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Coupled modes locally interacting with qubits: Critical assessment
of the rotating-wave approximation
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The interaction of qubits with quantized modes of electromagnetic fields has been largely addressed in the
quantum optics literature under the rotating wave approximation (RWA), where rapid oscillating terms in the
qubit-mode interaction picture Hamiltonian can be neglected. At the same time, it is generally accepted that,
provided the interaction is sufficiently strong or for long times, the RWA tends to describe physical phenomena
incorrectly. In this work, we extend the investigation of the validity of the RWA to a more involved setup where
two qubit-mode subsystems are brought to interaction through their harmonic coordinates. Our treatment is
all analytic thanks to a sequence of carefully chosen unitary transformations, which allows us to diagonalize
the Hamiltonian within and without the RWA. By also considering qubit dephasing, we find that the purity of
the two-qubit state presents non-Markovian features which become more pronounced as the coupling between
the modes gets stronger and the RWA loses its validity. In the same regime, there occurs fast generation of
entanglement between the qubits, which is also not correctly described under the RWA. The setup and results
presented here clearly show the limitations of the RWA in a scenario amenable to exact description and free from
numerical uncertainties. Consequently, it may be of interest for the community working with cavity or circuit
quantum electrodynamic systems in the strong coupling regime.
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I. INTRODUCTION

Modeling physical phenomena via the coupling of two-
level systems (qubits) to quantized harmonic oscillators has
historically been of great interest in diverse fields ranging from
quantum optics [1–4] and solid-state physics [5,6] to quantum
biology [7–10]. This approach has become frequent in modern
physics since fully quantum-mechanical descriptions may
reveal phenomena not covered by classical or semiclassical
approaches. As well-known examples, one has the study of
dissipation and decoherence of a qubit via the spin-boson
model [11] or the presence of collapses and revivals of
the atomic population inversion in the atom-field interaction
[3,4].

For the latter case, the simplest quantum description is
given by the exactly solvable Jaynes-Cummings (JC) model
[2], which considers a two-level atom weakly coupled to
a single mode of the electromagnetic field. Usually, the
“energy nonconserving” terms in the atom-field interaction
Hamiltonian are neglected through the so-called rotating wave
approximation (RWA). However, the use of the RWA in
this problem may not describe dynamical properties of the
model correctly when the atom-field interaction becomes
sufficiently strong [12,13]. Other studies have addressed the
limitations of the RWA in diverse configurations [14–20].
Only recently has it been shown that the non-RWA atom-
field Hamiltonian possesses a symmetry rendering the model
integrable [21]. However, due to the lack of closed-form
expressions for the eigenstates, one usually has to appeal to
different effective approaches to treat the problem without
the RWA. This includes the use perturbation series for path
integrals [12] or particular regimes such as far-from-resonance
cases (dispersive limit) [22].

Recently, the fabrication of artificial atoms with super-
conducting circuits [23–28] has favored the control of qubit-
oscillator interactions, and thus regimes where the RWA breaks
down can be explored experimentally. In circuit quantum
electrodynamics (circuit QED) a qubit or two-level system can
be produced, for instance, by using a thin insulator between
two superconducting materials [Josephson junction (JJ)] and
controlling either the number of Cooper pairs that tunnel from
one side to the other (charge qubit) or the phase of their wave
functions (phase qubit). Also, by adding one or more JJ in a
superconducting loop [superconducting quantum interference
device (SQUID)], a qubit can be produced by controlling
the external magnetic flux through the SQUID (flux qubit)
[23,24]. On the other hand, a quantum harmonic oscillator
naturally represents a single electromagnetic mode trapped in
a transmission line [24,26].

Giving all these developments in the control of simple
systems consisting of qubits and bosonic modes, it is natural to
search for configurations which allow us to further understand
the limits of the usually taken RWA. We explore the validity
of the RWA in a setup composed of two identical qubit-
oscillator systems that are coupled through their harmonic
coordinates. This setup is amenable to implementation in
superconducting circuits as discussed in [29], where non-
Markovian features are discussed within the RWA. The present
work is organized as follows. We analytically diagonalize
the full non-RWA Hamiltonian in (Sec. III A) and then solve
the master equation which includes dephasing for the qubits
(Sec. III B). Predictions contrasting our full treatment with
the RWA model in [29] are then presented, in particular for
the two-qubit subsystem for which purity (Sec. III C) and
entanglement dynamics (Sec. III D) are investigated. Finally,
in Sec. IV we present our conclusions.
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FIG. 1. Two subsystems Sα and Sβ , each formed by a qubit and a
bosonic mode, interact through the modes (coupling strength λ). Each
qubit is also subjected to dephasing at rate γ . Inside each subsystem,
the qubit and the mode interact with each other (coupling strength g).

II. THE MODEL

In this work, we are interested in the setup depicted in
Fig. 1. It consists of two groups of subsystems (α and β),
each comprising a qubit and a bosonic mode. These groups
will interact through the modes. Inside each group, the local
interaction takes the usual spin-boson form with no transverse
field (h̄ = 1),

HSB = g
(
σzA

+ μIA

)
(a† + a) + g

(
σzB

+ μIB

)
(b† + b), (1)

where σzA(B) are the Pauli matrices for the qubits, a†(a)
and b†(b) are the creation (annihilation) operators for the
corresponding bosonic modes, g is a coupling constant, and
IA(B) is the identity operator acting on the corresponding qubit
state space. The μ terms naturally appear in some circuit QED
architectures when working out of the so-called degeneracy
point [26,27], so that, for completeness, they are included
here. More details can be found in [29].

The total energy of the full setup reads

Hj = H0 + HSB + HBBj
, (2)

with the free Hamiltonian

H0 = ω0

2

(
σzA

+ σzB

) + ω(a†a + b†b), (3)

where ω0 is the resonance frequency of the qubits and ω is the
angular frequency of the modes. The index j ∈ {1,2} defines
the form of the interaction mechanism between the modes,
which can be either

HBB1 = λ(a† + a)(b† + b) (4)

or

HBB2 = λ(a†b + ab†), (5)

with λ being a coupling constant. In the first approach (j = 1),
the spatial coordinates of each oscillator are coupled in a kind
of quadrature-quadrature form. In circuit QED, this can be
induced by coupling the two transmission lines to an auxiliary
qubit that mediates a geometric second-order interaction [30],
while in cavity QED this can be done by placing a partially
reflecting mirror between two optical cavities [31]. On the
other hand, the second approach (j = 2) arises from the RWA

performed on HBB1 so that its oscillating terms are neglected in
the interaction picture. For the interaction of a two-level atom
with an electromagnetic mode, which in the RWA gives rise
to the JC Hamiltonian, one can only compare the RWA and
non-RWA Hamiltonians through successive approximations or
numerics. Here, we will be able to perform such investigation
in a fully analytic manner by exactly solving

ρ̇j = −i[Hj,ρj ] + γ

2

(
σzA

ρjσzA
+ σzB

ρjσzB
− 2ρj

)
(6)

for initial states of interest. In Eq. (6), γ is the rate of pure
dephasing caused by independent Markovian baths acting on
the qubits. This is by far the most relevant noise when working
outside the degeneracy point [32,33]. Energy relaxation of
qubits or the transmission lines (bosonic modes), as well as
dephasing on the latter, can be made negligible compared
to dephasing in the qubits [26,27]. These experimental facts
provide us a background to leave aside noise mechanisms
besides qubit dephasing as a first approximation. This is
especially convenient in our case because our goal is to provide
analytical expressions that evidence inadequacy of the RWA
in certain regimes. Those neglected noise mechanisms would
render the problem unsuitable to analytic treatment and can be
numerically investigated elsewhere.

III. RESULTS

A. Diagonalization

In order to analytically solve Eq. (6), we start by diago-
nalizing the Hamiltonians Hj . This is achieved by the unitary
transformation Uj given by Uj = PjSjT Dj , where

Dj = eδj (a†−a+b†−b) (7)

is the displacement operator with δj = gμ/(ω + 22−j λ),

T = e
π
4 (a†b−ab†) (8)

corresponds to a beam-splitter operation,

Sj = e− rj+
2 (a2−a†2)e− rj−

2 (b2−b†2) (9)

is a squeezing operator with r1± = ln (1 ± 2λ/ω) and r2± = 0,
and

Pj = eλj+ (σzB
+σzA

)(a†−a)eλj− (σzB
−σzA

)(b†−b) (10)

is a polaron transformation [34] and λj± = ge−rj± /(
√

2�j± ).
Notice that the operation Sj reduces to the identity for j = 2.
This is so because this transformation is responsible for the
elimination of terms with ab and a†b†, not present in Eq. (5).
It is important to realize that the application of S1 requires
λ < ω/2, so that the frequencies of the normal modes are real
numbers. Values of λ close to such limit have been associated
to quantum chaos in nonlinear oscillators [35].

With the help of these transformations, we obtain the
diagonal Hamiltonian H ′

j = UjHjU
†
j that reads

H ′
j = ω0,j

2
(σzA

+ σzB
) + χj

2
σzA

σzB
+ �j+a†a + �j−b†b,

(11)

with shifted qubit frequencies

ω0,j = ω0 − 4gδj (12)
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FIG. 2. Parameters of the diagonal Hamiltonian (11) as functions
of λ (in units of ω). First row, effective frequencies of the qubits;
second row, effective coupling strength of the qubits; third and
fourth rows, effective frequencies of the modes. In all cases, the
solid blue lines represent the complete model (j = 1), whereas the
dashed red lines represent the RWA model (j = 2). We used ω0 = ω,
g = 0.025 ω0, and μ = 1.

and normal mode frequencies

�j± = ω cosh
(
2rj±

) ± λe−2rj± . (13)

The Hamiltonian (11) is an interesting physical result. It
implies that, in spite of the model (j = 1 or j = 2), the modes
decouple from the qubits, and the latter interact through an
Ising-type Hamiltonian with

χj = 2g2

(
e−2rj−

�j−
− e−2rj+

�j+

)
. (14)

For uncoupled modes (λ = 0), no effective coupling between
the qubits is observed (χj = 0). For finite λ, we can already
spot the fundamental differences in the non-RWA (j = 1) and
RWA (j = 2) descriptions. This can be seen from the plots in
Fig. 2, where we present the dependence of ω0,j , χj , and �j±
on the modes coupling constant λ. These physical frequencies
clearly indicate that the RWA dismally fails with the increase
of λ.

B. Dynamics

In the space of Hamiltonian (11), the system density matrix
is given by ρ ′

j = UjρjU
†
j . A new transformation defined as

ρIj
= eiH ′

j t ρ ′
j e

−iH ′
j t finally allows one to rewrite the master

equation (6) in a very compact form as

ρ̇Ij
= γ

2

(
σzA

ρIj
σzA

+ σzB
ρIj

σzB
− 2ρIj

)
. (15)

Although the modes do not appear explicitly in Eq. (15),
they have not yet been traced out. What happens is that they
are frozen in this interaction picture and were completely
decoupled from the qubits due to the transformation Uj =
PjSjT Dj . Consequently, we can solve Eq. (15) in the qubits
subspace and tensor the result with the initial state of the
modes. The transformations back to the original picture will
then restore the time evolution of the whole system, entangling
modes and qubits. By denoting |ψ〉A ⊗ |φ〉B as just |ψφ〉, we
then solve Eq. (15) in the standard basis {|ee〉,|eg〉,|ge〉,|gg〉},
in which |e(g)〉 stands for the excited (ground) state of a single
qubit. In our case, we do not have to move the system state
entirely back to the original picture because we are interested
in the dynamics of the qubits. The polaron operation P

†
j is

the only one required as the other unitary transformations
employed to diagonalize Eq. (2) are, in fact, local in the modes.

FIG. 3. Purity Pj of the two-qubit subsystem as function of
the dimensionless time ω0t for different values of mode coupling
strengths λ. Solid blue lines represent the purity for the complete
model (j = 1), whereas dashed red lines represent the purity under
the RWA model (j = 2). We used ω0 = ω, g = 0.025ω0, and γ =
5 × 10−5ω0.
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The density matrix of the qubits is then obtained as

ρABj
(t) = Trab[P †

j e−iH ′
j t ρIj

eiH ′
j tPj ], (16)

where the partial trace is taken over the modes degrees of
freedom.

From now on, we will focus on a particular choice of
initial states that suitably illustrates the dynamics of state
purity and entanglement for the qubits. On their own, these
two quantities carry a lot of information and their analysis
is then of general importance in quantum information. More
important to us, they both depend on the whole density matrix
and not only on its diagonal elements. Quantities such as
occupation probabilities of the bare states would depend only
on diagonal density matrix elements. For all these reasons,
entropy and entanglement are then very good candidates to spot
the differences between the full model and its RWA version.
We consider the qubits to be initially prepared in the eigenstate
of the Pauli matrix σxA(B) associated with the eigenvalue +1,
i.e.,

| + 〉A ⊗ | + 〉B ≡ | + + 〉 = 1
2 (|ee〉 + |eg〉 + |ge〉 + |gg〉). (17)

On the other hand, the modes are initially set in the product of
coherent states,

|α〉a ⊗ |β〉b ≡ |α〉|β〉 = e− |α|2+|β|2
2

∞∑
n,m=0

αnβm

√
n!m!

|nm〉,

(18)

where α and β are complex amplitudes and |n〉 ⊗ |m〉 ≡ |nm〉
is the two-mode Fock state. Solving Eq. (15) for the initial
state |ψ(0)〉 = | + +〉|α〉|β〉 and using Eq. (16), we obtained
the 16 components of ρABj

(t) in the standard basis as

ρAB,mnj
(t) = 1

4γmnj
(t)�mn,j+(t)�mn,j−(t), (19)

with m,n ∈ {ee,eg,ge,gg} and m 	= n. The diagonal elements
m = n are time-independent and given by ρAB,mmj

= 1/4. The
factors γmnj

(t) arise from the nonunitary dynamics followed by
each qubit (a dephasing factor), whereas �mn,j± (t) are scalar
products originated from the partial trace operations. Explicit
expressions for γmnj

(t) and details about �mn,j± (t) can be
found in the Appendix.

C. Purity of the two-qubit subsystem

In general, quantum information processing requires that
pure states, like superposition states, remain pure during time
evolution. However, when a quantum system is interacting
with others, its reduced dynamics will, in general, affect
the state purity. The same is valid when the system is in
contact with a bath and, in this case, the lost of purity is
typically irreversible. A good measure of how much a state ρ

is pure in a d-dimensional state space is given by a quantity
called purity, defined as P = Tr[ρ2], with 1/d � P � 1 [36].
This is closely related to the linearized version of the von
Neumann entropy. If P = 1 (P = 1/d), the system is in a pure
(maximally mixed) state. For our purposes of contrasting RWA
and non-RWA descriptions, the purity is more suitable than
the full entropy since the former allowed us to get analytic and
exact expressions. For the initial conditions given by Eqs. (17)

and (18), we obtain

Pj (t) = Tr
[
ρ2

ABj
(t)

] = 1
4 + 2�j (t), (20)

with

�j (t) = ∣∣ρAB,eeegj
(t)

∣∣2 + ∣∣ρAB,eegej
(t)

∣∣2 + ∣∣ρAB,eeggj
(t)

∣∣2

+ ∣∣ρAB,eggej
(t)

∣∣2 + ∣∣ρAB,egggj
(t)

∣∣2

+∣∣ρAB,geggj
(t)

∣∣2
. (21)

Explicitly, the function �j (t) reads

�j (t) = 4e−[fj+ (t)+fj− (t)+2γ t] + e−4[fj+ (t)+γ t] + e−4[fj− (t)+γ t],

(22)

with

fj± (t) = 16λ2
j± [cosh(2rj±) − sinh(2rj±) cos(�j± t)]

× sin2

(
�j± t

2

)
. (23)

Figure 3 compares the dynamics of Pj (t) for each model
under different mode coupling regimes. Evidently, the purity
is maximum at t = 0 as the initial state of the qubits is
| + +〉 and not entangled with the modes. The first thing
to be noticed is that there is a clear competition between
the Markovian dynamics induced by the dephasing baths
and the non-Markovian dynamics induced by the mode-mode
interaction [29]. To be more precise, the oscillations appear as
the result of the latter, while the envelope (purity damping) is
caused by the baths. Such features are caused by exponentials
of multiples of −γ t and fj± (t) in Eq. (22), respectively. Purities
for both the complete and the RWA models turned out to be
independent on the initial coherent states of the modes. This is
so because α and β can be eliminated from the dynamics via a
time-independent unitary transformation on the modes (basis
transformation).

Let us now closely examine the dependence of the two-qubit
purity on mode-mode coupling strength λ. From Fig. 3, we can
see that, for moderate couplings (λ ≈ 0.25ω0), the predictions
of the RWA and non-RWA models already disagree consider-
ably. Although they both have similar orders of magnitude, the
oscillations are not in phase anymore (compared to small λ).
This is a direct consequence of the deviations in �j± caused
essentially by the squeezing parameter rj± . In addition, as λ

becomes larger (approaching the limit ω/2), the RWA model
fails miserably to predict the correct phases and amplitudes. It
is noticeable that in the full non-RWA model the amplitude of
purity oscillation is much larger than the RWA prediction. This
can be attributed to content of the square brackets in Eq. (23).
For j = 1 (non-RWA) it is an oscillating function, while for
j = 2 it is constant and equals one.

D. Entanglement of the qubits

We now turn our analysis to the two-qubit entanglement
generation in the studied setup. Some quantum information
tasks, such as quantum teleportation [37], need the handling
of large amounts of entanglement to be performed properly,
so that it is essential to determine how entangled a certain

042116-4



COUPLED MODES LOCALLY INTERACTING WITH . . . PHYSICAL REVIEW A 95, 042116 (2017)

FIG. 4. Long-time behavior of the entanglement of formation EF of the two-qubit subsystem as function of the dimensionless time ω0t

for different values of mode coupling strengths λ and qubit dephasing rates γ . Solid blue lines represent EF for the complete model (j = 1),
whereas dashed red lines represent EF under the RWA (j = 2). First and second rows, λ = 0.05ω (left) and λ = 0.25ω (right) with γ = 0
(first row) and γ = 5 × 10−5ω0 (second row); third and fourth rows, λ = 0.48ω with γ = 0 (third row) and γ = 5 × 10−5ω0 (fourth row). The
remaining parameters are ω0 = ω, g = 0.025ω0, and α = β = 2.

system is. In this work, we use the concept of entangle-
ment of formation of an arbitrary two-qubit mixed state
[38,39]. First, one defines the so-called concurrence function
C(ρ) = max{0,

√
ε1 − √

ε2 − √
ε3 − √

ε4}, where εi’s are the
eigenvalues in decreasing order of ρσyA

σyB
ρ∗σyA

σyB
, ρ∗ is the

complex conjugate of ρ, and σy is the y-Pauli matrix. Then,
the entanglement of formation of ρ can be defined as

EF (ρ) = h

[
1 +

√
1 − C(ρ)2

2

]
, (24)

where h(x) = −x log2 x − (1 − x) log2(1 − x). Both concur-
rence and entanglement of formation are equal to zero (unity)
for a separable (maximally entangled) state.

Figure 4 compares the dynamics of EF [ρABj
(t)] for different

values of qubit dephasing rates γ and mode coupling strengths
λ. As expected, EF starts from zero as the initial state
is separable. Then EF oscillates and reaches its maximum
values for the conditions taken in the first and third rows
(γ = 0). In this scenario, the state of the two-qubit system
periodically changes from separable to maximally entangled
states in the absence of dephasing. In the second and fourth
rows, on the other hand, such oscillations are damped due
to the non-null dephasing rate (γ = 5 × 10−5ω0), and the
capability of producing higher peaks of EF is enhanced in
the strong coupling regime. Thus, the non-Markovian aspect
of the dynamics acts as an entanglement generator, whereas
the Markovian part tends to destroy it over long times.

Another feature present in Fig. 4 is that the main frequency
of oscillation of EF increases with λ, independently of
the model. However, for the full model, the generation of
entanglement is evidently faster than in the RWA. This
might be interesting for a scenario where entanglement needs
to be preserved in the presence of strong dephasing. Fast
generation of entanglement has recently attracted interest
of the community and has already been proposed in other
setups [40–42]. This can be obtained, for example, if two

noninteracting qubits are weakly coupled to a common Ohmic
bath [43,44].

By examining further the short-time behavior of EF (Fig. 5),
one can see that it essentially oscillates with the same fast
frequencies of the two-qubit purity (Fig. 3). This is indeed
expected since both quantities are indirectly related to the local
entropies for each qubit subsystem. Differently from what is
observed in Fig. 3, the deviations in EF for both models become
evident even for small values of mode coupling strengths
(e.g., λ = 0.05ω). This is a consequence of the complexity
of EF compared to Pj . To evaluate the former it is necessary
density matrix diagonalization and application of logarithmic
functions, while for the latter it is just necessary to square
it and trace. Also, since what justifies the RWA is precisely
first-order perturbation theory [45], valid for short times, we
indeed expect that the stronger the λ the shorter the time range
for which RWA provides a satisfactory answer, and this is
clearly seen from the plots in Figs. 4 and 5. Therefore, one can
conclude that the dynamics of entanglement is more sensible
to the variations of λ than purity is.

IV. CONCLUSION

We have provided an illustrative example where the inade-
quacy of the RWA can be analytically investigated. The system
is composed of quantum two-level systems and harmonic
oscillators, both ubiquitous in controlled quantum systems
such as trapped ions or circuit QED. In particular, we have
focused on a model composed of two qubit-mode subsystems
which are brought into interaction through their harmonic
coordinates. We have performed exact diagonalization of the
full model and its RWA version and analytically solved the
master equation for initial states of interest.

We then have shown that the modes’ coupling strength λ

plays a fundamental role on the variety of responses of the
qubits as displayed by state purity and entanglement. The
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FIG. 5. Short-time behavior of the entanglement of formation EF

of the two-qubit subsystem as a function of the dimensionless time
ω0t for different values of mode coupling strengths λ. Solid blue lines
representEF for the complete model (j = 1), whereas dashed red lines
represent EF under the RWA (j = 2). The remaining parameters are
ω0 = ω, g = 0.025ω0, γ = 5 × 10−5ω0, and α = β = 2.

predictions of the complete model and the RWA model for
short times and λ ≈ 0.05ω agree well for purity but not for
entanglement dynamics. Also, even for short times, as soon
as λ ≈ 0.25ω, purity is no longer described correctly by the
RWA. At longer times, when two-qubit entanglement is fully
generated, the failure of the RWA becomes more noticeable
as it considerably reduces the main frequency of entanglement
oscillations. Our study also showed that the stronger the modes
are coupled, the larger is the reduction of the degree of
purity at short time scale and the faster is the generation of
entanglement. Moreover, we verified the competition between
Markovian dephasing on the qubits and non-Markovianity
induced by the modes’ coupling constant in conformity with
Ref. [29].
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APPENDIX

The time-dependent factors γmnj
(t) that appear in the

qubits’ density matrix elements ρAB,mnj
(t) in Eq. (19) are

explicitly

γeeegj
(t) = e−[i(ω0,j +χj )+γ ]t e2iIm[Aj+ (t)+Bj− (t)],

γeegej
(t) = e−[i(ω0,j +χj )+γ ]t e2iIm[Aj+ (t)−Bj+ (t)],

γeeggj
(t) = e−2(iω0,j +γ )t e4iIm[λj+Z∗

j (1−e
i�j+ t )],

(A1)
γeggej

(t) = e−2γ t e−4iIm[λj−W ∗
j (1−e

i�j− t )],

γegggj
(t) = e−[i(ω0,j −χj )+γ ]t e2iIm[Aj− (t)−Bj− (t)],

γgeggj
(t) = e−[i(ω0,j −χj )+γ ]t e2iIm[Aj− (t)+Bj+ (t)],

where Aj± (t) = λj+Z∗
j − λj+(Z∗

j ± 2λj+ )ei�j+ t and Bj±(t) =
λj−W ∗

j − λj− (W ∗
j ± 2λj− )ei�j− t are complex functions. Infor-

mation about the complex amplitudes of the initial coher-
ent state of the modes is encoded in Zj = zj cosh(rj+) +
z∗
j sinh(rj+) and Wj = w cosh(rj−) + w∗ sinh(rj−), with zj =

(α + β + 2δj )/
√

2 and w = (β − α)/
√

2. Moreover, γmmj
=

1, and, given the Hermiticity of the density matrix, the
remaining phases are complex conjugates of the ones in
Eq. (A1). It is interesting to notice that the amplitudes of the
coherent states appear in the density matrix but, as explained
before, do not show up in quantities that are independent of
local time-independent transformations.

From the partial trace over the bosonic modes in Eq. (16),
using the total initial state |ψ(0)〉 = | + +〉|α〉|β〉, one finds
the terms

�mn,j± (t) = 〈Ym,j± (t),ξj±(t)|Yn,j±(t),ξj±(t)〉, (A2)

which are scalar products of squeezed coherent states with
squeezing parameter ξj± = −rj±e−2i�j± t and amplitudes

Yee,j+ (t) = (Zj + 2λj+ )e−i�j+ t − 2λj+ ,

Yeg,j+ (t) = Zje
−i�j+ t = Yge,j+ (t),

Ygg,j+(t) = (Zj − 2λj+ )e−i�j+ t + 2λj+ ,

Yee,j− (t) = Wje
−i�j− t = Ygg,j−(t),

Yeg,j− (t) = (Wj − 2λj−)e−i�j− t + 2λj− ,

Yge,j− (t) = (Wj + 2λj−)e−i�j− t − 2λj− . (A3)

Notice that in the RWA, i.e., j = 2, �mn,2± (t) reduces to the
overlap of coherent states 〈Ym,2± (t)|Yn,2± (t)〉.

042116-6



COUPLED MODES LOCALLY INTERACTING WITH . . . PHYSICAL REVIEW A 95, 042116 (2017)

[1] C. Gerry and P. Knight, Introductory Quantum Optics
(Cambridge University Press, Cambridge, U.K., 2005).

[2] E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).
[3] J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon,

Phys. Rev. Lett. 44, 1323 (1980).
[4] P. L. Knight and P. M. Radmore, Phys. Rev. A 26, 676 (1982).
[5] G. D. Mahan, Many-Particle Physics, 2nd ed. (Plenum, New

York, 1990).
[6] U. Weiss, Quantum Dissipative Systems, 3rd ed. (World

Scientifc, Singapore, New Jersey, London, Hong Kong, 2008).
[7] M. Schröter, Dissipative Exciton Dynamics in Light-Harvesting

Complexes (Springer Spektrum, Heidelberg, Germany, 2015).
[8] N. Lambert, Y.-N. Chen, Y.-C. Cheng, C.-M. Li, G.-Y. Chen,

and F. Nori, Nat. Phys. 9, 10 (2013).
[9] E. J. O’Reilly and A. Olaya-Castro, Nat. Commun. 5, 3012

(2014).
[10] J. Gilmore and R. McKenzie, J. Phys.: Condens. Matter 17, 1735

(2005).
[11] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A.

Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).
[12] K. Zaheer and M. S. Zubairy, Phys. Rev. A 37, 1628 (1988).
[13] M. H. Naderi, J. Phys. A 44, 055304 (2011).
[14] Q.-H. Chen, Y. Yang, T. Liu, and K.-L. Wang, Phys. Rev. A 82,

052306 (2010).
[15] J. Hausinger and M. Grifoni, Phys. Rev. A 82, 062320 (2010).
[16] J. Hausinger and M. Grifoni, New J. Phys. 10, 115015 (2008).
[17] G. S. Agarwal, Phys. Rev. A 4, 1778 (1971).
[18] J.-Q. Liao, J.-F. Huang, and L. Tian, Phys. Rev. A 93, 033853

(2016).
[19] A. T. Sornborger, A. N. Cleland, and M. R. Geller, Phys. Rev.

A 70, 052315 (2004).
[20] S. Agarwal, S. M. Hashemi Rafsanjani, and J. H. Eberly, Phys.

Rev. A 85, 043815 (2012).
[21] D. Braak, Phys. Rev. Lett. 107, 100401 (2011).
[22] D. Zueco, G. M. Reuther, S. Kohler, and P. Hänggi, Phys. Rev.

A 80, 033846 (2009).
[23] J. Clarke and F. K. Wilhelm, Nature (London) 453, 1031 (2008).
[24] R. J. Schoelkopf and S. M. Girvin, Nature (London) 451, 664

(2008).
[25] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang,

J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Nature
(London) 431, 162 (2004).

[26] A. Blais, R-S. Huang, A. Wallraff, S. M. Girvin, and R. J.
Schoelkopf, Phys. Rev. A 69, 062320 (2004).

[27] A. Blais, J. Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin,
M. H. Devoret, and R. J. Schoelkopf, Phys. Rev. A 75, 032329
(2007).

[28] D. I. Schuster, A. A. Houck, J. A. Schreier, A. Wallraff, J. M.
Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. H.
Devoret, S. M. Girvin, and R. J. Schoelkopf, Nature (London)
445, 515 (2007).

[29] P. C. Cárdenas, M. Paternostro, and, F. L. Semião, Phys. Rev. A
91, 022122 (2015).

[30] M. Mariantoni, F. Deppe, A. Marx, R. Gross, F. K. Wilhelm,
and E. Solano, Phys. Rev. B 78, 104508 (2008).

[31] M. J. Hartmann, F. G. S. L. Brando, and M. B. Plenio, Nat. Phys.
2, 849 (2006).

[32] D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina,
D. Esteve, and M. Devoret, Science 296, 886 (2002).

[33] Y.-D. Wang, Y. Li, F. Xue, C. Bruder, and K. Semba, Phys. Rev.
B 80, 144508 (2009).

[34] A. Wurger, Phys. Rev. B 57, 347 (1998); A. Nazir, Phys. Rev.
Lett. 103, 146404 (2009); C. K. Lee, J. Moix, and J. Cao, J.
Chem. Phys. 136, 204120 (2012).

[35] U. Naether, J. J. García-Ripoll, J. J. Mazo, and D. Zueco, Phys.
Rev. Lett. 112, 074101 (2014).

[36] S. M. Barnett, Quantum Information (Oxford University Press,
New York, 2009).

[37] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and
W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

[38] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
[39] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,

Rev. Mod. Phys. 81, 865 (2009).
[40] Z. H. Peng, Y. X. Liu, Y. Nakamura, and J. S. Tsai, Phys. Rev.

B 85, 024537 (2012).
[41] A. Posazhennikova, R. Birmuske, M. Bruderer, and W. Belzig,

Phys. Rev. A 88, 042302 (2013).
[42] N. Qiu and X.-B. Wang, Phys. Rev. A 88, 062332 (2013).
[43] F. Benatti, R. Floreanini, and U. Marzolino, Europhys. Lett. 88,

20011 (2009).
[44] F. Benatti, R. Floreanini, and U. Marzolino, Phys. Rev. A 81,

012105 (2010).
[45] F. Nicacio and F. L. Semião, J. Phys. A 49, 375303

(2016).

042116-7

https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1103/PhysRevLett.44.1323
https://doi.org/10.1103/PhysRevLett.44.1323
https://doi.org/10.1103/PhysRevLett.44.1323
https://doi.org/10.1103/PhysRevLett.44.1323
https://doi.org/10.1103/PhysRevA.26.676
https://doi.org/10.1103/PhysRevA.26.676
https://doi.org/10.1103/PhysRevA.26.676
https://doi.org/10.1103/PhysRevA.26.676
https://doi.org/10.1038/nphys2474
https://doi.org/10.1038/nphys2474
https://doi.org/10.1038/nphys2474
https://doi.org/10.1038/nphys2474
https://doi.org/10.1088/0953-8984/17/10/028
https://doi.org/10.1088/0953-8984/17/10/028
https://doi.org/10.1088/0953-8984/17/10/028
https://doi.org/10.1088/0953-8984/17/10/028
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/PhysRevA.37.1628
https://doi.org/10.1103/PhysRevA.37.1628
https://doi.org/10.1103/PhysRevA.37.1628
https://doi.org/10.1103/PhysRevA.37.1628
https://doi.org/10.1088/1751-8113/44/5/055304
https://doi.org/10.1088/1751-8113/44/5/055304
https://doi.org/10.1088/1751-8113/44/5/055304
https://doi.org/10.1088/1751-8113/44/5/055304
https://doi.org/10.1103/PhysRevA.82.052306
https://doi.org/10.1103/PhysRevA.82.052306
https://doi.org/10.1103/PhysRevA.82.052306
https://doi.org/10.1103/PhysRevA.82.052306
https://doi.org/10.1103/PhysRevA.82.062320
https://doi.org/10.1103/PhysRevA.82.062320
https://doi.org/10.1103/PhysRevA.82.062320
https://doi.org/10.1103/PhysRevA.82.062320
https://doi.org/10.1088/1367-2630/10/11/115015
https://doi.org/10.1088/1367-2630/10/11/115015
https://doi.org/10.1088/1367-2630/10/11/115015
https://doi.org/10.1088/1367-2630/10/11/115015
https://doi.org/10.1103/PhysRevA.4.1778
https://doi.org/10.1103/PhysRevA.4.1778
https://doi.org/10.1103/PhysRevA.4.1778
https://doi.org/10.1103/PhysRevA.4.1778
https://doi.org/10.1103/PhysRevA.93.033853
https://doi.org/10.1103/PhysRevA.93.033853
https://doi.org/10.1103/PhysRevA.93.033853
https://doi.org/10.1103/PhysRevA.93.033853
https://doi.org/10.1103/PhysRevA.70.052315
https://doi.org/10.1103/PhysRevA.70.052315
https://doi.org/10.1103/PhysRevA.70.052315
https://doi.org/10.1103/PhysRevA.70.052315
https://doi.org/10.1103/PhysRevA.85.043815
https://doi.org/10.1103/PhysRevA.85.043815
https://doi.org/10.1103/PhysRevA.85.043815
https://doi.org/10.1103/PhysRevA.85.043815
https://doi.org/10.1103/PhysRevLett.107.100401
https://doi.org/10.1103/PhysRevLett.107.100401
https://doi.org/10.1103/PhysRevLett.107.100401
https://doi.org/10.1103/PhysRevLett.107.100401
https://doi.org/10.1103/PhysRevA.80.033846
https://doi.org/10.1103/PhysRevA.80.033846
https://doi.org/10.1103/PhysRevA.80.033846
https://doi.org/10.1103/PhysRevA.80.033846
https://doi.org/10.1038/nature07128
https://doi.org/10.1038/nature07128
https://doi.org/10.1038/nature07128
https://doi.org/10.1038/nature07128
https://doi.org/10.1038/451664a
https://doi.org/10.1038/451664a
https://doi.org/10.1038/451664a
https://doi.org/10.1038/451664a
https://doi.org/10.1038/nature02851
https://doi.org/10.1038/nature02851
https://doi.org/10.1038/nature02851
https://doi.org/10.1038/nature02851
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1103/PhysRevA.75.032329
https://doi.org/10.1103/PhysRevA.75.032329
https://doi.org/10.1103/PhysRevA.75.032329
https://doi.org/10.1103/PhysRevA.75.032329
https://doi.org/10.1038/nature05461
https://doi.org/10.1038/nature05461
https://doi.org/10.1038/nature05461
https://doi.org/10.1038/nature05461
https://doi.org/10.1103/PhysRevA.91.022122
https://doi.org/10.1103/PhysRevA.91.022122
https://doi.org/10.1103/PhysRevA.91.022122
https://doi.org/10.1103/PhysRevA.91.022122
https://doi.org/10.1103/PhysRevB.78.104508
https://doi.org/10.1103/PhysRevB.78.104508
https://doi.org/10.1103/PhysRevB.78.104508
https://doi.org/10.1103/PhysRevB.78.104508
https://doi.org/10.1038/nphys462
https://doi.org/10.1038/nphys462
https://doi.org/10.1038/nphys462
https://doi.org/10.1038/nphys462
https://doi.org/10.1126/science.1069372
https://doi.org/10.1126/science.1069372
https://doi.org/10.1126/science.1069372
https://doi.org/10.1126/science.1069372
https://doi.org/10.1103/PhysRevB.80.144508
https://doi.org/10.1103/PhysRevB.80.144508
https://doi.org/10.1103/PhysRevB.80.144508
https://doi.org/10.1103/PhysRevB.80.144508
https://doi.org/10.1103/PhysRevB.57.347
https://doi.org/10.1103/PhysRevB.57.347
https://doi.org/10.1103/PhysRevB.57.347
https://doi.org/10.1103/PhysRevB.57.347
https://doi.org/10.1103/PhysRevLett.103.146404
https://doi.org/10.1103/PhysRevLett.103.146404
https://doi.org/10.1103/PhysRevLett.103.146404
https://doi.org/10.1103/PhysRevLett.103.146404
https://doi.org/10.1063/1.4722336
https://doi.org/10.1063/1.4722336
https://doi.org/10.1063/1.4722336
https://doi.org/10.1063/1.4722336
https://doi.org/10.1103/PhysRevLett.112.074101
https://doi.org/10.1103/PhysRevLett.112.074101
https://doi.org/10.1103/PhysRevLett.112.074101
https://doi.org/10.1103/PhysRevLett.112.074101
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.80.2245
https://doi.org/10.1103/PhysRevLett.80.2245
https://doi.org/10.1103/PhysRevLett.80.2245
https://doi.org/10.1103/PhysRevLett.80.2245
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/PhysRevB.85.024537
https://doi.org/10.1103/PhysRevB.85.024537
https://doi.org/10.1103/PhysRevB.85.024537
https://doi.org/10.1103/PhysRevB.85.024537
https://doi.org/10.1103/PhysRevA.88.042302
https://doi.org/10.1103/PhysRevA.88.042302
https://doi.org/10.1103/PhysRevA.88.042302
https://doi.org/10.1103/PhysRevA.88.042302
https://doi.org/10.1103/PhysRevA.88.062332
https://doi.org/10.1103/PhysRevA.88.062332
https://doi.org/10.1103/PhysRevA.88.062332
https://doi.org/10.1103/PhysRevA.88.062332
https://doi.org/10.1209/0295-5075/88/20011
https://doi.org/10.1209/0295-5075/88/20011
https://doi.org/10.1209/0295-5075/88/20011
https://doi.org/10.1209/0295-5075/88/20011
https://doi.org/10.1103/PhysRevA.81.012105
https://doi.org/10.1103/PhysRevA.81.012105
https://doi.org/10.1103/PhysRevA.81.012105
https://doi.org/10.1103/PhysRevA.81.012105
https://doi.org/10.1088/1751-8113/49/37/375303
https://doi.org/10.1088/1751-8113/49/37/375303
https://doi.org/10.1088/1751-8113/49/37/375303
https://doi.org/10.1088/1751-8113/49/37/375303



