
PHYSICAL REVIEW A 95, 042114 (2017)

Purification in rapid-repeated-interaction systems

Daniel Grimmer,1,2,* Robert B. Mann,1,2,3,† and Eduardo Martı́n-Martı́nez1,3,4,‡
1Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

2Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
3Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada N2L 2Y5

4Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
(Received 28 November 2016; published 10 April 2017)

We investigate the open dynamics of a quantum system which is rapidly repeatedly updated by a quantum
channel. Specifically, we analyze when this dynamics can purify the system. We develop a necessary and sufficient
condition for such purification effects to occur and characterize their strength. We thoroughly analyze the specific
scenario of a quantum system undergoing rapid unitary interactions with a sequence of ancillary quantum
systems. We find that, while the purification effects are generally present, in order for these effects to be strong
compared to the decoherence effects the interaction Hamiltonian must have a minimum degree of complexity.
Specifically, a tensor product interaction Q̂S ⊗ R̂A as well as many common light-matter interactions cannot purify
efficiently.
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I. INTRODUCTION

The study of the interaction of quantum systems with
an unknown environment is relevant to a host of different
disciplines ranging from applied physics and engineering to the
foundations of quantum theory. For instance, phenomena such
as environment-induced decoherence and dephasing hinder
our ability to control quantum systems and the flow of
quantum information [1–5]. Thus it is of capital importance
to understand these effects in our efforts to build a quantum
computer. Furthermore, such studies are also crucially relevant
in our understanding of fundamental topics in quantum theory
such as the measurement problem [6] and, more generally, in
the context of quantum thermodynamics [7].

When one thinks of the interaction between a quantum sys-
tem and its environment, the words dephasing (loss of purity)
and decoherence come to mind: even if the system and the
environment together evolve unitarily, the system’s effective
dynamics will experience nonunitary evolution. However, not
all nonunitary effects decrease purity, so it is thinkable that
interaction with an environment can, in principle, also decrease
the entropy of the system. Open dynamics can indeed be useful
in many different ways. For example, a system could be driven
by open dynamics to a fixed point which has some useful
property [8], such as enabling entanglement farming [9].

In this paper we consider the open dynamics that emerges
out of the rapidly repeated application of a completely positive
trace preserving (CPTP) map. In general these maps can be
selected by a stochastic process, such that consecutive updates
may not be identical, instead being drawn from some fixed
distribution [10]. Within these setups, we will especially focus
on the particular CPTP maps generated by the sequential
interaction of a system with an ensemble of ancillas. This
setup can be thought of as modeling the environment as
a sequence of constituents which repeatedly couple to the
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system in rapid succession. In general, there may be a variety
of types of constituents and couplings, in which case the
update procedure will be stochastic as described above. In
the literature, these scenarios are referred to as repeated
interaction systems or collision models [11–15]. These models
have been successfully applied to varied phenomena such as,
for instance, the study of quantum coherence [16–19], quantum
thermodynamics [20–26], the measurement problem (through
its close relationship with the quantum Zeno effect [8]), and
even decoherence in gravitation [27–29] and cosmology [30].

Here, we will investigate the particularly interesting possi-
bility that rapid-repeated-interaction can cause the system’s
purity to increase rather than to just introduce dephasing.
Additionally, we study the conditions for this purification
to be efficient, here meaning of comparable strength to the
dephasing and decoherence effects present in the dynamics.

Specifically, we will show that many common types
of simple repeated interactions cannot efficiently purify in
the rapid-interaction regime. We will demonstrate that the
interaction between a system and the constituents of its
environment needs to have a minimum degree of complexity
in order to cause significant purification. We will identify
the necessary and sufficient conditions for a rapid-repeated-
interaction scenario to have significant purification effects
on the system. We will also provide particular examples of
interactions that can and cannot efficiently increase a system’s
purity under rapid-repeated-interaction. We will pay special
attention to more experimentally relevant setups such as spin
J-coupling, the coupling of a qubit to an environment of
harmonic oscillators, and we will report particularly surprising
results concerning the interaction of the degrees of freedom
of electrons in atomic orbitals with relativistic quantum fields,
such as the electromagnetic (EM) field.

This paper is structured as follows. Section II reviews
the rapid-repeated-interaction formalism developed in [10,31].
Section III studies when and how strongly rapid-repeated-
interaction can purify. Section IV addresses the specific
scenario of ancillary bombardment. Finally, Sec. V presents
examples of classes of interactions which can or cannot purify
efficiently, including the light-matter interaction.
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II. RAPID-REPEATED-INTERACTION FORMALISM

In this section we review the results in [10], paying close
attention to more subtle aspects of their formulation in terms
of open dynamics of rapid-repeated-interaction.

Generally, a rapid-repeated-interaction scenario consists of
a quantum system being frequently updated by a quantum
channel. Before we present the formalism for updating by a
general quantum channel, it may be helpful to have a more
concrete setup in mind.

Specifically, a very natural way of thinking about this kind
of setup is to consider a quantum system being bombarded
by a sequence of ancillary quantum systems, undergoing a
brief unitary interaction with each of them. This scenario,
which we term ancillary bombardment, generates nontrivial
open dynamics in the system, as discussed broadly in [10].
In Sec. IV of this paper we analyze the degree to which this
scenario can cause the system state to increase its purity.

As an example, ancillary bombardment could be used
to model a system interacting with its environment by
assuming that it repeatedly interacts unitarily with individual
constituents of the environment. Another example of such a
scenario is a laboratory system that is repeatedly bombarded
by probes (see [10] for examples).

With this concrete scenario in mind we can proceed with
more formal analysis. A rapid-repeated-interaction scenario
considers a finite dimensional quantum system, labeled S,
which evolves (in time steps of duration δt) by the repeated
application of a quantum channel, φ(δt). At each time T =
n δt , the discrete-time evolution of the system’s density matrix
is given by

ρS(n δt) := φ(δt)n[ρS(0)], (1)

for integer n. We make the natural assumption that the strength
of each individual interaction is finite, so that in the continuous
interaction limit, that is, as δt → 0, we have that φ(δt) → 1
(nothing happens in no time). This is in contrast to approaches
where the strength of the interaction is taken to infinity as
δt → 0 [29,32] (for an in-depth comparison with previous
work see [10]). Note that since φ(δt) → 1 as δt → 0, for
small enough δt , we know φ(δt) is invertible. Additionally, we
assume that φ(δt) is differentiable at δt = 0, with derivative
φ′(0) (things happen at a finite rate).

Given such a discrete update map, φ(δt), we can construct a
continuous-time interpolation scheme for the dynamics given
by Eq. (1). Specifically, we find a unique interpolation scheme
by making the following three assumptions for the continuous-
time evolution.

(1) The evolution is Markovian, such that

ρS(t) := exp(t Lδt )[ρS(0)], (2)

or equivalently

d

dt
ρS(t) = Lδt [ρS(t)], (3)

whereLδt (the effective time-independent Liouvillian) is some
superoperator which generates time translations for the system.

(2) The evolution exactly matches the discrete dynamics (1)
at the end of every time step. Using Eq. (2) this means

exp(n δt Lδt ) = φ(δt)n (4)

or equivalently

exp(δt Lδt ) = φ(δt). (5)

(3) The evolution’s effective Liouvillian,Lδt , is well defined
in the continuous interaction limit, that is, as δt → 0.

These three conditions uniquely specify the interpolation
scheme that is generated by

Lδt := 1

δt
ln[φ(δt)], (6)

where we have taken the logarithm’s principal branch cut,
that is, the one with ln(1) = 0. Note that our assumption that
φ(δt) → 1 as δt → 0 guarantees that φ(δt) will be nonsingular
in the short-time regime, and hence will have a well-defined
logarithm.

The first condition guarantees that the interpolation scheme
is generated by some effective time-independent Liouvillian,
and the second condition forces this Liouvillian to have the
form of Eq. (6). The third condition resolves the ambiguity
of the logarithm’s branch cut by forcing ln(1) = 0, which is
necessary to make Lδt well defined as δt → 0. Moreover,
this branch cut allows us to calculate Lδt as δt → 0 (using
L’Hôpital’s rule) to be

L0 := lim
δt→0

Lδt = d

d δt

∣∣∣∣
δt=0

ln[φ(δt)]

= φ−1(0) φ′(0)

= φ′(0). (7)

Thus, in the continuum limit, evolution is generated by the
derivative of the update map. This result was first explicated
in [31].

Taking all this into account, we can faithfully describe the
discrete-time evolution, Eq. (1), of a quantum system using
the continuous-time interpolation scheme (3), generated by
Eq. (6).

If in addition to the minimal regularity assumed above,
that is, φ(δt) → 1 as δt → 0 and φ′(0) exists, we also have
that φ(δt) is analytic at δt = 0, we can then form the series
expansion

φ(δt) = 1 + δt φ1 + δt2 φ2 + δt3 φ3 + · · · (8)

and from this

Lδt = L0 + δt L1 + δt2 L2 + δt3 L3 + · · · . (9)

As shown in [10], the first few superoperator coefficients are
given recursively by

L0 := φ1, (10)

L1 := φ2 − 1
2L0

2, (11)

L2 := φ3 − 1
2 (L0L1 + L1L0) − 1

6L0
3, (12)

L3 := φ4 − 1
2 (L0L2 + L2L0)

− 1
6 (L0

2L 1 + L0L1L0 + L1L0
2) − 1

24L0
4 (13)

with the higher-order terms following a similar pattern.
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From the series (9), the master equation for the interpolation
scheme (3) becomes

d

dt
ρS(t) = L0[ρS(t)] + δt L1[ρS(t)] + δt2L2[ρS(t)] + · · · .

(14)

Given such an update map φ(δt) we can compute these coef-
ficient maps and analyze their effects in the system dynamics.
For instance, in the case of an ancillary bombardment defined
above, L0 generates unitary dynamics [10,31]. Thus within
this model any decoherence effects require finite interaction
times. In [10] it was shown that decoherence effects generically
appear in L1, that is, at first order in δt .

In the following sections we will analyze under what
conditions rapid-repeated-interaction can increase the purity
of a system, rather than just introducing decoherence.

III. PURIFICATION CONDITIONS

In this section, we find a necessary and sufficient condition
for when the discrete dynamics given by Eq. (1) can cause
purification of a finite dimensional system.

Throughout this paper when we say that dynamics can
purify/cause purification we mean that there exists some
system state, ρS, the purity of which, P(ρS) = Tr(ρS

2),
increases under the dynamics.

Note that this is a relatively weak notion of causing purifi-
cation; the dynamics just need to slightly increase the purity
of one state for us to say it can cause purification. However,
in Sec. III C we introduce a stronger notion of purification,
characterizing when dynamics can purify efficiently (with
comparable strength to its decoherence).

In Sec. II we converted the discrete-time dynamics (1)
into the continuous-time Markovian dynamics (3), generated
by the effective Liouvillian (6). We will now discuss the
exact conditions for such an interpolation scheme to cause
purification, show that this interpolation scheme can purify
if and only if the discrete dynamics does too, and finally
characterize the strength of such purification effects.

A. Markovian purification

In [33] it was proven that for a finite d-dimensional system
the dynamics generated by a Liouvillian, L, will decrease (or
maintain) the purity of every state if and only if it is unital,
that is,

L[I ] = 0, (15)

where I is the d-dimensional identity matrix. Note that, as
in [33], we can say such a Liouvillian is unital in the sense that
the evolution which it generates is unital, exp(t L)[I ] = I.

Logically, therefore, the dynamics generated by some L
will increase the purity of something (can purify) if and only
if it is not unital, that is,

L[I ] �= 0. (16)

Recalling that the maximally mixed state is given by ρ = I/d,
we can restate this as follows: Markovian dynamics can purify
if and only if it moves the maximally mixed state. Throughout

this paper we will refer to I and the maximally mixed state
synonymously.

The condition (16) is clearly sufficient for the dynamics to
cause purification since if the maximally mixed state is moved
by the dynamics its purity must increase. This follows from
the maximally mixed state being the unique minimum purity
state.

Note, however, that this is not true for infinite dimensional
systems. The question of purification of infinite dimensional
systems under Markovian dynamics has been analyzed in
depth [33], with the result that L not being unital is still
necessary for causing purification, but is no longer sufficient.

The necessity of Eq. (16) to cause purification follows from
the claim [33]

d

dt
P(ρ) = d

dt
Tr (ρ2) � Tr (L[I ] ρ2) (17)

the proof of which we reproduce with our notation in
Appendix A.

B. Interpolation faithfully capturing purification effects

In the following, we prove that, in the rapid-interaction
regime, the interpolation scheme (3) faithfully captures the
presence of purification effects in the discrete dynamics (1).

First we argue that any purification effects in the discrete
dynamics is captured by the interpolation scheme. Suppose
that applying the update map, φ(δt), increases the purity of
some state. By construction, applying the interpolation scheme
for a duration δt to this state has to yield the same result.
Because the interpolation scheme is smooth, at some point in
this duration it must have increased some state’s purity.

Next, we consider the possibility that the interpolation
scheme could indicate that there is purification when none is
present in the discrete dynamics. Suppose that the interpolation
scheme (3) instantaneously purifies some state. Then by the
purification condition discussed in Sec. III A, we must have
Lδt [I ] �= 0. From the matching condition (5), this implies that

φ(δt)[I ] = exp(δt Lδt )[I ]

= I + δt Lδt [I ] + (δt2/2)Lδt [Lδt [I ]] + · · · (18)

and we therefore conclude φ[I ] �= I . For interaction times
small enough, we can neglect the O(δt2) terms.

Thus the discrete dynamics do in fact cause purification; the
discrete update map moves (hence purifying) the maximally
mixed state. Note that this argument relies on the maximally
mixed state being the unique minimum purity state and so does
not work in infinite dimensions.

From these arguments, we conclude that in the rapid-
repeated-interaction regime the discrete dynamics generated
by φ(δt) can purify if and only if the continuous dynamics
generated by Lδt can. It then follows from Eq. (6) that repeated
applications of φ(δt) can purify if and only φ(δt)[I ] �= I [or
in other words φ(δt) is not unital].

C. Purification strength

Now that we have identified a necessary and sufficient
condition for the dynamics generated by repeated applications
of φ(δt) to purify, we will quantify the strength of this
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purification. Assuming that the quantum channel φ(δt) is
analytic at δt = 0, we can make use of the series expansion (9)
to quantify this strength by noting at what lowest order in δt the
maximally mixed state is moved by the effective Liouvillian,
Lδt . We say that the dynamics purifies at mth order if

Lδt [I ] = O(δtm) (19)

where ord(φ) := m is the purification order of the dynamics.
The smaller ord(φ) is, the stronger the purification effects.
Recall that in infinite dimensions dynamics being nonunital is
not sufficient for purification effects. Therefore this measure of
purification strength only makes sense for finite dimensional
systems.

This notion of purification strength can be translated to the
discrete updater φ(δt) by using either Eq. (18) or the recursive
structure of the coefficient maps in Eq. (9). Concretely,

Lδt [I ] = O(δtm) ⇔ φ(δt)[I ] = I + O(δtm+1), (20)

such that the orders of the nonunital effects are offset by 1
between the discrete update map and the interpolation scheme.

In addition to purification, the strength of other types of
nonunitary effects can be characterized by noting at what order
in δt they arise. For instance one may find that the zeroth-order
dynamics are unitary with decoherence arising at first order and
purification not until third order. In this example, in the rapid-
interaction regime, the purification effects, although always
present, will be much smaller than the decoherence effects.
Thus instead of asking whether or not dynamics possess any
purification effects, we are lead to ask if the dynamics can
purify efficiently, meaning with purification effects appearing
with comparable strength to any other nonunitary effects.

In order to make use of purification effects
experimentally—for example, in an algorithmic cooling
setup [34]—we would like to manufacture interactions which
can purify at the lowest possible order. One may wonder if
this is possible by combining different interaction maps to
engineer a new map with a lower purification order.

However, two simple ways of combining maps together,
namely, concatenation of different maps or applying maps
out of a statistical ensemble (taking convex combinations),
cannot lower the resultant purification order below those of
the original maps.

Specifically, if we take φ(δt) to be a concatenation of a
finite number of maps as

φ(δt) = χ (1)(δt) χ (2)(δt) . . . χ (N)(δt), (21)

then

ord(φ) � min{ord(χ (n))}, (22)

such that φ’s strength is bounded by the strongest χ . Addi-
tionally, taking φ(δt) to be a convex combination of maps as

φ(δt) =
∑

k

pk ψ (k)(δt), (23)

with
∑

k pk = 1 we find

ord(φ) � min{ord(ψ (k))}, (24)

such that φ’s strength is bounded by the strongest ψ . We prove
these claims in Appendix B.

IV. ANCILLARY BOMBARDMENT

We now apply the characterization of purification effects
developed in the previous section to a specific physically
motivated class of update maps.

The simplest type of evolution a quantum system may
undergo is unitary evolution. However, since unitary trans-
formations are unital they cannot purify. In fact, mixed unitary
transformations are also unital, and therefore cannot purify.
Thus in order to cause purification it is necessary to have other
quantum systems with which to couple. It follows from this
that in order to see purification effects one must model the
environment quantum mechanically.

Here we model the environment as being composed of
distinct quantum systems which interact with the system
sequentially. The update map for one such interaction is given
by

φ(δt)[ρS] = TrA[exp(−i δt adĤ /h̄)(ρS ⊗ ρA)] (25)

where adĤ (A) = [Ĥ ,A] for any operator A. Physically, this
map describes the system, S, first engaging with an ancilla, A,
which is in the state ρA, then interacting for a time δt under
the joint Hamiltonian

Ĥ = ĤS ⊗ 1 + 1 ⊗ ĤA + ĤSA, (26)

and finally decoupling from ancillas, which is discarded.
This update map could be used to model a wide variety

of scenarios. For example, it could model each discrete step
of the dynamics of a system repeatedly interacting with the
constituents of its environment, or an atom being bombarded
with light or with other atoms in a laboratory setting (both
examples of ancillary bombardment).

Note that the necessary and sufficient condition to cause
purification, Eq. (16), which was discussed in Sec. III, requires
that S be finite dimensional. However, there is no such
restriction on the ancillary systems, A, to which S couples.

This update map is sufficiently well behaved in the rapid-
interaction limit—recall that we require φ(δt) → 1 as δt → 0
and that φ′(0) exists—and so we can construct the unique
Markovian interpolation scheme as prescribed in Sec. II.
Moreover, since the update map is analytic around δt = 0,
we can expand it in powers of δt as in Eq. (8):

φ1[ρS] = −i

h̄
TrA([Ĥ ,ρS ⊗ ρA]), (27)

φ2[ρS] = 1

2!

(−i

h̄

)2

TrA([Ĥ ,[Ĥ ,ρS ⊗ ρA]]), (28)

φ3[ρS] = 1

3!

(−i

h̄

)3

TrA([Ĥ ,[Ĥ ,[Ĥ ,ρS ⊗ ρA]]]), (29)

φ4[ρS] = 1

4!

(−i

h̄

)4

TrA([Ĥ ,[Ĥ ,[Ĥ ,[Ĥ ,ρS ⊗ ρA]]]]) (30)

and so on. We can thus expand the effective Liouvillian as in
Eq. (9).

In [10,31], a general family of update maps including
Eq. (25) were analyzed at zeroth and first order using the
rapid-repeated-interaction formalism discussed in Sec. II. The
full generality of the interactions considered in [10] includes
allowing time dependence in the interaction Hamiltonian as
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well as taking an arbitrary convex combination of multiple
interaction types, with different types of ancilla and with
different couplings.

Remarkably, in [31], it was found that L0 generates unitary
evolution. For the dynamics generated by Eq. (25) we have

L0[ρS] = −i

h̄
[Ĥeff,ρS] (31)

where the effective Hamiltonian Ĥeff is given by

Ĥeff := ĤS + Ĥ (0), (32)

that is, the system’s free Hamiltonian plus a new term,
Ĥ (0), which comes from the repeated interactions. This new
contribution to the dynamics is given by

Ĥ (0) := TrA(ĤSAρA). (33)

Note that since the leading-order dynamics is unitary it cannot
affect the purity of the system. Thus any decoherence effects
must arise at subleading order in the dynamics. The leading
possible order for purification effects is thus first order.

The first-order dynamics, L1, was analyzed in full detail
in [10], and was generally seen to give rise to dephasing effects.
For the dynamics generated by Eq. (25), L1 is given by

L1[ρS] = −i

h̄
[Ĥ (1),ρS] − 1

2

(−i

h̄

)2

[Ĥ (0),[Ĥ (0),ρS]]

+ 1

2

(−i

h̄

)2

TrA([ĤSA,[ĤSA,ρS ⊗ ρA]]) (34)

where

H (1) = −i

2h̄
TrA(ĤSA [ĤA,ρA]). (35)

The first-order dynamics,L1[ρS], consists of two different con-
tributions. One is a new unitary contribution to the dynamics,
Ĥ (1), which [after examination of Eqs. (33) and (35)] can be
understood as a correction to Ĥ (0) accounting for the ancilla
evolving under its free Hamiltonian during the interaction.
Secondly, there are two other terms that are not unitary and
will, in general, affect the purity of the system.

Note that Eq. (34) can be cast in Lindblad form, as shown
in [10]. In principle, finding a Lindblad form for the system
dynamics is possible at any order in δt , as long as one allows
for negative decoherence rates. The reason for that is that,
in ancillary bombardment, the Dyson expansion (27)–(30) is
trace preserving at all orders in δt (see, e.g., [35]). While
finding the exact form and sign of the decoherence modes and
rates is, in general, cumbersome it may be an interesting task
to consider addressing elsewhere.

Since Eq. (34) generically introduces dephasing effects at
order δt , for any purification effects to have a comparable
impact on the dynamics they must also appear at first order.
Thus in the language introduced in Sec. III C, in order for
the dynamics to cause purification efficiently, it must cause
purification at first order, that is,

L1[I ] = 1

2

(−i

h̄

)2

TrA([ĤSA,[ĤSA,I ⊗ ρA]]) �= 0 (36)

or in other words L1 must already be able to move the
maximally mixed state. Note that this just depends on the

interaction Hamiltonian and the state of the ancilla, and not on
either of the free Hamiltonians.

In the following subsections we investigate the algebraic
conditions that an interaction Hamiltonian needs in order to
purify efficiently, that is, to satisfy Eq. (36).

A. Tensor product interaction

We begin by analyzing the simplest model for an interaction
Hamiltonian, namely, the tensor product of scalar observables.
The joint Hamiltonian under this type of coupling is

Ĥ = ĤS ⊗ 1 + 1 ⊗ ĤA + Q̂S ⊗ R̂A, (37)

where Q̂S and R̂A are observables of the system and ancilla,
respectively. This type of interaction is a very common
interaction model considered throughout the literature of
rapid-repeated-interaction [29,32].

In Appendix C, we show that the effect of the first-order
dynamics on the maximally mixed state vanishes, L1[I ] = 0.
Thus rapid-repeated-interaction under the Hamiltonian (37)
cannot purify efficiently. In fact we also show that the
second-order effects vanish, L2[I ] = 0. Continuing on, we
find the leading-order purification effect is given by

L3[I ] = 1

12h̄4 TrA([R̂A,[ĤA,R̂A]]ρA) [Q̂S,[ĤS,Q̂S]]. (38)

Note that if the ancillas are infinite dimensional then the above
calculations require that any relevant permutations of R̂A, ĤA,
and ρA are trace class. We note that every such permutation
contains ρA. This means that the trace class conditions above
can be translated into the finiteness of the expectation value of
various products of R̂A and ĤA. For instance it is required that

TrA(R̂A
2 ĤA ρA) = 〈R̂A

2 ĤA〉 < ∞. (39)

As we have just seen, a tensor product interaction will in
general only be able to purify at third order, that is, two orders
lower than the leading-order decoherence effects. The con-
clusion of this analysis is that, perhaps unintuitively, a tensor
product interaction of the kind ĤSA = Q̂S ⊗ R̂A will in general
strictly decrease purity at leading order in decoherence effects.
This analysis allows us to conclude that any rapid-repeated
tensor product interaction model cannot capture phenomena
involving an entropy decrease in S, such as cooling.

B. Interaction via nonproduct Hamiltonians

After having established that tensor product Hamiltonians
cannot purify efficiently, we now investigate whether it is
possible to do so through rapid-repeated-interaction under a
Hamiltonian that is the sum of two scalar couplings, i.e.,

ĤSA = Q̂S ⊗ R̂A + ŜS ⊗ T̂A. (40)

Note that while in Eq. (37) it was necessary that the
operators being coupled were self-adjoint, this restriction is
not necessary in Eq. (40). Instead it must be required that the
whole sum is self-adjoint; for example, one might have

HSA = F̂ ⊗ Â† + F̂ † ⊗ Â (41)

where F̂ and Â are some non-self-adjoint operators.
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In Appendix C, we show that the effect of L1 on the
maximally mixed state, Eq. (36), is

L1[I ] = 1

(ih̄)2
[Q̂S,ŜS] TrA([R̂A,T̂A]ρA). (42)

Again, if the ancillas are infinite dimensional, then the above
calculation requires that all relevant permutations of R̂A, T̂A,
and ρA are trace class.

In contrast to the simple interaction (37), the interaction
Hamiltonian (40) can purify efficiently. Specifically it can
purify efficiently if and only if the two system observables
(Q̂S and ŜS) do not commute, and the two ancilla observables
(R̂A and T̂A) do not commute on average with respect to the
initial state of the ancilla, ρA.

From this we can move to the most general case, by noting
that any interaction Hamiltonian, HSA, can be decomposed as
a sum of tensor products:

ĤSA =
∑

j

Q̂S,j ⊗ R̂A,j . (43)

Note that we do not need to impose that Q̂S,j and R̂A,j are
self-adjoint; only the full sum needs to be so.

In Appendix C we show that, for the general case of
Eq. (43), the effect of L1 on the maximally mixed state,
Eq. (36), is

L1[I ] = 1

2

(−i

h̄

)2 ∑
i,j

[Q̂S,i ,Q̂S,j ] TrA([R̂A,i ,R̂A,j ]ρA) (44)

and as before, if the ancillas are infinite dimensional, then
the above calculation requires that all relevant permutations of
R̂S,i , R̂S,j , and ρA are trace class.

Thus the condition that an interaction Hamilton be able to
purify efficiently is∑

i,j

TrA([R̂A,i ,R̂A,j ]ρA) [Q̂S,i ,Q̂S,j ] �= 0. (45)

In order for Eq. (45) to be nonzero, a Hamiltonian of the form
of Eq. (43) must have a pair of terms whose system parts do not
commute and whose ancilla parts do not commute on average.

Thus rapid-repeated-interaction with ancillas under an
arbitrary Hamiltonian (43) will in general be able to purify
efficiently. In Sec. V, we will show some simple nonproduct
interactions that can purify efficiently. Conversely, we will also
show some remarkable common types of nonproduct coupling
that, nevertheless, cannot purify efficiently due to cancellations
within Eq. (44).

Note that while the above analysis only considers the
specific form of the update map given by Eq. (25), we can
extend these results to a much wider class of update maps by
making use of the results described at the end of Sec. III C.

C. Time-dependent interactions

Additionally our analysis easily extends to include cases
of ancillary bombardment where the Hamiltonian is explicitly
time dependent. The dissipation effects in this scenario were
analyzed in [10]. In particular they considered the Hamiltonian
to be of the form

Ĥδt (t) = ĤS ⊗ 1̂ + 1̂ ⊗ ĤA + ĤSA(t/δt). (46)

The update map for such an interaction is given by

φ(δt)[ρS] = TrA(Uδt (δt)(ρS ⊗ ρA)Uδt (δt)
†) (47)

where Uδt (t) is the unitary transformation,

Uδt (t) = T exp

(∫ t

0
dτ Ĥδt (τ )

)
(48)

and T is the time-ordering operation. This unitary transfor-
mation is generated by a time-dependent Hamiltonian, Ĥδt (t).
From [10], we can compute the effect of L1 on the maximally
mixed state, Eq. (36), as

L1[I ] = 1

2

(−i

h̄

)2

TrA([G0(ĤSA),[G0(ĤSA),I ⊗ ρA]]) (49)

where

G0(ĤSA) :=
∫ 1

0
ĤSA(ξ ) dξ (50)

is the unweighted time average of the interaction Hamiltonian.
Thus we can see that the ability of an interaction Hamil-

tonian to purify efficiently only depends on its time average.
Thus a time-dependent interaction can purify efficiently if and
only if its time average can.

V. EXAMPLES

In this section, we investigate several specific interaction
Hamiltonians in light of the necessary and sufficient condition
to purify efficiently, which we described in the previous
section, namely, that when written as a sum of tensor products,
Eq. (43), it must satisfy Eq. (45).

A. Isotropic spin coupling (σ̂ S · σ̂ A)

As an example of an interaction capable of purifying
efficiently, we consider the isotropic spin-spin interactions

ĤSA = h̄ J σ̂ S · σ̂ A = h̄ J σ̂S
j ⊗ σ̂Aj (51)

where we use Einstein’s summation notation of implicitly
summing over all repeated indices.

From Eq. (44) we can compute the effect of L1 on the
maximally mixed state as

L1[I ] = 1

2

(−i

h̄

)2

(h̄J )2 〈[σ̂Ai ,σ̂Aj ]〉 [σ̂S
i ,σ̂S

j ]

= 4 J 2 〈σ̂ A〉 · σ̂ S (52)

where, for convenience, we have introduced the notation 〈 · 〉 =
TrA( · ρA).

In terms of Bloch vectors, Eq. (52) expresses the intuitive
result that the maximally mixed state, aS = 0, is moved in
the direction of the ancilla’s Bloch vector, aA = 〈σ̂ A〉. Thus
unless the ancillas are in the maximally mixed state there
will be purification effects in the dynamics at leading possible
order.

B. Qubit-harmonic oscillator coupling

We find another example of an interaction Hamiltonian that
can purify by considering a qubit which repeatedly interacts
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with a sequence of harmonic oscillators via the interaction
Hamiltonian

ĤSA = h̄ω (σ̂x ⊗ x̂ + σ̂y ⊗ p̂) (53)

where x̂ = (â + â†)/2 and p̂ = i(â − â†)/2 are quadrature
operators for a harmonic oscillator. Note that here we are
dropping the S and A labels from the Pauli and quadrature
operators respectively. From Eq. (44) we can compute the
effect of L1 on the maximally mixed state as

L1[I ] =
(−i

h̄

)2

(h̄ω)2 〈[x̂,p̂]〉 [σ̂x,σ̂y]

= 2 ω2 σ̂z. (54)

Thus the maximally mixed state is initially polarized in the z

direction under this interaction regardless of the state of the
harmonic oscillator ancillas. This type of interaction can, in
principle, be implemented in superconducting circuits [36],
achieving fast switching times in the ultrastrong switchable
coupling regime [37].

Note that in this example the ancillas are infinite di-
mensional; the above calculation therefore requires that the
following expectation values are finite:

〈x̂2〉, 〈p̂2〉, 〈{x̂,p̂}〉, 〈[x̂,p̂]〉. (55)

This is true, among many others, for any Gaussian state of the
harmonic oscillator (coherent, squeezed, thermal, etc.) and for
any finite superposition of Fock-like states.

C. Vector-vector couplings

As discussed in Sec. IV A rapidly interacting with an ancilla
via a tensor product of two scalar observables, ĤSA = Q̂S ⊗
R̂A, cannot purify at leading order. A natural generalization
of this coupling is to instead couple two vector observables
componentwise (through their dot product) as

ĤSA = V̂ S · Ŵ A := V̂S
j ⊗ ŴAj . (56)

From Eq. (44), the effect of L1 on the maximally mixed state
is

L1[I ] = 1

2

(−i

h̄

)2

〈[ŴAi ,ŴAj ]〉 [V̂S
i ,V̂S

j ]. (57)

Thus, for repeated interactions under Eq. (56) to purify
efficiently, the components of V̂ must not commute amongst
themselves, and the components of Ŵ must not either.

Many common vector observables such as x̂, p̂, Ê(x0), and
B̂(x0) do not pass this test, while others such as L̂ and σ̂ do.
Thus vector-vector couplings involving any of x̂, p̂, Ê(x0), or
B̂(x0) cannot purify efficiently whereas couplings involving
L̂ or σ̂ potentially can depending on what they are coupled to.

From this we can generalize further to the case of two vector
fields coupled componentwise throughout all of space as

HSA =
∫

dx V̂ S(x) · Ŵ A(x) =
∫

dx V̂S
j (x) ⊗ ŴAj (x).

(58)

A necessary condition for repeated interaction of this type of
Hamiltonian to purify efficiently is that at least one of the
following two conditions holds.

(1) Neither V̂ S(x) nor Ŵ A(x) is microcausal. (Recall that
an observable X̂ is microcausal if [X̂i(x),X̂j (x′)] only has
support on x = x′).

(2) Neither V̂ S(x) nor Ŵ A(x) has its components commute
locally amongst themselves, i.e., [X̂i(x),X̂j (x)] �= 0.

To see that this is the case, we compute the effect of L1 on
the maximally mixed state from Eq. (44) as

L1[I ] =
(−i

h̄

)2
∫

dx
∫

dx′ 〈[ŴAi(x),ŴAj (x′)]〉

× [V̂S
i(x),V̂S

j (x′)]. (59)

If one of V S(x) or W A(x) is microcausal then the integral’s
domain can be reduced to the x = x′ region. From there,
whichever of V S(x) or WA(x) has its components locally com-
muting causes the integrand to vanish. Thus such interactions
cannot purify efficiently.

D. Light-matter interaction

Let us now focus on a concrete relevant model used in
quantum optics: we will analyze the ability of the light-
matter interaction to purify in the context of rapid-repeated-
interaction.

Let us consider an atom interacting with a second-quantized
electromagnetic field. Let us take the atom as the target
system, S, and the field as the ancilla, A, to which the system
is repeatedly coupled. Physically, one can imagine atoms
bombarded by pulses of light. Note that here we are dropping
the S and A labels from the atomic and electromagnetic
operators respectively.

Note that in this example the ancilla (the EM field) is infinite
dimensional. The following calculations therefore require that
all relevant permutations of the electric and magnetic fields
along with the field’s density matrix are trace class. This point
is discussed at length in Appendix D.

We begin by showing that any single multipolar coupling
of the electric field to an atom cannot purify at leading order
in rapid-repeated-interaction.

First, we consider the electric dipole interaction given by

ĤSA = q x̂j Êj =
∫

dx q x̂j |x〉〈x| ⊗ Êj (x)

=
∫

dx d̂j (x) ⊗ Êj (x) (60)

where d̂j (x) = q xj |x〉〈x| is the dipole moment operator at a
position x [38,39].

In this form, the interaction is written as the coupling of
two vector fields throughout all of space. This is the scenario
that was analyzed at the end of the previous subsection. It is
enough to note that the electric field is microcausal and the
components of d̂(x) commute amongst themselves locally (in
fact, both observables have both properties) to conclude that
the electric dipole interaction cannot purify efficiently on its
own.

Similarly, if we consider the electric quadrupole coupling
given by

HSA = q x̂i x̂j∇i Êj =
∫

dx Q̂ij (x) ⊗ ∇i Êj (x) (61)
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where Q̂ij (x) = q xixj |x〉〈x| is the quadrupole moment
operator at a position x, we find that it cannot purify efficiently
on its own. This is again because ∇i Êj (x) is microcausal
and the components of Q̂ij (x) commute amongst themselves
locally.

Similarly, every higher multipolar electric coupling cannot
purify efficiently on its own since higher derivatives of
the electric field remain microcausal and the components
of the higher moment operators always commute amongst
themselves locally.

We are thus lead to wonder if combinations of electric
multipole couplings can purify efficiently. We find that linear
combinations of different electric multipole couplings cannot
purify efficiently either. For example consider the combination
of electric dipole and electric quadrupole interactions

HSA = q x̂kÊk + q x̂i x̂j∇i Êj

=
∫

dx (d̂k(x) ⊗ Êk(x) + Q̂ij (x) ⊗ ∇i Êj (x)). (62)

In computing the effect of L1 on the maximally mixed state,
Eq. (44), the cross terms within the dipole coupling will vanish,
as will the cross terms within the quadrupole coupling. Only
the cross terms between the two couplings remain, yielding

L1[I ]=
(−i

h̄

)2∫
dx

∫
dx′ 〈[Êk(x),∇i Êj (x′)]〉 [d̂k(x),Q̂i j (x′)].

(63)

However, this too vanishes since

[d̂k(x),Q̂i j (x′)] = 0 (64)

for all x and x′. This can be easily seen by noting that both
d̂k(x) and Q̂ij (x) are diagonal in the position basis.

In the same fashion, we can see that any combination of
any electric multipolar couplings will not be able to purify
efficiently. Thus rapid repeated light-matter interactions where
matter couples only to the electric field are unable to purify
efficiently.

Thus for the light-matter interaction to purify efficiently it
must involve the magnetic field. We can carry out a similar
analysis with the magnetic dipole interaction given by

ĤSA = q

2m
{L̂k,B̂k} =

∫
dx μ̂k(x) ⊗ B̂k(x) (65)

where μ̂k(x) = (q/2m)(L̂k |x〉〈x| + |x〉〈x| L̂k) is the mag-
netic dipole operator at a position x. The Hamiltonian (65)
is again the coupling of two vector fields throughout all
of space. We conclude as before that the magnetic dipole
interaction cannot purify efficiently since the magnetic field
both is microcausal and has its components commute amongst
themselves locally.

We next investigate the possibility of combining electric
and magnetic couplings. A first very simple combination
of electric and magnetic couplings that we can consider is

the combination of the electric dipole and magnetic dipole
couplings:

HSA = q x̂j Êj + q

2m
{L̂k,B̂k}

=
∫

dx (d̂j (x) ⊗ Êj (x) + μ̂k(x) ⊗ B̂k(x)). (66)

This interaction Hamiltonian satisfies the necessary con-
dition for purification to appear at leading order, as dis-
cussed in previous sections, namely, [d̂j (x),μ̂k(x′)] �= 0 and
[Êj (x),B̂k(x′)] �= 0.

As above the cross terms within each of the electric and
magnetic couplings will vanish and only the commutators
mixing the electric and magnetic field will survive. Computing
the effect of L1 on the maximally mixed states, Eq. (44), yields

L1[I ] =
(−i

h̄

)2∫
dx

∫
dx′ 〈[Êj (x),B̂k(x′)]〉 [d̂j (x),μ̂k(x′)].

This integrand is nonzero but, remarkably, the integral over x
and x′ vanishes. The mechanism for this cancellation is partic-
ularly interesting, and is discussed in detail in Appendix E.
Therefore, despite the fact that the coupling satisfies the
necessary condition for purification discussed in Sec. IV B,
rapid-repeated-interaction which involve both the electric and
magnetic dipole couplings cannot purify efficiently.

This result is easily extended to more general light-matter
couplings. For example, in the case of the more physically
relevant combination of both the electric quadrupole and
magnetic couplings

HSA = q x̂i x̂j∇i Êj + q

2m
{L̂k,B̂k}

=
∫

dx (Q̂ij (x) ⊗ ∇i Êj (x) + μ̂k(x) ⊗ B̂k(x)) (67)

we find a similar cancellation that yields no purification at
leading order. Any higher-order electric couplings will exhibit
the same cancellation as will the combination of several
electric multipolar moments along with the magnetic dipole
moment.

Summarizing, we have proven that the most common mod-
els of light-matter interactions employed in quantum optics
[38]—i.e., those involving any combination of electric mul-
tipolar couplings and the magnetic dipole coupling—cannot
purify at leading order under rapid-repeated-interaction.

VI. CONCLUSION

We analyzed the ability of rapid-repeated-interaction to
purify a quantum system. In particular, we considered the
formalism developed in [10,31], where a quantum system
evolves (in discrete time steps of duration δt) under the
repeated application of a quantum channel.

We have studied and characterized the strength of purifi-
cation effects of these rapid-repeated-interaction, namely, at
what order in δt the dynamics can lead to purification. We
have shown that, perhaps contrary to intuition, the purifi-
cation strength cannot be increased by combining different
rapid-repeated-interaction dynamics by composition or convex
combination.
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After this general study, we have investigated in depth the
purifying power of a particularly relevant scenario that we
called ancillary bombardment. In this scenario a quantum
system is bombarded by a sequence of ancillas, undergoing
a brief unitary interaction with each of them. For instance, one
can think of an atom interacting with its environment, under
the assumption that it repeatedly interacts unitarily with its
individual constituents. Another example of such a scenario
would be a laboratory system that is repeatedly measured by
probes.

We have shown that simple interaction Hamiltonians
(including some considered in previous literature on rapid-
repeated-interaction [29]) cannot purify at leading order if
their interaction strength remains finite. Furthermore, we
have shown that for an ancillary bombardment to purify at
leading order it must be mediated by a sufficiently complicated
Hamiltonian. Specifically, an interaction consisting of the
tensor products of two scalar observables will not purify at
leading order.

We have found necessary and sufficient conditions for
a ancillary bombardment to purify a quantum system. We
studied what kinds of couplings satisfy them and what kind
of couplings do not. For illustration, we have shown how an
isotropic spin-spin coupling, as well as a specific experimen-
tally feasible interaction of a qubit with a harmonic oscillator,
can purify at leading order under ancillary bombardment.

Furthermore, we have paid special attention to the case
of couplings of system observables to vector fields, and in
particular the case of the multipole moments of an atom
coupled to the fully quantized EM field.

For the case of interaction with relativistic quantum fields
(such as the EM field) we have found necessary conditions for
purification involving the microcausality of the theory.

Remarkably, we have shown that any combinations of
electric multipole couplings and the magnetic dipole coupling
cannot purify at leading order under repeated interaction. This
casts fundamental doubt on the ability of simple quantum
optical setups to increase the purity of atomic qubits under
fast interaction.

These results may perhaps be relevant to the field of
algorithmic cooling and can be used to design setups to prolong
the life of quantum coherence through a controlled exposure to
an environment. The particular implications of these results in
quantum thermodynamics are intriguing and will be analyzed
elsewhere.

In light of our results, one can pose the following interesting
question: can some fast repeated dynamics φ(δt)n reduce
all the mixed states to pure ones when n → ∞? In the
continuous time case this kind of problem has been studied
in depth [40–44]. Characterizing the asymptotic behavior of
φ(δt)n and seeing under what conditions it yields purification
of arbitrary initial states is an important open problem that can
be addressed with our formalism in future works.
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APPENDIX A: NECESSITY OF NONUNITALITY
FOR PURIFICATION

In this appendix we reproduce (in our notation) a proof
given in [33]. Specifically we prove that, for a finite di-
mensional system, in order for the dynamics generated by
a Liouvillian, L, to cause purification it is necessary that the
dynamics are not unital, that is, L[I ] �= 0, where I is the
d-dimensional identity matrix. In order to show this we derive
the inequality

d

dt
P(ρ) = d

dt
Tr (ρ2) � Tr (L[I ] ρ2), (A1)

from which our claim follows directly.
We first write the Liouvillian in a standard form called the

Lindblad form, that is,

L[ρ] = −i

h̄
[Ĥ ,ρ] +

∑
n

�n

(
F̂nρF̂ †

n − 1

2
{F̂ †

n F̂n,ρ}
)

, (A2)

where Ĥ is a Hermitian operator, F̂n are operators, and �n

are non-negative numbers. The operator Ĥ is the effective
Hamiltonian of the dynamics and is said to generate the unitary
part of the dynamics. The operators F̂n are the dynamics
decoherence modes and �n are their respective decoherence
rates. Any Liouvillian can be written in this form [45]. Note
that the effect of the dynamics on the maximally mixed state
is

L[I ] =
∑

n

�n [Fn,F
†
n ]. (A3)

Using the cyclic property of trace we find the rate of change
of systems purity is

d

dt
P(ρ) = d

dt
Tr(ρ2) = 2 Tr (L[ρ] ρ). (A4)

The unitary part of the dynamics does not change the purity,
as expected, since

Tr([H,ρ] ρ) = Tr(H [ρ,ρ]) = 0. (A5)

Thus we can focus our attention on the decoherence modes.
Using Eqs. (A4) and (A5), and the cyclic property of trace, we
have

d

dt
P(ρ) = 2 Tr (L[ρ] ρ)

= 2 Tr

(∑
n

�n (FnρF †
n − {F †

nFn,ρ}/2)ρ

)

=
∑

n

�n 2 Tr (FnρF †
nρ − F †

nFnρ
2). (A6)

For Hermitian ρ, we have the identity

2 Tr(AρA†ρ −A†Aρ2)=Tr([A,A†]ρ2−[A,ρ]†[A,ρ]), (A7)

which yields

d

dt
P(ρ) =

∑
n

�n Tr ([Fn,F
†
n ]ρ2 − [Fn,ρ]†[Fn,ρ])

= Tr (L[I ] ρ2) −
∑

n

�n Tr ([Fn,ρ]†[Fn,ρ]) (A8)
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where we have made use of Eq. (A3) to identify L[I ] in the
first term. Since the second term is manifestly negative we
have the inequality

d

dt
P(ρ) � Tr (L[I ] ρ2) (A9)

claimed in Eq. (17). If L[I ] = 0 then the dynamics will either
maintain or decrease the purity of any state.

In [33], this proof is shown to hold as well for infinite
dimensional systems following some assumptions on the
decoherence modes. In particular, it holds if all F̂n are bounded.

APPENDIX B: CONCATENATION
AND CONVEX COMBINATIONS

In this appendix, we prove that constructing a new map
by taking either concatenations or convex combinations of
different maps cannot lower the resultant purification order,
defined in Eq. (19), below those of the original maps.

1. Concatenation

Suppose we have an update map φ(δt) that is the concate-
nation of two maps χ (1)(δt) and χ (2)(δt):

φ(δt) = χ (1)(δt)χ (2)(δt). (B1)

We can take these two maps to have series expansions about
δt = 0,

χ (1)(δt) = 1 + δt χ
(1)
1 + δt2 χ

(1)
2 + δt3 χ

(1)
3 + · · · , (B2)

χ (2)(δt) = 1 + δt χ
(2)
1 + δt2 χ

(2)
2 + δt3 χ

(2)
3 + · · · , (B3)

and define m1 = ord(χ (1)) and m2 = ord(χ (2)) to be the
purification orders of χ (1)(δt) and χ (2)(δt), respectively, with
m = min(m1,m2). Recall that a map’s purification order is
defined in terms of its interpolation scheme. Converting this
into terms of the update maps we have Eq. (20) such that

χ (1)[I ] = I + O(δtm1+1),

χ (2)[I ] = I + O(δtm2+1). (B4)

Thus we have

χ
(1)
1 [I ] = · · · = χ (1)

m [I ] = 0,
(B5)

χ
(2)
1 [I ] = · · · = χ (2)

m [I ] = 0.

Evaluating φ(δt) on the maximally mixed state yields

φ(δt) = χ (1)(δt)χ (2)(δt) (B6)

=
(
1 +

∞∑
k=1

δtk χ
(1)
k

)(
1 +

∞∑
n=1

δtn χ (2)
n

)
[I ]

=
(
1 +

∞∑
k=1

δtk χ
(1)
k

)(
I +

∞∑
n=1

δtn χ (2)
n [I ]

)

= I +
∞∑

k=1

δtk χ
(1)
k [I ] +

∞∑
n=1

δtn χ (2)
n [I ]

+
∞∑

k=1

∞∑
n=1

δtk+n χ
(1)
k [χ (2)

n [I ]]

= I +
∞∑

k=m+1

δtk χ
(1)
k [I ] +

∞∑
n=m+1

δtn χ (2)
n [I ]

+
∞∑

k=1

∞∑
n=m+1

δtk+n χ
(1)
k

[
χ (2)

n [I ]
]

(B7)

where we have used Eq. (B5) to drop terms from the sums.
From this we can see that any nonunital effects in φ(δt) appear
at at least order m + 1 and thus ord(φ) � m.

By applying this proof repeatedly one can conclude that if
φ(δt) is a concatenation of a finite number of maps as

φ(δt) = χ (1)(δt) χ (2)(δt) . . . χ (N)(δt), (B8)

then

ord(φ) � min{ord(χ (n))} (B9)

as claimed.

2. Convex combinations

Suppose we have an update map φ(δt) which is a convex
combination of maps as

φ(δt) =
∑

k

pk ψ (k)(δt), (B10)

with
∑

k pk = 1. We can take these maps to have series
expansions about δt = 0 as

ψ (k)(δt) = 1 + δt ψ
(k)
1 + δt2 ψ

(k)
2 + δt3 ψ

(k)
3 + · · · . (B11)

Let mk = ord(ψ (k)) be the purification orders of ψ (k)(δt) and
m = min{mk}. Recall that a map’s purification order is defined
in terms of its interpolation scheme. Converting this into terms
of the update maps we have Eq. (20) such that

ψ (k)[I ] = I + O(δtmk+1) (B12)

and thus for every k

ψ
(k)
1 [I ] = · · · = ψ (k)

m [I ] = 0. (B13)

Evaluating φ(δt) on the maximally mixed state yields

φ(δt)[I ] =
∑

k

pk ψ (k)(δt)[I ]

=
∑

k

pk

(
1 +

∞∑
n=1

δtn ψ (k)
n

)
[I ]

=
(
1 +

∞∑
n=1

δtn
∑

k

pk ψ (k)
n

)
[I ]

= I +
∞∑

n=1

δtn
∑

k

pk ψ (k)
n [I ]

= I +
∞∑

n=m+1

δtn
∑

k

pk ψ (k)
n [I ] (B14)

where in the last step we have used Eq. (B13) to drop terms
from the sums. From this we can see that any nonunital effects
in φ(δt) appear at at least order m + 1 and thus ord(φ) � m as
claimed.
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APPENDIX C: CALCULATION OF
PURIFICATION ORDERS

In this appendix we find the leading-order purification
effects in the ancillary bombardment scenario discussed in
Sec. IV, for several different interaction Hamiltonians.

1. History reduction

In the general case, the system and ancilla interact via the
joint Hamiltonian

Ĥ = ĤS ⊗ 1 + 1 ⊗ ĤA + ĤSA. (C1)

To find the leading-order purification effects we compute
Lδt [I ] order by order until we find the first nonzero contribu-
tion. However, due to the recursive structure of the coefficient
maps in Eq. (9) we can simply look for the smallest m such
that φm that moves the identity, φm[I ] �= I . These maps are
given by the partial trace of m nested commutations with Ĥ

applied to I ⊗ ρA. For instance,

φ4[I ] = 1

4!

(−i

h̄

)4

TrA([Ĥ ,[Ĥ ,[Ĥ ,[Ĥ ,I ⊗ ρA]]]]). (C2)

By the linearity of the commutator, these computations involve
all possible ways of picking one of the three terms from
Eq. (C22) for each of the m commutators. In a sum over
histories sense, φm involves all possible ways of the system
and ancilla meeting m times, each time selecting one of ĤSA,
ĤS ⊗ 1, or 1 ⊗ ĤA to evolve under. In human terms, each day
they may either interact with the wider world or stay home and
reflect on their lives.

In order to simplify the following computations we first
work out some immediate reductions that happen when choos-
ing either of the free Hamiltonians for either the innermost or
outermost commutator.

First we see that picking the ancilla’s free Hamiltonian
for the outermost commutator causes history’s contribution to
vanish. This follows directly from the cyclic property of the
partial trace, namely,

TrA((1 ⊗ ĤA)ẐSA) = TrA(ẐSA(1 ⊗ ĤA)) (C3)

for any ẐSA such that

TrA([1 ⊗ ĤA,ẐSA]) = 0. (C4)

Thus choosing ĤA for the outermost commutator yields

TrA([1 ⊗ ĤA,[Ĥ ,[ . . . ,[Ĥ ,I ⊗ ρA]]]]) = 0. (C5)

Note, if the ancillas are infinite dimensional then the above
calculation requires that all relevant ancilla observables are
trace class.

Additionally, if one selects the system free Hamiltonian for
the innermost commutator one finds

TrA([Ĥ ,[. . . ,[Ĥ ,[ĤS ⊗ 1,I ⊗ ρA]]]]) = 0 (C6)

since ĤS ⊗ 1 and I ⊗ ρA act on disjoint sectors of the Hilbert
space.

On the other hand, if one selects the ancilla-free Hamilto-
nian for the innermost commutator the result is expressible in

terms of φm−1[I ]. Specifically one finds

TrA([Ĥ ,[. . . ,[Ĥ ,[1 ⊗ ĤA,I ⊗ ρA]]]])

= TrA([Ĥ ,[. . . ,[Ĥ ,I ⊗ [ĤA,ρA]]]])

∼ φm−1[I ] but with ρA → [ĤA,ρA]. (C7)

In particular, if φm−1[I ] = 0 for any initial ancilla state,
then picking HA for the innermost commutator does not add
anything to the final result.

Finally, if one chooses ĤS for the outermost commutator
we also find that the result is expressible in terms of φm−1[I ].
To show this we first realize that, when acting on a tensor
product, the actions “to commute with ĤS(⊗1)” and “to take
the partial trace over A” commute. Concretely,

TrA([ĤS ⊗ 1,ẐSA]) = [ĤS,TrA(ẐSA)] (C8)

for any ẐSA. By linearity of the commutator and of the partial
trace we need only consider the case when ẐSA is a tensor
product. In this case we find

TrA([ĤS ⊗ 1,X̂S ⊗ ŶA]) = TrA([ĤS,X̂S] ⊗ ŶA)

= [ĤS,X̂S] TrA(ŶA)

= [ĤS,X̂S TrA(ŶA)]

= [ĤS,TrA(X̂S ⊗ ŶA)]. (C9)

Thus choosing ĤS for the outermost commutator results in an
expression of the form

TrA([ĤS ⊗ 1,[Ĥ ,[ . . . ,[Ĥ ,I ⊗ ρA]]]])

= [ĤS,TrA([Ĥ ,[ . . . ,[Ĥ ,I ⊗ ρA]]])]

∼ [ĤS,φm−1[I ]]. (C10)

In particular, if φm−1[I ] = 0, then picking HS for the outermost
commutator does not add anything to the final result.

Taking these four cases into account we have the result that
if φm−1[I ] = 0 for every ρA then the innermost and outermost
commutators are forced to be ĤSA.

2. Tensor product interaction

In this subsection we show that in the ancillary bombard-
ment scenario discussed in Sec. IV, if the system and ancilla
interact via a tensor product of scalar observables as

Ĥ = ĤS ⊗ 1 + 1 ⊗ ĤA + Q̂S ⊗ R̂A, (C11)

then the leading-order purification effects are given by

L3[I ] = 1

12h̄4 [Q̂S,[ĤS,Q̂S]] TrA([R̂A,[ĤA,R̂A]]ρA). (C12)

Proceeding order by order we first use Eqs. (27) and (C4) to
compute

φ1[I ] = −i

h̄
TrA([Ĥ ,I ⊗ ρA])

= 0. (C13)

Next using Eq. (28) we have

φ2[I ] = 1

2!

(−i

h̄

)2

TrA([Ĥ ,[Ĥ ,I ⊗ ρA]]). (C14)
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Recalling the result derived earlier in this appendix, we
know that, since φ1[I ] = 0 for every ρA, we must select the
interaction Hamiltonian in both the innermost and outermost
commutators. Thus,

φ2[I ] = 1

2!

(−i

h̄

)2

TrA([Q̂S ⊗ R̂A,[Q̂S ⊗ R̂A,I ⊗ ρA]]).

(C15)
Computing this yields zero.

Pressing on, from Eq. (29) we have

φ3[I ] = 1

3!

(−i

h̄

)3

TrA([Ĥ ,[Ĥ ,[Ĥ ,I ⊗ ρA]]]). (C16)

Again, since φ2[I ] = 0 for every ρA, all histories without an
interaction at the start and end vanish. Thus,

φ3[I ] = 1

3!

(−i

h̄

)3

TrA([Q̂S ⊗ R̂A,[Ĥ ,[Q̂S ⊗ R̂A,I ⊗ ρA]]]).

(C17)
The Ĥ in this expression yields three terms, all of which vanish.

Finally, from Eq. (30) we have

φ4[I ] = 1

4!

(−i

h̄

)4

TrA([Ĥ ,[Ĥ ,[Ĥ ,[Ĥ ,I ⊗ ρA]]]]). (C18)

Once again, since φ3[I ] = 0 for every ρA we have

φ4[I ] = 1

4!

(−i

h̄

)4

TrA([Q̂S ⊗ R̂A,

[Ĥ ,[Ĥ ,[Q̂S ⊗ R̂A,I ⊗ ρA]]]]). (C19)

The two Ĥ in this expression yield nine terms to check.
All of them vanish except for the two terms with the free
Hamiltonians in the middle. Thus,

φ4[I ] = 1

4!h̄4 TrA([Q̂S ⊗ R̂A,[ĤS ⊗ 1,[1 ⊗ ĤA,

[Q̂S ⊗ R̂A,I ⊗ ρA]]]])

+ 1

4!h̄4 TrA([Q̂S ⊗ R̂A,[1 ⊗ ĤA,[ĤS ⊗ 1,

[Q̂S ⊗ R̂A,I ⊗ ρA]]]])

= 1

12h̄4 [Q̂S,[ĤS,Q̂S]] TrA([R̂A,[ĤA,R̂A]]ρA). (C20)

Heuristically, in a sum over histories sense, this process
involves the system and ancillas interacting with each other,
then each evolving freely, and finally interacting again. Using
Eq. (13) we find

L3[I ] = 1
12h̄4 [Q̂S,[ĤS,Q̂S]] TrA([R̂A,[ĤA,R̂A]]ρA) (C21)

as claimed.

3. Non-tensor-product interactions

In this subsection we show that in the ancillary bombard-
ment scenario discussed in Sec. IV, if the system and ancilla
interact via a sum of tensor products as

Ĥ = ĤS ⊗ 1 + 1 ⊗ ĤA + Q̂S ⊗ R̂A + ŜS ⊗ T̂A, (C22)

then the leading-order purification effects are given by

L1[I ] = 1

(ih̄)2
[Q̂S,ŜS] TrA([R̂A,T̂A]ρA). (C23)

Proceeding order by order we first use Eqs. (27) and (C4) to
compute

φ1[I ] = −i

h̄
TrA([Ĥ ,I ⊗ ρA])

= 0. (C24)

Next, from Eq. (28) we have

φ2[I ] = 1

2!

(−i

h̄

)2

TrA([Ĥ ,[Ĥ ,I ⊗ ρA]]). (C25)

Recalling the result derived earlier in this appendix, we
know that since φ1[I ] = 0 for every ρA we must select the
interaction Hamiltonian in both the innermost and outermost
commutators. Thus,

φ2[I ] = 1

2!

(−i

h̄

)2

TrA([Q̂S ⊗ R̂A + ŜS ⊗ T̂A,

[Q̂S ⊗ R̂A + ŜS ⊗ T̂A,I ⊗ ρA]]). (C26)

Computing this yields

L1[I ] = 1

2(ih̄)2
TrA([Q̂S ⊗ R̂A,[ŜS ⊗ T̂A,I ⊗ ρA]])

+ 1

2(ih̄)2
TrA([ŜS ⊗ T̂A,[Q̂S ⊗ R̂A,I ⊗ ρA]])

= 1

(ih̄)2
[Q̂S,ŜS] TrA([R̂A,T̂A]ρA) (C27)

as claimed.
Heuristically, in a sum over histories sense, this process

involves the system and ancilla interacting with each other
twice via different terms in the full interaction Hamiltonian.

The general expression (44) is a direct generalization of this
case.

APPENDIX D: JUSTIFICATION OF OUR TREATMENT
OF THE LIGHT-MATTER INTERACTION

In our example concerning the light-matter interaction in
Sec. V D the ancilla (the EM field) is infinite dimensional. Thus
we must treat our algebraic manipulations with extra care.
Specifically, we must require that all relevant permutations of
the field’s density matrix along with the electric and magnetic
fields and their gradients must be trace class. This amounts to
various products of the electric and magnetic fields and their
gradients having finite expectation values.

It is well known that in quantum field theory problems such
as UV divergences may make these expectation values be ill
defined. Notice, however, from Eqs. (27)–(30) that the appli-
cability of our formalism is strongly tied to the applicability of
the Dyson expansion in perturbative approaches to quantum
field theory. In particular these matters have been studied in
detail for the coupling of atoms to scalar fields [46,47] and
it has been shown how these results carry to the case of the
electromagnetic field [39,48,49]. The broad conditions under
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which the expectation values above remain finite have been
established in, e.g., [46,47,50].

APPENDIX E: EM DIPOLE CANCELLATION

In this appendix, we show that the combination of any elec-
tric multipolar coupling with the magnetic dipole couplings
cannot purify at leading order in decoherence effect.

We begin with the simplest combination of electric and
magnetic couplings:

HSA = q x̂j Êj + q

2m
{L̂k,B̂k} (E1)

=
∫

dx d̂j (x) ⊗ Êj (x) + μ̂k(x) ⊗ B̂k(x). (E2)

The cross terms within each of the electric and magnetic
couplings will vanish and only the cross terms between them
will survive. Computing the effect of L1 on the maximally
mixed states (44) yields

L1[I ] =
(−i

h̄

)2∫
dx

∫
dx′ 〈[Êj (x),B̂k(x′)]〉 [d̂j (x),μ̂k(x′)].

This integrand is nonzero but, as we will show, the integral
vanishes.

Recall that the electric and magnetic fields have the
commutator

[Êi(x),B̂j (x′)] = −ih̄

ε0
εij

n∇nδ(x − x′) 1 (E3)

where ∇n = ∂/∂xn acts on the x vector.
From this we can see why this interaction cannot purify

at leading order in rapid-repeated-interaction. Integrating by
parts to move the ∇n from the delta function onto d̂(x) has
the effect of transforming d̂i(x) → μ̂j (x) upon using −ih̄εij

n.
This then leads to a vanishing commutator. Using Eq. (E3) we
have

L1[I ] = 1

h̄2

∫
dx

∫
dx′

〈−ih̄

ε0
εij

n∇nδ(x − x′)1̂
〉
[d̂ i(x),μ̂j (x′)]

= −1

h̄2

∫
dx

∫
dx′

〈−ih̄

ε0
εij

nδ(x − x′)1̂
〉
[∇nd̂

i(x),μ̂j (x′)]

= −1

h̄2ε0

∫
dx

∫
dx′ δ(x − x′)〈1̂〉[−ih̄ εij

n∇nd̂
i(x),μ̂j (x′)]

= −1

h̄2ε0

∫
dx [−ih̄ εij

n∇nd̂
i(x),μ̂j (x)] (E4)

and (as we shall demonstrate), since

−ih̄ εij
n∇nd̂

i(x) = −2mμ̂j (x), (E5)

the commutator thus vanishes. This is not unexpected since
d̂ ∼ x̂ and μ̂ ∼ L̂.

In order to show Eq. (E5) we must first note that the Levi-
Cevita symbol, εij

n, forces i �= n such that xi and ∇n commute.
Secondly we must recognize that

−ih̄∇n(|x〉〈x|) = {p̂n, |x〉〈x|}, (E6)

which can be seen by computing

〈ψ | − ih̄∇n(|x〉〈x|) |φ〉
= −ih̄∇n(〈ψ |x〉 〈x|φ〉)
= −ih̄∇n(ψ∗(x)φ(x))

= (−ih̄∇nψ
∗(x))φ(x) + ψ∗(x)( − ih̄∇nφ(x))

= 〈ψ | p̂n |x〉 〈x|φ〉 + 〈ψ |x〉 〈x| p̂n |ψ〉
= 〈ψ | {p̂n, |x〉〈x|} |φ〉 . (E7)

Using these two results we can straightforwardly compute

− ih̄ εij
n∇nd̂

i(x) = −ih̄ εij
n∇n(q xi |x〉〈x|)

= −ih̄ εij
nq x̂i∇n(|x〉〈x|)

= q εij
nx̂i{p̂n, |x〉〈x|}

= q {εij
nx̂i p̂n, |x〉〈x|}

= −q {L̂j , |x〉〈x|}
= −2 m μ̂j (x). (E8)

Thus the commutator in Eq. (E4) vanishes.
In fact, taking a combination of both the electric quadrupole

and magnetic couplings as

HSA = q x̂i x̂j∇i Êj + q

2m
{L̂k,B̂k} (E9)

=
∫

dx Q̂ij (x) ⊗ ∇i Êj (x) + μ̂k(x) ⊗ B̂k(x), (E10)

we find a similar cancellation that will yield no purification
at leading order. Any higher-order electric couplings will
exhibit the same cancellation as will the combination of several
electric multipolar moments along with the magnetic dipole
moment. Thus if there are any light-atom interactions capable
of purifying at leading order they must involve quadrupolar or
higher magnetic couplings.
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