= l′ the phases differences

θ ′
j,l − θ ′

j,l′

=
⎧⎨
⎩

jπ

M
{(l − l′)(M + 1) + [(−1)l − (−1)l

′
]/2},

for M even,
jπ

M
(l − l′)(M + 1), for M odd.

(B11)

In particular, we have

θ ′
j=M,l − θ ′

j=M,l′ = 2nπ, (B12a)

θ ′
j,l − θ ′

j,l′ �= 2nπ for 1 � j � (M − 1), (B12b)
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with n an integer. Now, we obtain

〈ψj=M | Â |ψj=M〉 = 1

M

⎧⎨
⎩

M∑
l=1

〈dl| Â |dl〉 +
M∑

l �=l′
〈dl| Â |dl′ 〉

⎫⎬
⎭

= α, (B13)

〈ψj �=M | Â |ψj �=M〉 = 1

M

{
M∑
l=1

〈dl| Â |dl〉

+
M∑

l �=l′
e
i(θ ′

j,l−θ ′
j,l′ ) 〈dl | Â |dl′ 〉

⎫⎬
⎭

= α. (B14)

Since (θ ′
j,m − θ ′

j,m′ ) �= 2nπ [see Eq. (B12b)], comparing
Eq. (B13) with Eq. (B14), we see that one possibility is that

〈dl | Â |dl′ 〉 = 0, (B15)

for all l �= l′, which means that Â is diagonal in the subspace
spanned by {|dl〉}l=1,...,M . The other possibility is that the
second terms in Eqs. (B13) and (B14) are null. It is interesting
to notice that this second possibility is verified if we use the
coefficients in Eq. (42) to define the states |ψj 〉 through (22)
and then use those states in the definition of the eigenstates of
the shift operator in (B4).

Because the operator D̂ is nondegenerate, the result in
Eq. (B15) means that we can identify the eigenstates of D̂

and the eigenstates of Â in the subspace {|ψj 〉}j=1,...,M . The
order of this identification is unimportant, so we can set

|dl〉 = |Akl
〉 , l = 1, . . . ,M. (B16)

In order to obtain the projective measurement with states
given in Eq. (22), with coefficient given in (38) whose phases
are given in (39), we observe that if we apply an arbitrary
unitary evolution ei(h(Â)) to the states in Eq. (B7) [here h(Â)
is any Hermitian operator that depends on Â], we obtain an
equivalently admissible projective measurement [one that also
fulfills the condition that all the matrix elements 〈ψj | Â |ψj 〉
are equal]. This is the reason why we include the extra phases
φkl

≡ h(Akl
) in Eq. (39) in comparison with the phases in

Eq. (B5).

We can verify the consistency of our results looking at the
orthonormality relation:

〈ψj | ψj ′ 〉 = 1

M

M∑
l=1

ei(θj,kl
−θj ′ ,kl )

= ei(γj −γj ′ )ei(j−j ′)β/M 1

M

M∑
l=1

eiπ(j−j ′)fl/M

= δjj ′ , (B17)

where we use that

1

M

M∑
l=1

eiπ(j−j ′)fl/M = δjj ′ . (B18)

For j = j ′ we can immediately check this equality. In order
to check the equality in Eq. (B18) for j �= j ′, we proceed as
follows. For M even, we have

M∑
l=1

eiπ(j−j ′)fl/M

=
M∑

l→even

eiπ(j−j ′)(l+M−2)/M +
M∑

l→odd

eiπ(j−j ′)(l−1)/M

= eiπ(j−j ′)(1 + e2iπ(j−j ′)/M + e4iπ(j−j ′)/M + · · · )

+ (1 + e2iπ(j−j ′)/M + e4iπ(j−j ′)/M + · · · )

= (1 + eiπ(j−j ′))(1 − eiπ(j−j ′))

1 + e2iπ(j−j ′)/M )
= (1 − e2iπ(j−j ′))

1 + e2iπ(j−j ′)/M )
= 0,

(B19)

and for M odd, we have

M∑
l=1

eiπ(j−j ′)fl/M

=
M∑
l=1

eiπ(j−j ′)(l−1)(1−M)/M

= 1 + eiπ(j−j ′)(1−M)/M + e2iπ(j−j ′)(1−M)/M + · · ·

= 1 − e−iπ(j−j ′)(M−1)

1 + eiπ(j−j ′)(1−M)/M
= 0, (B20)

since M − 1 is an even number.
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