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Normalized Stokes operators for polarization correlations of entangled optical fields
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80-308 Gdańsk, Poland

2Institute of Informatics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland
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Stokes parameters are a standard tool in quantum optics. They involve averaged intensities at exits of polarizers.
If the overall measured intensity fluctuates, as, e.g., for states with undefined photon numbers, the instances of
its increased value contribute more to the parameters. One can introduce normalized quantum Stokes operators.
Operationally, for a given single run of the experiment, their values are differences of measured intensities (or
photon numbers) at the two exits of a polarizer divided by their sum. Effects of intensity fluctuations are removed.
Switching to normalized Stokes operators results in more sensitive entanglement conditions. We also show a
general method of deriving an entanglement indicator for optical fields which use polarization correlations, which
starts with any two-qubit entanglement witness. This allows one to vastly expand the family of such indicators.
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I. INTRODUCTION

In 1852 Stokes introduced his parameters to characterize
polarization of arbitrary states of classical light. The quantum
versions are straightforward application of his ideas. If
one assumes for simplicity that the registered intensity is
proportional to the number of photons, the usual quantum
Stokes operators read �a

i = a
†
i ai − a

†
i⊥ai⊥, where ai are

annihilation operators of photons of polarization i, ai⊥
plays the same role for the orthogonal polarization, and the
index i denotes three complementary polarization analysis
arrangements (e.g., horizontal-vertical, diagonal-antidiagonal,
and right-left–handed circular). The superscript a denotes the
beam (spatial mode). The fourth Stokes observable is the
total intensity �a

0 = N̂a
tot = a

†
i ai + a

†
i⊥ai⊥. It is invariant with

respect to the choice of i.
Strictly nonclassical optical phenomena are observable in

correlations, especially correlations of polarizations at two
or more spatially separated detection stations. Are the above
quantum optical definitions of Stokes operators optimal in the
domain of correlations? The standard approach is to use for
two beams a and b correlation functions

G(a,i; b,j ) =
〈
�a

i �b
j

〉
〈
�a

0

〉 〈
�b

0

〉 . (1)

We shall show that this is not always the optimal. At least for
the examples presented below moving to normalized of Stokes
observables allows one to detect entanglement in situations in
which the traditional approach fails.

II. NORMALIZED STOKES OBSERVABLES

We assume the following measurement procedure defining
the normalized Stokes observables. We have a sequence of
light pulses, which are equivalently prepared. When rth pulse
arrives at a detection station a, which consists of a two-output
polarization analyzer and pair of detectors, one measures the
photon numbers at each output, respectively Na

i (r) and Na
i⊥(r).

The value of the normalized Stokes observable Ŝa
i for the rth

run is then

Sa
i (r) = Na

i (r)−Na
i⊥(r)

Na (r) , (2)

where Na(r) = Na
i (r) + Na

i⊥(r). Additionally, we postulate
that whenever Na(r) = 0, we put Sa

i (r) = 0. We also introduce
〈Sa

0 〉 as the frequency of runs in which Na(r) �= 0. Note
that operational meaning of the traditional approach is that
we separately average, over all runs of the experiment,
Na

i (r) − Na
i⊥(r) to get 〈�a

i 〉, and Na(r) to get 〈�a
0 〉. The usual

normalization of Stokes parameters is via 〈�a
i 〉/〈�a

0 〉.
The normalized Stokes operators are of little practical

value if one considers just one detection station observing
polarization effects. For example, for light of undefined
photon numbers a possible degree of polarization defined as

p′ = 1
〈Sa

0 〉

√∑3
i=1 〈Ŝa

i 〉2
usually gives different values than the

usual definition. If the state is an eigenstate of N̂a
tot, then the

degrees of polarization are identical. However, as we shall
show, in case of some important entangled states of light, if
one observes polarization correlation at two detection stations,
and uses 〈Sa

i Sb
j 〉, together with 〈Sa

0 〉 and 〈Sb
0 〉, instead of (1),

one can observe effects indicating entanglement much more
clearly. For example, we shall formulate a modification of the
widely used (necessary) separability condition of Ref. [1]:∑

i

〈
�a

i + �b
i

〉2
sep � 2

〈
N̂a

tot + N̂b
tot

〉
sep, (3)

where 〈...〉sep denotes an average over a separable state.
We have a highly developed theory of entanglement of

systems described by finite dimensional Hilbert spaces; see,
e.g., Ref. [2]. Still we search for entanglement conditions for
infinite dimensional systems. We shall show that the notion
of normalized Stokes operators allows us to re-formulate
any entanglement witness for two-qubits, like those in [2],
into entanglement indicators involving polarization measure-
ments for quantum optical fields. Further generalizations are
possible.

To the best of our knowledge the normalized Stokes
observables used here cannot be found in the literature. For
example, a recent extensive discussion of proposals for degree
of polarization of quantum fields [3] does not cover the ideas
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presented here. The unconventional definition of the degree
of polarization of Luis [4] is based on different concepts and
more involved measurement techniques.

Below, we shall use the number operator n̂i = a
†
i ai as our

model for intensity observable. However, obvious generaliza-
tions of our formalism to other models [5] exist.

III. MATHEMATICAL FORMULATION

In the quantum optical formalism the normalized Stokes
observables read

Ŝa
i = �a

a
†
i ai − a

†
i⊥ai⊥

N̂tot
�a. (4)

We explain notation below, while addressing the most im-
portant technical features of the formula. In order to avoid
problems with vacuum components of states, which give zero
in the denominator, Ŝa

i is formulated in such a way so that
it acts only in the nonvacuum sector of the Fock space of
photons: symbols �a stand for projectors Î − |0,0〉aa〈0,0|,
where |0,0〉a is the vacuum state of the two polarization
modes of beam a satisfying ai |0,0〉a = ai⊥|0,0〉a = 0. We
also introduce 〈Ŝa

0 〉 = Tr[�a�], which is the probability of
a nonvacuum event. For more mathematical properties of the
modified Stokes operators, see Appendix A.

The numerator in the definitions can be put as A†σiA,

where σi is a Pauli matrix, and A† is a row matrix [a†
H a

†
V ],

while A is its “column Hermitian conjugate” involving the
annihilation operators. Any Pauli operator is represented by
�m · �σ , where �m is a unit real vector, and �σ is a “vector” built out
of three Pauli matrices: (σ1,σ2,σ3). Thus the normalized Stokes
operator for any elliptic polarization, associated with the vector

�m, reads �m · �̂Sa = �a
A† �m·�σA

N̂tot
�a. Obviously, for all �m, one has

|〈 �m · �̂Sa〉| � 〈Ŝa
0 〉, and thus | �m · 〈 �̂Sa〉| � 〈Ŝa

0 〉, where 〈 �̂Sa〉 is
a Stokes vector built out of the three components 〈Ŝa

i 〉. The
inequality holds for any unit �m. By choosing the �m which is

parallel to 〈 �̂Sa〉, one gets an important property:

3∑
i=1

〈
Ŝa

i

〉2 �
〈
Sa

0

〉2 � 1. (5)

Note that the definition (4) introduces operators of a
completely different nature than the pseudospin ones [6]. The
pseudospin operators have as their spectrum just ±1, while the
normalized Stokes operators (4) have a spectrum which covers
all rational numbers between 1 and −1. For example, the z

component of pseudospin is (−1)n̂, where n̂ is the number
of photons operator for the given mode. While one missing
photon completely flips the value of the pseudospin, in the
case of observables (4), for higher photon numbers, the value
does not change much.

IV. BETTER ENTANGLEMENT CONDITIONS: EXAMPLE

We shall formulate an analog of the separability condition
of Ref. [1] for normalized Stokes observables. As in Ref. [1],
as our example of an optical state we shall consider the four

mode squeezed vacuum:

|BSV 〉 = 1

cosh2 �

∞∑
n=0

√
n + 1 tanhn �|ψ (n)

− 〉. (6)

The 2n photon singlets in (6) are given by

|ψ (n)
− 〉 = 1√

n + 1

n∑
m=0

(−1)m|n − m〉aH
|m〉aV

|m〉bH
|n − m〉bV

,

(7)

where a and b refer to the two directions along which the
photon pairs are emitted, H/V denote horizontal-vertical
polarization, and � represents an amplification gain, which
is proportional to the strength of the pump and the coupling.
The state represents (strongly) driven type II parametric down
conversion process [1,7].

A. Separability condition based on EPR correlations

An analog of the separability condition of Ref. [1], see
inequality (3), for standard Stokes operators can be formulated
by employing the intuition that for the two photon singlet, and
also for four mode bright squeezed vacuum state (a generalized
singlet; see, e.g., Ref. [8]), one has∑

i

〈(
Ŝa

i + Ŝb
i

)2〉 = 0. (8)

This EPR condition can also be put in a more sophisticated
form which is a reformulation of the condition given in
Iskhakov et al. [9], but we shall not discuss this here. We
shall show below that for no separable state the expression (8)
can be zero.

One has∑
i

〈(
Ŝa

i + Ŝb
i

)2〉
sep =

∑
i

〈
Ŝa2

i + Ŝb2
i + 2Ŝa

i Ŝb
i

〉
sep. (9)

Recalling the well-known formula for the usual Stokes
operators (see, e.g., Klyshko [10]),∑

i

�̂a2
i = N̂tot(N̂tot + 2), (10)

one can find its equivalent for the new Stokes operators,
∑

i

Ŝa2
i = �a + 2�a

1

N̂a
tot

�a. (11)

Therefore, the values of the first two terms of the right-hand
side (RHS) of (9) are 〈Ŝa

0 〉sep + 2〈�a
1

N̂a
tot

�a〉sep and 〈Ŝb
0 〉sep +

2〈�b
1

N̂b
tot

�b〉sep. The lowest possible value of
∑

i〈Ŝa
i Ŝb

i 〉sep can
be established by the following observations. Note that the
decomposition of a separable state into a probabilistic mixture
of pure states is given by

∑
λ pλ�

a(λ)�b(λ). Each of the local
states ρk(λ) is endowed with normalized Stokes parameters

�sk(λ) = Tr[ �̂Sk�k(λ)] and sk0(λ)=Tr[Ŝk
0�k(λ)], where k=a,b.

Using the above one gets∑
i

〈
Ŝa

i Ŝb
i

〉
sep =

∑
λ

pλ�sa(λ) · �sb(λ). (12)

The following holds for any vectors: 2�sa(λ) · �sb(λ) �
|�sa(λ)|2 + |�sb(λ)|2. This in turn is less than |�sa(λ)| + |�sb(λ)|,
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because the local normalized Stokes vectors in the expression
cannot have norms larger than 1; see (5). Next we notice
that |�sk(λ)| � sk0(λ), and finally that 〈Ŝk

0 〉sep = ∑
λ pλsk0(λ).

Therefore, we reach

2 min
∑

λ

pλ�sa(λ) · �sb(λ) � −〈
Ŝa

0

〉
sep − 〈

Ŝb
0

〉
sep. (13)

Thus a necessary condition for a state to be separable reads

∑
i

〈(
Ŝa

i + Ŝb
i

)2〉
sep

� 2

(〈
�a

1

N̂a
tot

�a

〉
sep

+
〈
�b

1

N̂b
tot

�b

〉
sep

)
. (14)

B. Comparison with the earlier approach

In Appendix C we show that the condition (14), in the
case of noise modeled by photon losses (nonperfect efficiency
of detection), detects the entanglement of |BSV 〉 better than
the analog condition (3), Ref. [1]. No matter what is the
gain parameter �, the standard condition (3) fails to detect
the entanglement in |BSV 〉 for η � 1/3, see Bouwmeester
and Simon [1], while the new condition still works for lower
efficiencies than 1/3. The actual threshold η(�) is a decreasing
function of �, which is less than 1/3 for all � > 0.

This has interesting ramifications. The condition (14)
allows the following. In theory, for perfect detection case,
η = 1, one can beam-split both beams, a and b, in a
polarization neutral way, by using three output polarization-
neutral beam splitters (tritters) of the property that they split
the incoming beams into three beams of equal (average)
intensities. If we now place at the exits of the local beam
splitters three polarization measurement stations, set to mea-
sure simultaneously three complementary polarizations (e.g.,
horizontal-vertical, diagonal-antidiagonal, left-right circular),
the conditions (3) would not be capable of detecting en-
tanglement of |BSV 〉. However, condition (14) would still
detect entanglement, because the pairs of identical polarization
measurement devices, one at side a, the other at b, would give
correlations as if we had an experiment without the tritter,
but with detection efficiency η = 1/3. Thus while the old
condition obeys the standard “complementarity rule of thumb,”
the new one does not. Of course the reason, for circumventing
the complementarity rule in the second case, is that in the case
of |BSV 〉 we do not have defined photon numbers, and the
state has components with arbitrarily high photon numbers,
|ψ (n)

− 〉. The strict polarization complementarity rule works in
the case of condition (14) only for the component of BSV with
one photon in beam a and one photon in beam b, that is, for
the singlet |ψ (1)

− 〉.
The above remarks hold also for the singlets |ψ (n)

− 〉
themselves, for n � 2. For states of fixed total photon number,
like |ψ (n)

− 〉, and perfect detection, the two conditions are
fully equivalent. However, surprisingly, if one introduces the
detection losses, the condition (14) performs much better than
(3). This is the more pronounced the higher is n. In the limit of
n → ∞, the threshold efficiency for condition (14) approaches
zero, while for (3) it stays put at 1/3 (see Appendix C).

V. CONSTRUCTING POLARIZATION ENTANGLEMENT
INDICATORS FOR QUANTUM OPTICAL FIELDS

One can map entanglement conditions for qubits, for a
review see Horodecki et al. [2], into entanglement indicators
for optical fields employing the new polarization parameters.
We present this for two beam situations. Generalizations are
obvious.

The map. Take an entanglement witness, Ŵ , or any other
indicator of two qubit nonseparability. Expand it in terms
of local Pauli operators. This is always possible as Pauli
observables form the basis in the linear space of all one-qubit
observables. We get Ŵ = W (σa

μ,σ b
ν ), where μ,ν = 0,1,2,3,

and a,b now denote the qubits. Finally we make a replacement:
σ k

i → Ŝk
i and σ k

0 → Ŝk
0 , to get a quantum optical witness

ŴQO = W (Ŝa
μ,Ŝa

ν ). Next one has to find the upper or lower
bound for this operator in the case of separable states of optical
fields, that is Bmin � 〈ŴQO〉sep, or Bmax � 〈ŴQO〉sep, one of
which gives the necessary condition for separability.

To illustrate this, let us take the condition for separability
of two-qubit states derived by Yu et al. [11]. We choose this
example because of its generality. The condition of Yu et al. is
equivalent to the partial transposition condition (PPT), which
is a sufficient and necessary separability condition for two
qubit states. It reads

〈
σa

x σ b
x + σa

y σ b
y

〉2 + 〈
σa

z σ b
0 + σa

0 σb
z

〉2 �
〈
σa

0 σb
0 + σa

z σ b
z

〉2
,

(15)

for any choice of orthogonal directions �x,�y,�z. This is mapped
to

1〈
Ŝa

0 Ŝb
0

〉 (√〈
Ŝa

x Ŝb
x + Ŝa

y Ŝb
y

〉
2 + 〈

Ŝa
z Ŝb

0 + Ŝa
0 Ŝb

z

〉
2 − 〈

Ŝa
z Ŝb

z

〉)
� 1,

(16)

where we use the convention that i = x,y,z, As it cannot be
for sure a necessary and sufficient condition for separability
of the quantum optical states, we shall now give only the
proof of its necessity (i.e., that a violation of this condition
indicates entanglement).

The inequality (15) holds also for any pure product state of
two qubits. Thus the Bloch vectors of the two qubits, �ba and
�bb, must satisfy

0 � 1 + ba
z b

b
z −

√(
ba

xb
b
x + ba

yb
b
y

)2 + (
ba

z + bb
z

)2
. (17)

This can be linearized, as for any α,

0 � 1 + ba
z b

b
z + cos α

(
ba

xb
b
x + ba

yb
b
y

) + sin α
(
ba

z + bb
z

)
. (18)

Next, notice that the above inequality holds for Bloch vectors
of products of mixed states of two qubits. Thus one can have
|�bk| � 1. Therefore, if one introduces two numbers ba

0 and bb
0,

one has such that |�bk| � bk
0 � 1, and one has

0 � ba
0b

b
0 + ba

z b
b
z + cos α

(
ba

xb
b
x + ba

yb
b
y

)
+ sin α

(
ba

z b
b
0 + ba

0b
b
z

)
. (19)

Inequality (19) can be used for the components of vectors
�sk(λ), and parameters s0k(λ) introduced earlier, which are the
Stokes-like parameters for product states of light in beams a
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and b, which enter the convex expansion of a given separable
state into product states. We have

0 � sa0sb0 + sazsbz + cos α(saxsbx + saysby)

+ sin α(sazsb0 + sa0sbz), (20)

where the symbols (λ) were dropped. After averaging over
probability pλ, and using the Cauchy inequality for the terms
with trigonometric functions, one gets (16). QED.

With such a technique one can derive necessary conditions
for separability based on any other two-qubit entanglement
criterion.

A. Separability conditions with standard quantum
Stokes parameters

Note that such conditions have their equivalents in the
traditional approach to Stokes parameters. In such a case
product states ρk(λ) are endowed with Stokes vectors of
arbitrary lengths. Let us denote their components by za

i (λ)
and za

j (λ). It is obvious that the following algebraic identity
holds (λ’s are again dropped):

0 � ||�za||||�zb|| + za
z z

b
z

−
√(

za
xz

b
x + za

yz
b
y

)2 + (
za
z ||�zb|| + ||�za||zb

z

)2
. (21)

For any ρk(λ), one has 〈n̂k
tot〉(λ) = Tr[Nk

totρ
k(λ)] � ||�zk(λ)||.

Thus in inequality (21), one can replace ||�zk(λ)|| by 〈n̂k
tot〉(λ),

just as it was done in (20). Upon convex summation over the
probabilities of the product states in the separable state, one
reaches the following separability condition with traditional
Stokes operators:

1〈
N̂a

totN̂
b
tot

〉(√〈
�̂a

x �̂b
x + �̂a

y �̂b
y

〉
2 + 〈

�̂a
z N̂b

tot + N̂a
tot�̂

b
z

〉
2

− 〈
�̂a

z �̂b
z

〉)
� 1. (22)

B. Comparison of conditions (16) and (22)

Figure 1 shows the strength of violation of the separability
conditions (22) and (16) by the bright squeezed vacuum.
Normalized Stokes observables outperform the traditional
ones for all finite �. This signals a better noise tolerance (see
Appendix B for detailed calculations).

A different example, based on the approach presented here,
less general and less sensitive to entanglement, but still beating
its analog expressed in terms of standard Stokes operations,
can be found in [12].

VI. FINAL REMARKS

The redefined approach to polarization correlations of
quantum states of light with undefined total photon number
allows us to see violations of separability, in experiments using
polarization measurements, in situations in the case of which
more traditional approaches fail to detect entanglement.

The intuitive reason for this is that in the traditional
approach the average total intensities are used to “normalize”
the correlation function 〈�̂a

i �̂b
j 〉, while in our approach, we

have a normalized polarization measurement in each run. We

3.0

2.0

2.5

1.5

1.0
0.5 1.0 1.5 2.0

Stokes
parameters

redefined Stokes parameters

separability threshold

FIG. 1. Comparison of entanglement criteria for the BSV state.
The criteria are based on different definitions of the Stokes observ-
ables: traditional (22) and normalized (16). � is the amplification
gain; see (6). The symbol E stands for the value of the left-hand
sides. Above level of 1.0 we detect entanglement. The gap between
the two curves indicates more robust violations of separability of the
condition based on the normalized Stokes observables. This implies
higher noise resistance.

use averages of correlations of “polarization events” with
normalized read-out values of the Stokes parameters. They
are totally independent of the measured intensity (fluctuating
from run to run). Photon’s polarization is an observable
which is independent of its momentum and energy; thus our
re-normalization is in tune with this intuitive aspect.

Run-by-run measurements of total intensity and polariza-
tion parameters are possible and in fact performed in the labs
[9]. Most importantly, measurements of normalized Stokes
observables do not require any special new techniques. Just as
for correlations of the standard Stokes observables, what one
needs to register in each experimental run r are Na

i (r), Na
i⊥(r),

Nb
i (r), and Nb

i⊥(r).
Our results show that one can detect entanglement of optical

fields, using only polarization measurements, for significantly
broader families of states, than in the case of the traditional
approach. In a separate work [13] we show that the method
can be tailored in such a way, so that one can construct Bell
inequalities for optical fields, based only on the assumptions
of realism, locality, and “freedom.” Such (fully) device in-
dependent entanglement conditions are, surprisingly, violated
by a wider class of states than standard Bell inequalities [14]
involving intensities (and requiring additional assumptions).

The approach can be extended to multiparty situations, and
beyond polarization measurements, see our reports [15] and
forthcoming manuscripts.
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APPENDIX A: MATHEMATICAL PROPERTIES
OF THE MODIFIED STOKES OPERATORS

The normalized Stokes operators written up using the
quantum optical formalism read

Ŝa
i = �a

a
†
i ai − a

†
i⊥ai⊥

N̂tot
�a. (A1)

The basic properties of the operators were explained in the
main text. Here we show their other properties. Please notice
that operators a

†
i ai and a

†
i⊥ai⊥ as well as N̂tot = a

†
i ai + a

†
i⊥ai⊥

obviously all commute with each other. But so does the
projector �a = Î − |0,0〉aa〈0,0|; it commutes with all of
them. The joint eigenbasis for all these self-adjoint operators
is the Fock basis, with states |ni,ni⊥〉a , where ni and ni⊥
are non-negative integers, with the notation defined by the
eigenvalues

a
†
i aia

†
i⊥ai⊥|ni,ni⊥〉a = nini⊥|ni,ni⊥〉a. (A2)

Thus, as all its constituents are self-adjoint linear operators,
so is Ŝa

i . Notice that as mixed states are described by density
operators, which are also linear and self-adjoint, for any convex
combination of any two such states ρ̂1 and ρ̂2, given by p1ρ̂1 +
p2ρ̂2, with p1 and p2 positive and p1 + p2 = 1, one has the
usual algebraic property that Ŝa

i (p1ρ̂1 + p2ρ̂2) = p1Ŝ
a
i ρ̂1 +

p2Ŝ
a
i ρ̂2. Therefore, all the general results given in the main text

(that is, the inequalities forming conditions for separability)
apply both to pure and mixed states. We have chosen as our
working example the pure bright squeezed vacuum state only
because of its importance in quantum optics.

APPENDIX B: BRIGHT SQUEEZED VACUUM

The (four-mode, bright) squeezed vacuum state is given by
the following formula:

|BSV 〉 = 1

cosh2 �

∞∑
n=0

√
n + 1 tanhn �|ψ (n)

− 〉, (B1)

where

|ψ (n)
− 〉 = 1√

n + 1

n∑
m=0

(−1)m|n − m〉aH
|m〉aV

|m〉bH
|n − m〉bV

.

(B2)

The state is endowed with perfect EPR correlations; we have

∑
i

〈(
Ŝa

i + Ŝb
i

)2〉 =
∑

i

〈(
�̂a

i + �̂b
i

)2〉 = 0, (B3)

for all values of �. The state is a result of action of
type II parametric down-conversion Hamiltonian, proportional
to a

†
Hb

†
V − a

†
V b

†
H + H.c. on the initial state, which is vacuum in

all modes. The gain parameter � depends on the pump power,
interaction time (essentially, duration of the pump pulse), and
the coupling.

For |BSV 〉 nonvanishing correlation tensor elements, de-
fined by T ′

ij = 〈Ŝa
i Ŝb

j 〉/〈Ŝb
0 Ŝb

0 〉, read

T ′
11 = T ′

22 = T ′
33

= 16 ln(1/ cosh2 �) − cosh 4� − 12 cosh 2� + 13

12 sinh2 �(3 + cosh 2�)
,

(B4)

while nonzero Tij = 〈Ŝa
i Ŝb

j 〉 are given by

T11 = T22 = T33

= 1

3

(
2 ln(1/ cosh2 �) − cosh 2� + 2

cosh4 �
− 1

)
. (B5)

For the traditional Stokes parameters the correlation tensor
reads ij = 〈�̂a

i �̂b
j 〉/〈�̂b

0 �̂b
0 〉, and we have

11 = 22 = 33 = 2 cosh2 �

1 − 3 cosh 2�
. (B6)

We also have 〈Ŝa
i Ŝb

0 〉 = 〈�̂a
i �̂b

0 〉 = 0, and 〈Ŝa
0 Ŝb

i 〉 =
〈�̂a

0 �̂b
i 〉 = 0. The above formulas are used to get the curves of

Fig. 1.

1. Calculation technique

In the main text we compare the strength of separability
conditions∑

i

〈(
�a

i + �b
i

)2〉
sep � 2

〈
N̂a

tot + N̂b
tot

〉
sep (B7)

and
∑

i

〈(
Ŝa

i + Ŝb
i

)2〉
sep � 2

(〈
�a

1

N̂a
tot

�a

〉
sep

+
〈
�b

1

N̂b
tot

�b

〉
sep

)

(B8)

in the case of losses (see the main text for explanation of the
notation).

We perform our calculations using the properties of the 2n

photon singlets ψn
−, formula (B2), which are components of the

bright squeezed vacuum state (B1). This is possible because
of the following observation. The bright squeezed vacuum is a
rotationally invariant state, and such are also all ψn

−. Therefore,
for each ψn

− the three squares on the left-hand sides of (B7),
and also of (B8), will be equal to each other (in both old
and new inequalities). Hence, when considering the left-hand
sides, it is enough to consider only a square of one component,
e.g., in (B8) just (Ŝa

i + Ŝb
i )2, and multiply the result by three.

This greatly simplifies the calculations. Further, as none of
the operators used in (B7) and (B8) changes the total photon
number the averages for these conditions can be calculated
as a sum of averages for the component singlets ψn

−. Thus
effectively we have, e.g.,

〈(
�a

i + �b
i

)2〉
BSV

=
∞∑

n=0

|C(n,�)|2〈ψn
−|(�a

i + �b
i

)2|ψn
−〉,

(B9)

where C(n,�)are the expansion coefficients in the formula for
the squeezed vacuum (B1) This also applies to the RHSs of the

042113-5
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FIG. 2. Values of the critical efficiency ηcrit for the states ψn
− with

n � 100. The starting value for n = 1 is exactly 1/3.

criteria, as all operators there do not change the total number
of photons in each component of BSV, ψn

−.
Similar remarks apply to calculations of the correlation

tensor elements.

APPENDIX C: SQUEEZED VACUUM WITH LOSSES:
VIOLATIONS OF SEPARABILITY CONDITIONS

Here we study to what extent a noise, due to losses,
affects violations of the conditions (B7),(B8) by polarization
correlations generated by the squeezed vacuum.

For simplicity we shall assume that only our detectors
are inefficient (no losses in transmission channels). This will
be modeled in the usual way, by a perfect photon-number
resolving detector, which however reports a registered photon
only with a probability (efficiency) η < 1.

We shall show that for the condition (B7) the threshold
efficiency is η = 1

3 . This agrees with the value given in [1]. This

threshold value does not change with the gain parameter �.
In contrast the threshold efficiency is lower for the condition
(B8). The critical efficiency is less than 1/3 for all nonzero
�’s, and is a decreasing function of �.

We perform our analysis using the properties of the 2n

photon singlets ψn
−, formula (B2). Losses within our model do

not break the rotational invariance. Hence, when considering
the left-hand sides, it is enough to consider only a square of
one component and multiply it by three. Please note that our
approach is to assume that at each side the true number of
photons is detected; thus as in the perfect efficiency case in
each run we have collapses to the ψn

− states.

1. Calculation of critical efficiency for the singlets ψn
−

Assume that in a run of the experiment nX photons, in total,
reach the detectors of observer X, out of that nX

i,+ and nX
i,−

(X = a,b) in respective modes (+,− denote the two outputs
of an analyzer set to distinguish between polarization i and i⊥).
However, only mX

i,+ � nX
i,+ and mX

i,− � nX
i,− are actually

registered by each detector.
The probabilities of registration numbers are given by the

binomial distribution. Namely, the probability that we register
mX

± photons in a certain mode, given that we should have seen
nX

±, for the detector efficiency η, reads

p
(
mX

±|nX
±,η

) =
(

nX
±

mX
±

)
ηmX

± (1 − η)n
X
±−mX

± . (C1)

Let us first analyze the criterion (B7). For ψn
−, let us

establish the critical η, such that after losses the inequality
is no longer violated; that is, we have

LHSn
(old) � RHSn

(old), (C2)

where LHSn
(old) denotes the LHS of inequality (B7), and

RHSn
(old) is the RHS of it, both calculated for ψn

− and inefficient
detectors. One has

LHSn
(old) = 3

1

n + 1

n∑
i=0

i∑
j,m=0

n−i∑
k,l=0

p(j |i,η)p(k|n − i,η)p(l|n − i,η)p(m|i,η)

(
j − k + l − m

2

)2

= 3
n

2
η(1 − η), (C3)

and the right-hand side reads

RHSn
(old) = 1

n + 1

n∑
i=0

i∑
j,m=0

n−i∑
k,l=0

p(j |i,η)p(k|n − i,η)p(l|n − i,η)p(m|i,η)
j + k + l + m

2
= ηn. (C4)

It is easy to verify that condition (C2) is satisfied for any n, provided η � 1
3 .

Similar relations for the condition (B8) can be put as follows. If the condition is no longer violated by ψn
− (after the losses)

one has

LHSn
(new) � RHSn

(new), (C5)

where

LHSn
(new) = 3

1

n + 1

n∑
i=0

i∑
j,m=0

n−i∑
k,l=0

p(j |i,η)p(k|n − i,η)p(l|n − i,η)p(m|i,η)

(
(1 − δj+k)

j − k

j + k
+ (1 − δl+m)

l − m

l + m

)2

,

RHSn
(new) = 1

n + 1

n∑
i=0

i∑
j,m=0

n−i∑
k,l=0

p(j |i,η)p(k|n − i,η)p(l|n − i,η)p(m|i,η)

(
(1 − δj+k)

2

j + k
+ (1 − δl+m)

2

l + m

)
. (C6)

042113-6



NORMALIZED STOKES OPERATORS FOR POLARIZATION . . . PHYSICAL REVIEW A 95, 042113 (2017)

The symbol δk+l denotes the Kronecker δ, with its nonzero value for k + l = 0. The δ’s have to be executed first. Their role is
to remove any contribution of terms with no registered photons at each side. We have numerically found η saturating inequality
(C5) for up to n = 100. The values for low n are given in Fig. 2.

The values of ηcrit for the ψn
− singlets follow the function ηcrit = 1 − ( 2

n+2 )1/n, at least up to n = 100. Note that this suggests
that for n → ∞ the critical η approaches zero. Thus, as |BSV 〉 is a superposition of states ψn

−, the critical efficiency to detect
entanglement with the condition involving new Stokes parameters is for all values of � less that 1/3, and decreases with
growing �. Simply, for high � the terms with higher n’s contribute more; this is because of the form of expansion coefficients:
C(n,�) = √

n + 1 tanhn �

cosh2 �
.
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