
PHYSICAL REVIEW A 95, 042108 (2017)

Thermal quantum transition-path-time distributions, time averages, and quantum tunneling times
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The transition-path-time distribution is formalized for quantum systems and applied to a number of examples.
Using a symmetrized thermal density, transition times are studied for the free particle, a δ-function potential, a
square-barrier potential, and symmetric-double-well dynamics at very low temperature. These studies exemplify
extreme nonlocality for motion in δ-function potentials, vanishing tunneling times for the square-barrier potential,
and varying transit times in the symmetric-double-well potential. In all cases, there are regions where the longer
the distance traversed, the shorter the mean transit time is. For the thermal density correlation functions studied
here, the Hartman effect exemplifies itself through the independence of the transit time on the barrier height.
However, due to the thermal distribution, the transit time does depend on the barrier width, initially decreasing
with increasing width but then increasing again.
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I. INTRODUCTION

Time has been an enigma in quantum mechanics from the
very beginning [1]. In contrast to the noncommuting momen-
tum coordinate operators, it is much more difficult to construct
conjugate time energy operators. The difficulties stem from
many factors, not least among them being the quasiobjection
by Pauli [2], which stated that if there would be such a pair of
canonically conjugate self-adjoint operators, then necessarily
the energy operator would have to be unbounded from below.
Some of the history of the evolution in the construction of
time operators in quantum mechanics may be found in the
introductory chapter by Muga et al. [3] to two recent volumes
[4,5] summarizing many of the complexities involved in the
definition of a time operator in quantum mechanics. Since then,
additional reviews have appeared [6–12] as well as different
suggestions for time operators [13,14].

Arguably, the operator approach has not resolved some
fundamental questions such as how much time does it take
a quantum system to tunnel through a barrier. Different
definitions of the time operator give different answers to
something that naively one would expect would have a unique
answer [9,15]. The same comment holds when using external
clocks to “measure” quantum time. Different clocks give
different times [16].

There are many additional approaches to the time problem
in quantum mechanics. One example is the quantum arrival
time distribution, defined in terms of a time integral of the
absolute value of the current density [17,18]. Another is known
as the quantum presence time [19,20], where one considers the
time average of the quantum density. This approach has been
used to define a tempus operator [21]. Its relation to other
definitions of quantum time has been studied in Ref. [22].
Sokolovski pioneered the use of Feynman’s path integral to
define quantum times [23,24] and related this approach to
previous descriptions.

This present paper is motivated by the development in
recent years of the transition-path-time distribution, used
especially in the context of protein folding [25–29]. The
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transition-path-time distribution considers the probability that
a transition between two points in space of a molecular system
(typically a protein) will take a time t. Recent experiments
of Neupane et al. have demonstrated that the distribution is
measurable [30] and may be fit to a theoretical expression
based on the Smoluchowski dynamics of a parabolic barrier.
A central challenge is to provide a quantum-mechanical
framework for the quantum transition-path-time distribution,
paying special attention to the thermal density.

The classical transition-path-time distribution was origi-
nally formulated in terms of thermal flux time correlation
functions [25–29]. This suggests a formal generalization of
transition-path times in terms of more general time correlation
functions. The paradigm we will thus use here is that one
should consider the quantum-mechanical time in terms of
quantum time correlation functions [31,32]. In the Heisenberg
picture, operators evolve in time t ; in the Schrödinger picture
wave functions evolve in time. In both cases, the central object
is the propagator exp(−iĤ t/h̄) (the caret denotes operators and
Ĥ is the Hamiltonian operator). By studying time correlation
functions (say, of Â at t = 0 with B̂ at time t), one obtains
information on the time development of the system with
property B̂ from its initial property Â. If the correlation
function is positive, then it can be used to make a statement on
the probability of finding the system at time t with property B̂.
The presence time formalism [19,20] is just one specific case
of such a correlation function.

With this correlation function approach, one does not need
to formulate a time operator. It is clear that for different
correlation functions one can and will obtain different time
distributions. They simply reflect the different experiments
needed to measure the differing correlation functions. Given
though an experiment, or equivalently a correlation function,
one may establish mean transit times. A study of the mean
transit time for different correlation functions may reveal
the underlying dynamics and may give a unique answer to
questions such as how long it takes a particle to tunnel through
a barrier.

The theoretical framework for quantum transition-path-
time distributions is presented in Sec. II. Following a sug-
gestion of Ref. [33], a relation between thermal correlation
functions at temperature T using a symmetric breakup of the
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thermal distribution of the form exp(−βĤ/2)ρ̂ exp(−βĤ/2)
(with β = 1/kBT and ρ̂ the density operator) and the standard
thermal correlation functions is worked out. There is a direct
relation between the Fourier transforms of the two correlation
functions, so measurement of the standard correlation function
implies the determination of the correlation function with
the symmetric form of the thermal density distribution. The
advantage of the symmetric form is that it leads to a positive
transition-path-time probability distribution.

The thermal density transition-time correlation function
is then studied for a few systems, for which the quantum
propagator is known analytically. These include the free
particle, the δ-function potential [34], the square-barrier
potential [35,36], and the symmetric-double-well potential at
very low temperature. These studies reveal some interesting
properties. For example, for the free particle, the time integral
of the thermal density correlation function diverges both
classically and quantum mechanically. Yet when considering
a δ-function barrier or well, even arbitrarily far from the
δ-function center, the time integral of the quantum thermal
density correlation function does not diverge. The quantum
particle experiences the potential at an infinite distance. This
allows for the determination of the average transit time. As
noted in a recent paper for the parabolic barrier [31], here too
(and also for the square barrier) there are regions where the
longer the path taken by the quantum system, the shorter the
mean time it takes to get there.

The analysis of the square-barrier thermal density corre-
lation function is also revealing. For a fixed barrier width,
the tunneling time is found to be independent of the square-
barrier height. However, keeping the barrier height fixed and
increasing the width does not give a mean transit time that is
independent of the barrier width. The well-known Hartman
effect [37–39], which says that the tunneling time becomes
independent of the barrier width, is not what one would
observe experimentally when initially the particle density on
one side of the barrier is thermally distributed. When the
barrier width becomes large enough such that the tunneling
probability becomes less than the Boltzmann factor for above
barrier motion, the Boltzmann factor takes over, the major
contribution to the barrier traversal comes from above barrier
energies, and the barrier transit time increases with a further
increase in the barrier width. This is qualitatively similar to the
same effect found for an incident Gaussian wave packet [19].

The last example considered is a symmetric-double-well
potential at very low energies [40] such that only the lowest
tunneling doublet is populated. The well-known tunneling time
(τ ∼ 2πh̄/�E) as obtained from the energy splitting �E of
the doublet only sets the overall time scale for the transit
time obtained from the thermal density correlation function.
The actual transit time depends on the location at which one
measures it and is a continuous function of the location.

The paper ends with a discussion of the results, noting
that the cases considered here in some detail are just the
beginning of the discussion. For example, one may replace
the initial thermal distribution and the final density op-
erator with projection operators onto coherent states. One
may use the correlation function transit-time approach to
consider the time characteristics of almost any quantum
transition.

II. THERMAL TRANSITION-PATH-TIME
PROBABILITY DISTRIBUTION

A. Introduction

For the sake of simplicity, the formalism will be written
out for a one-dimensional system; generalization to the
multidimensional case is straightforward. We assume that the
system is governed by the Hamiltonian operator for a particle
with mass M:

Ĥ = p̂2

2M
+ V (q̂), (2.1)

where p̂ and q̂ are the momentum and coordinate operators,
respectively, and V (q̂) is the potential operator. The details
of the potential are as of yet unimportant. The transition path
involves motion from a point x to a point y occurring in the
time interval t . We specifically assume a thermal distribution.
The time-dependent density operator is

ρ̂(y,t) = exp

(
iĤ t

h̄

)
δ(q̂ − y) exp

(
− iĤ t

h̄

)
. (2.2)

The thermal transition-path-time correlation function is then
defined as

C(t ; x,y) = 1
2 Tr{[exp(−βĤ )δ(q̂ − x)

+ δ(q̂ − x) exp(−βĤ )]ρ̂(y,t)}. (2.3)

This is the standard symmetrized definition of thermal corre-
lations functions. Normalization will be introduced below. We
also define the Fourier transform (using a tilde)

C̃(ω; x,y) = 1

2π

∫ ∞

−∞
dt exp(−iωt)C(t ; x,y). (2.4)

In practice we will consider a different symmetrized thermal
density

ρ̂(x,β) = exp

(
−βĤ

2

)
δ(q̂ − x) exp

(
−βĤ

2

)
(2.5)

and the related correlation function

Cs(t ; x,y) = Tr[ρ̂(x,β)ρ̂(y,t)]. (2.6)

Following Craig and Manolopoulos [33], using the eigenfunc-
tion basis set, one readily finds that

C̃s(ω; x,y) = C̃(ω; x,y)

cosh( βh̄ω

2 )
. (2.7)

This implies that measurement of the physical correlation
function C(t ; x,y) will yield, via its Fourier transform, also the
symmetrized correlation function Cs(t ; x,y), so one may use
either one of the correlation functions to study the quantum
dynamics. The advantage of working with the symmetrized
correlation function is that it is positive:

Cs(t ; x,y) =
∣∣∣∣
〈
x

∣∣∣∣ exp

(
−i

Ĥ tc

h̄

)∣∣∣∣y
〉∣∣∣∣

2

(2.8)

with

tc = t − i
h̄β

2
. (2.9)
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B. Time-integrated density operator

It is instructive to derive the relation between the standard
and symmetrized correlation functions somewhat differently.
The time-integrated density operator at the point y is by
definition

D̂0(y) =
∫ ∞

−∞
dtρ̂(y,t). (2.10)

Following Ref. [41], we note that the time-integrated density
operator commutes with the Hamiltonian

D̂0(y) exp(−βĤ )

=
∫ ∞

−∞
dt exp

(
iĤ t

h̄

)
δ(q̂ − y) exp

(
− iĤ (t − ih̄β)

h̄

)

=
∫ ∞

−∞
dt exp

(
iĤ (t + ih̄β)

h̄

)
δ(q̂ − y) exp

(− iĤ t

h̄

)

= exp(−βĤ )D̂0(y). (2.11)

The second equality follows from changing the variable of
integration from t to t − ih̄β and the fact that the time interval
of integration goes from −∞ to ∞. This commutativity is of
course not restricted to the density operator; any Heisenberg
evolved operator that is similarly time integrated will also
commute with the Hamiltonian. This result implies that∫ ∞

−∞
dtC(t ; x,y)

= 1

2
Tr{[exp(−βĤ )δ(q̂−x)+δ(q̂ − x) exp(−βĤ )]D̂0(y)}

= Tr

[
exp

(
−βĤ

2

)
δ(q̂ − x) exp

(
−βĤ

2

)]
D̂0(y)

=
∫ ∞

−∞
dtCs(t ; x,y), (2.12)

where the second equality is obtained by using the commuta-
tivity as in Eq. (2.11) and the invariance of the Tr operation to
cyclic invariance. Of course, the same result is also obtained
from Eq. (2.7) by using the equality for ω = 0.

One may then define the time-averaged density operator

D̂1(y) =
∫ ∞

−∞
dttρ̂(y,t). (2.13)

As for D̂0(y), one readily finds that

D̂1(y) exp(−βĤ ) = exp(−βĤ )[D̂1(y) + ih̄βD̂0(y)].

(2.14)

C. Thermal quantum transition-path-time
probability distribution

Following the same change of variables as in the derivation
of Eq. (2.11) and using the invariance of the Tr operation to
cyclic permutation we find∫ ∞

−∞
dttC(t ; x,y) = Tr

[
exp

(
−βĤ

2

)
δ(q̂ − x)

× exp

(
−βĤ

2

)
D̂1(y)

]
, (2.15)

demonstrating that also the first moment of the two correlation
functions C(t ; x,y) and Cs(t ; x,y) are identical. The same
result may also be obtained from Eq. (2.7) by taking the first
derivative with respect to ω and then setting ω = 0.

We may thus define a normalized quantum transition-path-
time probability distribution function

P (t ; x,y) = Cs(t ; x,y)∫ ∞
−∞ dtCs(t ; x,y)

, (2.16)

whose first moment is identical to the normalized time average
of the original correlation function C(t ; x,y). The advantage
is that in view of Eq. (2.8), now we have a true probability
distribution, which is always positive; this is not the case when
considering C(t ; x,y).

Following the same procedure as above, one may also define
the second moment of the integrated density operator

D̂2(y) =
∫ ∞

−∞
dtt2ρ̂(y,t) (2.17)

and find that∫ ∞

−∞
dtt2C(t ; x,y) = Tr

[
ρ̂(x,β)

(
D̂2(y) − h̄2β2

4
D̂0(y)

)]
.

(2.18)

The same result may also be obtained directly from Eq. (2.7)
by taking the second derivative of the equation with respect to
ω and then setting ω = 0. This implies that

∫ ∞

−∞
dtt2P (t ; x,y) =

∫ ∞
−∞ dtt2C(t ; x,y)∫ ∞
−∞ dtC(t ; x,y)

+ h̄2β2

4
. (2.19)

Since often the probability function P (t ; x,y) is symmetric
with respect to time inversion, it is also useful to note the
relationship

∫ ∞

−∞
dt |t |P (t ; x,y) =

∫ ∞
−∞ dt

√
t2 + h̄2β2

4 C(t ; x,y)∫ ∞
−∞ dtC(t ; x,y)

. (2.20)

Below we will study in some detail the properties of the mean
transition-path time defined as

〈t ; x,y〉 =
∫ ∞

−∞
dt |t |P (t ; x,y). (2.21)

It should be stressed that, by using the symmetrized
correlation function, one gets a positive distribution for which
one can legitimately consider moments and these moments
have a straightforward physical meaning. The time-dependent
transition-path probability is the probability that a particle
localized initially at x with a thermal distribution will end
up at the point y at time t . In this way one has a direct
handle on the passage of time in quantum mechanics. There
is no further need to define time operators or worry about the
lack of a well-defined conjugate energy operator. Time in this
formalism is just the time that elapsed between two successive
localizations of the quantum system.
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D. Dwell-time operator

It is of interest to compare the average time as obtained from
the thermal transition-path-time probability distribution (2.20)
with one of the more standard definitions of time in quantum
mechanics. The dwell-time operator in the region [a,b] as
defined, for example, in Ref. [3] is the spatially integrated
form of the time-integrated density operator

T̂ (a,b) =
∫ b

a

dyD̂0(y). (2.22)

The thermally averaged dwell time in the region [a,b],

〈T̂ (a,b)〉β = Tr[exp(−βĤ )T̂ (a,b)]

Tr[exp(−βĤ )]
, (2.23)

is not meaningful since the time integral in the numerator
always diverges. It is instructive though to study a conditional
thermal dwell time

〈T̂ (x; a,b)〉β = Tr[exp(−βĤ )δ(q̂ − x)T̂ (a,b)]

Tr[exp(−βĤ )δ(q̂ − x)]

=
∫ b

a
dy

∫ ∞
−∞ dt

∣∣〈x∣∣ exp
( − i Ĥ tc

h̄

)∣∣y〉∣∣2

〈x| exp(−βĤ )|x〉 ,

(2.24)

which gives the dwell time in the interval [a,b] conditioned
about the thermal distribution being initially localized at x.

E. Generalizations

To consider the quantum-mechanical time evolution in
terms of a transition-path-time probability function it is not
necessary to limit oneself to thermal density distributions. As
noted in Ref. [31], the correlation function of the operators Â

and B̂,

CAB(t) = Tr

[
Â exp

(
iĤ t

h̄

)
B̂ exp

(
− iĤ t

h̄

)]
, (2.25)

is positive for any time if the two operators may be represented
as

Â = ââ†, B̂ = b̂b̂† (2.26)

since then the correlation function is just the trace of a product
of an operator and its Hermitian conjugate. This is especially
relevant when the operators Â and B̂ are projection operators.
For example, one may choose

Â = |g(p,q)〉〈g(p,q)|, B̂ = |g(p′,q ′)〉〈g(p′,q ′)|, (2.27)

where |g(p,q)〉 is a coherent state localized about the
coordinate and momentum values q and p, respectively.
Alternatively, one may choose the operator B̂ to be the
density at the point y and then one obtains the presence time
distribution for the initial coherent state.

III. APPLICATIONS

A. Free particle

In this section we will study a few systems whose
propagator is known analytically using the transition-path-time

probability distribution. The propagator matrix element for a
free particle is [42]

〈x| exp

(
− iĤ t

h̄

)
|y〉 =

√
−iM

2πh̄t
exp

[
iM(x − y)2

2h̄t

]
, (3.1)

so

Cs(t ; x,y) = M

2πh̄

√
1

t2 + h̄2β2

4

exp

[
−Mβ(x − y)2

2
(
t2 + h̄2β2

4

)
]
. (3.2)

The infinite time integral of the free-particle thermal transition-
path-time correlation function diverges logarithmically at long
times. This divergence is a classical effect, as one notes when
lettingh̄ → 0 in Eq. (3.2). The classical time it takes to traverse
the distance |x − y| is inversely proportional to the momentum
and diverges as the momentum goes to zero, so the related
probability distribution is not well defined. The conditional
thermal dwell time in the region [a,b] [Eq. (2.17)] for a free
particle is similarly not well defined.

It is also of interest to consider the Wigner distribution
associated with the density ρ̂(x,β) [Eq. (2.5)]:

ρW (p,q; x,β)

= 1

2πh̄

∫ ∞

−∞
dξ exp

(
ipξ

h̄

)〈
q− ξ

2

∣∣∣∣ exp

(
−βp̂2

4M

)
δ(q̂−x)

× exp

(
−βp̂2

4M

)∣∣∣∣q + ξ

2

〉

= 1

πh̄

(
M

2πh̄2β

)1/2

exp

(
−βp2

2M
− 2M(x − q)2

h̄2β

)
. (3.3)

In the Wigner phase-space representation, the distribution is
localized about the position x but with a width that ish̄

√
β/4M ,

so the lower the temperature, the larger the width in the
configuration space. This is of course expected; the lower the
temperature, the more localized the momentum, so the coor-
dinate delocalizes. As we will see below, this manifests itself
when studying the transit time in the presence of a potential.

B. The δ-function potential

Following the notation of Ref. [34], we write the Hamilto-
nian as

Ĥ = p̂2

2M
− εδ(q̂) (3.4)

and note that for a barrier, ε < 0. The transmission (T ) and
reflection (R) coefficients for an energy

E = h̄2k2

2M
(3.5)

and incident wave function

�(q) = exp(ikq) + R exp(−ikq), q < 0 (3.6)

and transmitted wave function

�(q) = T exp(ikq), q > 0 (3.7)

are

T =
(

1 − i
Mε

kh̄2

)−1

, R = i Mε

kh̄2

1 − i Mε

kh̄2

. (3.8)
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The transmission and reflection probabilities are thus quadratic
in the variable ε; they do not distinguish between a δ-function
well or barrier:

|T |2 =
(

1 + M2ε2

k2h̄4

)−1

,

|R|2 = M2ε2

k2h̄4

(
1 + M2ε2

k2h̄4

)−1

. (3.9)

The matrix element for the propagator in imaginary time
has been worked out in Ref. [34]. It too is invariant to the sign
of ε:

〈x| exp(−Ĥ τ )|y〉

=
√

M

2πh̄2τ

[
exp

(
− M(x − y)2

2h̄2τ

)
− M|ε|

h̄2

×
∫ ∞

0
du exp

(
−M|ε|

h̄2 u

)
exp

(
−M(|x|+|y|+u)2

2h̄2τ

)]
.

(3.10)

Using the dimensionless variables

x̄ =
√

M

βh̄2 x, t̄ = t

βh̄
, ε̄ = ε

h̄

√
Mβ, (3.11)

we find that

|〈x̄| exp(−iĤ tc)|ȳ〉|2

= 1

2π

√
1

(t̄2 + 1
4 )

exp

(
− (x̄ − ȳ)2

2(t̄2 + 1
4 )

)

×
∣∣∣∣1 + ε̄

√
iπ t̄c

2
exp

{
i

2

[
ε̄2

(
t̄c − 2

i(|x̄| + |ȳ|)
|ε̄|

)

− (x̄ − ȳ)2

t̄c

]}
erfc

( |x̄| + |ȳ| + it̄c|ε̄|√
2it̄c

)∣∣∣∣
2

. (3.12)

In contrast to the free particle, this expression does not have a
logarithmic divergence at long times. To see this we note the
leading terms in the asymptotic expansion

erfc(z) ∼ 1√
πz

exp(−z2)

(
1 − 1

2z2

)
(3.13)

so that

lim
t→∞ |〈x̄| exp(−iĤ tc)|ȳ〉|2

= 1

2π

√
1

t̄2 + 1
4

[1 + ε̄2(|x̄||ȳ| + x̄ȳ) + |ε̄|(|x̄| + |ȳ|)]2

(t̄2 + 1
4 )ε̄4

.

(3.14)

This is integrable irrespective of the sign of ε̄. The mean
time also does not diverge. This is one of the peculiarities of
quantum mechanics. One may have thought that very far away
from the origin, the transmitted wave function is just a free
particle. However, this is not so; at any distance, the particle
experiences the δ-function potential and the time-integrated

FIG. 1. Mean (reduced) transition-path time for a δ-function
potential for different initial points of the particle plotted as a function
of the reduced final position y. The red dash-dotted, green dashed,
and brown dotted lines are x̄ = −10, − 5, − 1, respectively, with
|ε̄| = 1. The lower black long-dashed line shows a linear dependence
with slope of √

π . The solid purple line shows the dependence of
the average transit time for |ε̄| = 0.5 and x̄ = −10. Note the regions
in which the average time decreases as the distance from the initial
point increases.

normalization of the thermal correlation function does not
diverge as it does for a free particle.

In Fig. 1 we plot the average transit time for the δ-function
potential for three different initial points x̄ = −10, − 5, − 1
as the red dash-dotted, green dashed, and brown dotted lines,
respectively, as a function of the final point ȳ for |ε̄| = 1.
These plots have some notable features. For positive ȳ, that
is, for points on the opposite side of the δ-function potential,
the average time increases linearly with the final position, as
might be expected for a free particle. The slope is independent
of the initial point x̄ and is found empirically to be equal
to

√
π (the black long-dashed line in the figure). Between

the initial point x̄ and the location of the δ function (x̄ =
0) the average time decreases as the particle moves a longer
distance. As noted in Ref. [31] for the parabolic barrier, in
quantum mechanics, sometimes, going a longer way takes less
time. In this case, this quantum effect is a manifestation of
the interference of the incident and reflected waves in this
region. For points on the left of the initial point, the time
increases with increasing distance; this is a manifestation of the
fact that the initial density includes both positive and negative
momenta.

To demonstrate the dependence of the transition time on
the magnitude of the strength of the δ potential we show
in the same figure the dependence of the average time on
the final point ȳ also for |ε̄| = 0.5 (brown solid line) with
the initial condition x̄ = −10. When ε̄ = 0 the δ-function
potential vanishes, one has a free particle, and the average
transit time becomes infinite. One should thus expect that the
transition time will increase as ε̄ decreases, as shown in the
figure.

Finally, it is of interest to compare the average transition-
path time with the conditional dwell time as defined in
Eq. (2.17). For this purpose we note that for the δ-function

042108-5



ELI POLLAK PHYSICAL REVIEW A 95, 042108 (2017)

FIG. 2. Conditional dwell time for a δ-function potential plotted
as a function of the final distance for boxes of reduced length of unity.
The initial point is x̄ = −10 and |ε̄| = 1. Note that to the right of the
potential the conditional dwell time is constant and small, reflecting
the small transition probability.

potential

〈x̄| exp(−βĤ )|x̄〉=
√

1

2π

[
1 − |ε̄|

√
π

2
exp

(
1

2
(ε̄2 + 4|x̄||ε̄|)

)

× erfc[
√

2(|ε̄| + 2|x̄|)]
]
. (3.15)

The conditional dwell time is plotted in Fig. 2 for successive
regions of length unity, that is, we plot 〈T̂ (−10; ȳ − 1

2 ,ȳ +
1
2 )〉β for |ε̄| = 1 as a function of ȳ. The conditional dwell time
is very different from the mean transition-path time. To the
right of the δ potential, it is very small, reflecting the small
transmission probability. The discontinuity in the derivative
of the dwell time about the origin is real and reflects the
discontinuity in the derivative of the wave function due to the
δ-function potential. In contrast, the average transition-path
time does not reflect the small transition probability since it
gives the physical time. That is, if one first localizes the particle
to the right of the δ potential, it gives the time it will take it to
reach the final point. The fact that the probability of reaching
the point is small or large is irrelevant.

C. Square barrier potential

We follow here the notation of Ref. [36]. The step function
barrier Hamiltonian is

Ĥ = p̂2
q

2M
+ u0[θ (x + a) − θ (x − a)], (3.16)

so the barrier is of length 2a and height u0. Region 1 is defined
by x < −a, region 0 is the barrier region, that is, a > x > −a,
and region 2 is when x > a. Using the notation of Eq. (3.5)
for the wave number k and

K =
√

2Mu0

h̄2 − k2, (3.17)

the expression for the propagator as given in Ref. [36] is

〈x|Kij (t)|y〉 =
∫ ∞

0
dk exp

(
−i

h̄k2

2M
t

)
Zij (k,x,y), (3.18)

where the index j denotes the region of y and the index i

the region of x. The functions Zij (k,x,y) are real and written
out explicitly in the Appendix. For the thermal distribution the
normalization integral is

N−1
ij (x,y) =

∫ ∞

−∞
dt|〈x|Kij (tc)|y〉|2

= 2πM

h̄

∫ ∞

0
dk

1

k
exp

(
−β

h̄2k2

2M

)
|Zij (k,x,y)|2

(3.19)

and for the mean time integral∫ ∞

−∞
dt |t ||〈x|Kij (tc)|y〉|2

= 2
∫ ∞

0
dtt

∣∣∣∣
∫ ∞

0
dk exp

(
− β

h̄2k2

4M

)

× cos

(
h̄k2

2M
t

)
Zij (k,x,y)

∣∣∣∣
2

+ 2
∫ ∞

0
dtt

∣∣∣∣
∫ ∞

0
dk exp

(
− β

h̄2k2

4M

)

× sin

(
h̄k2

2M
t

)
Zij (k,x,y)

∣∣∣∣
2

. (3.20)

Using the reduced variables

x̄ = x

a
, ȳ = y

a
, k̄ = ak, K̄ = aK,

t̄ = h̄

Ma2
t, β̄ = h̄2β

Ma2
, ū0 = Ma2

h̄2 u0, (3.21)

we plot in Fig. 3 the average transition-path time as a
function of the final point ȳ for the initial points x̄ = −4, − 2
(blue dashed line and purple dotted lines, respectively) and
the reduced (inverse) temperature β̄ = 1 and barrier height
ū0 = 1. As in the case of the δ-function potential, to the right
of the initial point but to the left of the barrier, one notices
a reduction of the transition time as the distance increases.
The red dash-dotted line is at a reduced (inverse) temperature
of β̄ = 5 and initial point x̄ = −4. Reducing the temperature
increases the transit time, as might have been expected.

It is also of interest to study the dependence of the transition
time on the reduced barrier height. This is shown in Fig. 4 for
x̄ = −ȳ = −10, − 8, − 6 − 4, − 2 and β̄ = 20. The further
away the initial point is from the barrier, the longer the average
transit time is. This is reasonable; the differences between the
five initial points reflect the longer path in each case. What
is more interesting is that in all cases, when the barrier is
of order 5 or more, the average transit time becomes almost
independent of the barrier height. The Hartman effect is for a
barrier with a fixed height but increasing width. We just saw
that for a barrier of fixed width but increasing height the mean
transit time becomes independent of the barrier height. When
the barrier height is low, the average transit time becomes
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FIG. 3. Mean transition time for a square-barrier potential plotted
as a function of the final (reduced) position for a reduced barrier height
ū0 = 1 and the initial points x̄ = −4, − 2 (blue dashed line and purple
dotted line, respectively) and a reduced (inverse) temperature β̄ = 1.
The red dash-dotted line is with the same conditions but at a reduced
(inverse) temperature of β̄ = 5 and initial point x̄ = −4.

larger, reflecting the fact that for a free particle the average
transit time would diverge. As the barrier height increases,
tunneling takes over and as mentioned, the average transit
time becomes constant when the barrier height is sufficiently
large.

Also plotted in Fig. 4 as the dotted lines is the time it
would take a classical free particle to cross the distance
2(|x̄| − 1) [see Eqs. (3.22) and (3.23) below]. This is the
distance to be traversed but excluding the barrier region. The
excellent correspondence between this classical estimate and
the quantum results as shown in the figure indicates (as will

FIG. 4. Mean transition time for a square-barrier potential plotted
as a function of the (reduced) barrier height. The reduced (inverse)
temperature in all cases is β̄ = 20. The black dashed, purple dash-
dotted, green dashed, red dashed, and blue solid lines correspond
to the initial positions x̄ = −ȳ = −10, − 8, − 6, − 4, − 2, respec-
tively. The dotted lines show the transit time for a classical free
particle with the averaged thermal momentum of Eq. (3.22) moving
over the distance 2(ȳ − 1).

FIG. 5. Mean transition-time probability distribution plotted for
a square-barrier potential for two different values of the initial point
and the barrier height. The reduced (inverse) temperature in all
cases is β̄ = 20. The green long-dashed and red dotted lines are
for the initial point x̄ = −2 = −ȳ and the reduced barrier heights
ū = 30,10 respectively. The blue solid and purple dashed lines are
for the initial point x̄ = −6 = −ȳ and the reduced barrier heights
ū = 30,10, respectively.

also be discussed further below) that the time it takes to cross
the barrier, that is, the tunneling time, vanishes.

This independence of the transit time on barrier height is
shown in even more detail in Fig. 5, where the transition-
time probability distribution is plotted for two different initial
values of x̄ = −2, − 6 = −ȳ but in each case for the reduced
barrier heights of ū = 10,30. The distribution peaks at shorter
times when x̄ = −2; however, the ū = 10,30 distributions are
indistinguishable on the scale of the plot.

The independence on the barrier height is further
shown in Fig. 6, where the average time is plotted as
a function of the initial point x̄ = −ȳ for ū = 5,30 as
the dashed orange and blue solid lines, respectively. As is
evident from the figure, the two results are almost indis-
tinguishable. Plotted also, as the dotted green line, is the
time it would take a free particle whose initial momentum
is thermally distributed to cross the distance 2(|x̄| − 1). The
average momentum for the free particle is

〈p〉β =
∫ ∞

0 dpp exp
(− βp2

2M

)
∫ ∞

0 dp exp
(− βp2

2M

) =
√

2M

πβ
, (3.22)

so the mean (reduced) time for the free particle to cross the
distance 2(|x̄| − 1) would be

t̄β =
√

2πβ̄(|x̄| − 1), (3.23)

which is the green dotted line plotted in the figure. When
|x̄| = 1 this mean time vanishes; it is the time for a free particle
to cross the distance from −x̄ to x̄ assuming that the time it
takes to cross the barrier region vanishes. As can be seen from
the figure, when one considers the mean transit time at large
distances from the barrier, it extrapolates to zero at x̄ = −1,
irrespective of the barrier height. This demonstrates that for
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FIG. 6. The transit time through a square barrier vanishes. The
mean transition-path time for a square-barrier potential at the reduced
temperature β̄ = 20 for the transition path going from x to −x is
plotted as a function of the initial (reduced) position (x) for the
reduced barrier heights ū = 5,30 as the orange dashed and blue solid
lines, respectively. Note that the two lines almost merge. The green
dotted line is the time it would take a free particle whose initial
momentum is thermally distributed to cross the distance 2(|x̄| − 1). At
the location of the barrier (x = −1) this time vanishes. The quantum
transition times extrapolate to this vanishing time, showing that the
tunneling time vanishes.

the square barrier, the time it takes to tunnel through the barrier
vanishes.

On the other hand, as the initial point nears the edge of the
barrier, the quantum transit time deviates from the classical
free-particle estimate and goes to a constant nonzero value at
the edge of the barrier (x̄ = −1). As noted when considering
the free particle, the thermal distribution has a spread to it
so that at small values of x̄ part of the initial distribution
is already under the barrier and so does not balance out the
longer time it takes the distribution that is on the left side of the
initial point to reach the barrier. Considering that the reduced
inverse temperature is β̄ = 20, one finds that the standard
deviation of the Wigner distribution in configuration space
(3.3) is

√
(β̄/4) 	 2.24, so one would expect that the transit

time at x̄ = −1 would be similar to the transit time at x̄ =
−1 to 2.24, which is roughly the result shown in the figure.
However, when the initial point is far from the barrier edge,
one obtains a transit time that follows the free-particle classical
estimate and is consistent with a vanishing tunneling time.

Finally, it is of interest to study the Hartman effect in the
context of thermal tunneling. Since all the variables scale with
the width a [see Eq. (3.21)] one has to account for the correct
scaling. The results in Fig. 7 are based on their values when
a = 1. Thus, the barrier height is kept fixed at ū(a = 1) = 1.
Similarly, the reduced (inverse) temperature and mean time
shown in the figure are based on their value when a = 1. The
initial and final points are kept at a distance of 3 from the edges
of the square barrier, so the free motion part is the same for all
values of the width a. The blue solid and red dashed lines are
for the inverse temperatures β̄(a = 1) = 20,10 respectively.

The Hartman effect was discovered for tunneling at a
fixed energy. Here we are dealing with an initial thermal

FIG. 7. Thermal Hartman effect. The mean transition time is
plotted for a square-barrier potential for two different values of the
inverse temperature as a function of the barrier width a. The barrier
height ū = 1 is kept fixed at its value for a = 1. The mean time
is given in terms of the mean time for a = 1. The blue solid and
red dashed lines are for the inverse temperatures β̄(a = 1) = 20,10,
respectively. For further details see the text.

distribution. The lower the temperature, the longer the transit
time; this is a reflection of the free-particle part of the
motion. As the width of the barrier increases, the mean time
first decreases and then increases. The initial decrease is
a reflection of the Hartman effect. As the barrier becomes
thicker, the transmission probability becomes smaller. The
higher the incident energy, the more probable it is to tunnel, but
the tunneling time is only slightly dependent on the initial
energy. Thus, increasing the width increases the contribution
from higher incidence energies, which are still below the
barrier height. This increases the speed at which the system
crosses the free-particle portion to the left and right of the
barrier.

For a very thick barrier, the transmission probability goes
roughly as [see Eq. (A13)] exp(−2aK). At some point, the
width a becomes so large that the canonical population factor at
the barrier energy exp(−βu0) equals the tunneling exponential.
At this point, population moves over the barrier, albeit slowly.
This results in the increase of the transit time when the barrier
becomes too thick. One notes that the smaller the inverse tem-
perature, the earlier the onset of the increase in the transit time.

The dependence of the transit time on the barrier height
and thickness behave quite differently for a thermal initial
distribution. Increasing the barrier height decreases the thermal
factor exp(−βu0) exponentially, so there is no contribution
from motion above the barrier and the mean tunneling time re-
mains constant. Increasing the width reduces the transmission
probability while keeping the thermal factor fixed, so at some
point, thermal activation “beats” the tunneling and the transit
time again increases with the width.

D. Symmetric double-well potential at very low temperatures

For a symmetric-double-well potential at very low temper-
atures, one may assume that only the two lowest eigenstates
(0 and 1) of the Hamiltonian are populated. Denoting the
respective energies by E0 and E0 + �E, where �E is the usual
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tunneling splitting, the thermal propagator may be written as

exp(−iĤ tc) = exp

(
−βE0

2
− i

E0t

h̄

)[
|0〉〈0|

+ exp

(
−β�E

2
− i

�Et

h̄

)
|1〉〈1|

]
.

(3.24)

Assuming that the eigenfunctions are real, we readily find that

|〈x| exp(−iĤ tc)|y〉|2

= exp(−βE0)

[
〈x|0〉2〈0|y〉2 + 2 cos

(
�Et

h̄

)
e−β/�E2

×〈x|0〉〈0|y〉〈y|1〉〈1|x〉

× + e−β�E〈x|1〉2〈1|y〉2

]
. (3.25)

The normalization integral may be limited to the period
2πh̄/�E and one readily finds that the mean transition time is
thus〈

t

(
x,y,τ = 2πh̄

�E

)〉

= 2πh̄

�E

[〈x|0〉〈0|y〉 + exp(− β�E

2 )〈x|1〉〈1|y〉]2

[〈x|0〉2〈0|y〉2 + exp(−β�E)〈x|1〉2〈1|y〉2]
.

(3.26)

To gain further insight, we assume that the eigenfunctions
are Gaussian functions so that

1√
2

[〈x|0〉 ± 〈x|1]〉 =
(

�

π

)1/4

exp

(
− (x ± x0)2

2�

)
(3.27)

and � is a width parameter. Using the reduced time and inverse
temperature

t̄ = �E

2πh̄
t, β̄ = β�E, (3.28)

we plot in Fig. 8 the mean transit time (with x0 = 1, β̄ = 1, and
� = 1) as a function of the distance y for x = −1.5, − 1, −
0.5. Interestingly, one finds that the mean transit time changes;
the longer the distance to y, the shorter the mean transit time.
Only when y = 0 is the (reduced) time identically equal to
unity.

IV. DISCUSSION

The paradigm used in this paper for the study of time is
that it should be considered as a parameter in the evolution of
quantum-mechanical systems and may be measured through
correlation functions. Just as the transit time may be measured
in protein folding, it may also be measured in principle when
considering any quantum system. A wide class of correlation
functions may be constructed that is ensured to be positive
and so enable the formulation of a transition-time probability
distribution that is well defined.

In this paper the emphasis was on the thermal transit-time
distribution for the thermal density correlation function. A
system is initially localized around a point in space with a

FIG. 8. Mean (reduced) transition time for a symmetric-double-
well potential plotted for three different initial points x = −1.5, −
1, − 0.5 as a function of the final point y. The red dotted, blue
solid, and brown dash-dotted lines correspond to these three initial
conditions. The double-well minima are assumed to be at x0 = ±1.
Although the time averaged over all final distances is unity, the farther
away the distance y and to the right of the initial point, the less time
it takes to reach it.

thermal distribution and then measured again when it reaches a
different point in the configuration space. In principle, such an
experiment is equivalent to a time-of-flight experiment, except
that we considered a (positive) thermal density correlation
function rather than a thermal flux correlation function [43],
which would not be necessarily positive at all times. The
positivity was ensured by using a symmetrized thermal initial
density; however, the relation between the density correlation
function using this symmetrized form and the standard thermal
density was considered in some detail. The relationship is one
to one, so one may consider the symmetrized thermal density
correlation function as being measurable.

The theory was then applied to study the time evolution of a
number of simple systems, for which the quantum propagator
is known analytically. The first was the free particle from
which one may glean two conclusions. One is that for the free
particle one cannot construct the transition-time probability
distribution, since the time integral of the correlation function
diverges at long times. The other is that consideration of
the Wigner distribution function of the symmetrized thermal
density of the free particle gives insight into the momentum
and coordinate spread of the distribution as a function of the
temperature.

The first nontrivial system to be analyzed was scattering
with a δ-function potential. The most striking result of this
system is that the transition-time probability distribution
exists even though the particle is almost everywhere a free
particle. In other words, the quantum nonlocality is extreme,
even arbitrarily far from the center where the δ-function
potential is located, the system experiences the potential,
and the time evolution is very different from that of a free
particle. There is no logarithmic divergence in the time
evolution.

The second system studied in some detail was scattering
over a square-barrier potential. Qualitative similarities with
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the δ-function scattering were noted; however, the dynamics
of the square barrier is much richer. We found that, indeed,
the mean transit time it takes to tunnel vanishes. This is
consistent with the fact that we also demonstrated that the
mean transit time is independent of the square-barrier height.
On the other hand, with the thermal density distribution one
does not find that the mean transit time is independent of the
width of the barrier, known as the Hartman effect. For a fixed
barrier height, at very low temperature, increasing the barrier
width initially shortens the transit time, but at some point the
transit time again increases with width. This occurs when the
tunneling probability becomes smaller than the probability for
above barrier crossing. At longer lengths, the system crosses
above the barrier, motion is slow, and the transit time naturally
increases.

Finally, the formalism was applied to the dynamics of a
symmetric-double-well potential at very low temperature. Just
as in the cases of the δ-function and square-barrier potentials,
here too there are regions where the longer the distance, the
shorter the time it takes to traverse it. Most interestingly, the
transit time scale is determined by the standard double-well
splitting energy (inversely proportional to it); however, the
transit time is not constant; it depends on the distance between
the initial and final density.

In contrast to the studies presented in Refs. [31,32], we
did not consider the effects of friction. For a parabolic barrier
this may be carried out analytically; this is not the case for
the systems studied here. Introducing friction to the problem,
though very interesting, would necessarily involve numerical

studies that are not trivial. Another aspect that has not been
considered here is the study of the transit time based on
correlation functions that are not thermal. A clear case to be
analyzed in detail is when the initial operator is a projection
onto a coherent state and the transit is to a final density. This
would be the formalism needed to analyze the double-slit
experiment, for example, and to obtain not only the diffraction
pattern but also its evolution in time.

There are many other quantum effects whose time evo-
lution could be considered using the transit-time probability
distribution formalism. Examples are quantum resonances,
quantum reflection at low energy, curve crossing problems,
and photoinduced transitions. This present study will hopefully
stimulate a deep study into the temporal behavior of quantum
systems.
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APPENDIX

In this appendix we summarize the necessary formulas
for the propagator of the square-barrier potential as given in
Ref. [36]. The function Zij (k,x,y) appearing in Eq. (3.18) is
written as

Zij (k,x,y) = Fs(k)Yis(k,x)Y ∗
js(k,y) + Fa(k)Yia(k,x)Y ∗

ja(k,y), (A1)

with

Fs(k) = 1

π

k2

k2| cosh(Ka)|2 + |K|2| sinh(Ka)|2 , (A2)

Fa(k) = 1

π

k2

|K|2| cosh(Ka)|2 + k2| sinh(Ka)|2 , (A3)

Y1s = cosh(Ka) cos[k(x + a)] − K

k
sinh(Ka) sin[k(x + a)], (A4)

Y0s = cosh(Kx), (A5)

Y2s = cosh(Ka) cos[k(x − a)] + K

k
sinh(Ka) sin[k(x − a)], (A6)

Y1a = − sinh(Ka) cos[k(x + a)] + K

k
cosh(Ka) sin[k(x + a)], (A7)

Y0a = sinh(Kx), (A8)

Y2a = sinh(Ka) cos[k(x − a)] + K

k
cosh(Ka) sin[k(x − a)]. (A9)

Using these formulas and some manipulation, one finds the following more explicit forms:

Z12(k,x,y) = k2

π

K2 cosh(2Ka) cos[k(x − y)] + 1
2kK

(
K2

k2 − 1
)

sinh(2Ka) sin[k(y − x)]
M2u2

0

h̄4 sinh(2Ka)2 + 2Mu0

h̄2 k2 − k4
, (A10)

Z10(k,x,y) = K2k2

π

cos[k(x + a)][cosh(Ka)3 cosh(Ky) − sinh(Ka)3 sinh(Ky)]
M2u2

0

h̄4 sinh(2Ka)2 + 2Mu0

h̄2 k2 − k4
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+ k

2π

sinh(2Ka){k3 cos[k(x + a)] sinh[K(a − y)] − K3 sin[k(x + a)] cosh[K(a − y)]}
M2u2

0

h̄4 sinh(2Ka)2 + 2Mu0

h̄2 k2 − k4

+ Kk3

π

sin[k(x + a)][cosh(Ka)3 sinh(Ky) − sinh(Ka)3 cosh(Ky)]
M2u2

0

h̄4 sinh(2Ka)2 + 2Mu0

h̄2 k2 − k4
, (A11)

Z11(k,x,y) = Kk

4π

(2Kk[1 + cosh2(2Ka)] cos[k(x − y)] − (k2 + K2) sinh(4Ka) sin[k(x + y + 2a)])
M2u2

0

h̄4 sinh(2Ka)2 + 2Mu0

h̄2 k2 − k4

+ sinh2(2Ka){k4 cos[k(x + a)] cos[k(y + a)] + K4 sin[k(x + a)] sin[k(y + a)]}
2π

[M2u2
0

h̄4 sinh(2Ka)2 + 2Mu0

h̄2 k2 − k4
] . (A12)

These are then inserted into the expressions (3.19) and (3.20) to obtain the mean transition-path time. Finally, the transmission
coefficient for the square barrier at an incident energy E = h̄2k2/2M is

|T |2 = 4E(u0 − E)

4E(u0 − E) + u2
0 sinh2(2Ka)

. (A13)
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